Meta-model Based Framework for
Architectural Knowledge Management

Manoj Bhat
Technische Universitat
Miinchen
Boltzmannstr. 3
85748 Garching, Germany

manoj.mahabaleshwar@tum.de

Uwe Hohenstein
Siemens AG - Corporate
Technology
Otto-Hahn-Ring 6
81739 Miinchen, Germany

uwe.hohenstein@siemens.com

ABSTRACT

The need to support a software architect’s day-to-day ac-
tivities through efficient tool support has been highlighted
both in research and industry. However, managing enter-
prises’ Architectural Knowledge (AK) to support scenarios
such as decision making, what-if analysis, and collaboration
during the execution of large industrial projects is still a
challenge. In this paper, we propose the architecture of an
AK management framework to support software architects
to manage AK. The components of this framework includ-
ing SyncPipes and rule engine allow software architects to
consolidate projects’ data from disparate sources and to de-
fine domain-specific rules to address the challenges in incon-
sistency analysis, context-sensitive recommendations, and
tracking of artifacts within projects. The technical details
for realizing the components of the framework are also pre-
sented. The proposed AK management framework has been
successfully implemented as part of an industrial project and
is currently being evaluated in different domains.

CCS Concepts

eSoftware and its engineering — Designing software;
Software implementation planning;

Keywords

Architectural knowledge management; meta-models; domain-
specific language; tool support

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ECSAW ’16, November 28-December 02, 2016, Copenhagen, Denmark
© 2016 ACM. ISBN 978-1-4503-4781-5/16/11...$15.00
DOL: http://dx.doi.org/10.1145/2993412.3004848

Klym Shumaiev
Technische Universitat
Miinchen
Boltzmannstr. 3
85748 Garching, Germany

klym.shumaiev@tum.de

Michael Hassel
Siemens AG - Corporate
Technology
Otto-Hahn-Ring 6
81739 Miinchen, Germany

michael.hassel@siemens.com

Andreas Biesdorf
Siemens AG - Corporate
Technology
Otto-Hahn-Ring 6
81739 Miinchen, Germany

andreas.biesdorf@siemens.com

Florian Matthes
Technische Universitat
Muinchen
Boltzmannstr. 3
85748 Garching, Germany
matthes@Qtum.de

During the past few years, several approaches, frame-
works, and meta-models to capture and manage Architec-
tural Knowledge (AK) have been proposed and applied in
research as well as in industries [5]. This trend is mainly due
to the fact that AK is becoming more and more an organi-
zational asset [12]. Harnessing this asset enables knowledge
reuse, supports decision making, and avoids knowledge evap-
oration within an organization. The aim of AK Management
(AKM) is to codify the tacit knowledge residing in the minds
of software architects explicitly in either structured or semi-
structured knowledge bases. Subsequently, such knowledge
bases can be used to support software architects to take
architectural decisions in applying the application-generic
knowledge including architectural styles, design patterns,
and architectural standards to specific project instances [14].

Architectural decisions are made by considering various
influencing factors including project context, architecture-
significant requirements, past decisions, availability of time,
budget, and human resources [21]. Therefore, we agree with
R. Capilla et al. [11] and emphasize the need for linking AK
elements to different artifacts in the software engineering
lifecycle. These artifacts include project plans, minutes of
meeting, requirement specification documents, architecture
design documents, source-code commits, bug reports, and
change requests. Typically in large industrial projects, the
aforementioned artifacts are maintained by multiple stake-
holders in a variety of disparate information systems. Thus,
providing a consolidated view to software architects to make
informed decisions based on the current state of the project
becomes challenging. This challenge has also been discussed
in [10], wherein the authors highlight the need for AKM
tools to interoperate with tools from different phases of the
software engineering lifecycle and to establish traces between
the artifacts generated during the process.

To address the aforementioned challenges, we propose an
AKM framework that supports software architects during
the execution of projects in a collaborative environment. In
particular, we first focus on the generic use cases identi-
fied in [10] and [17] for AKM tools. We further consider
organization-specific use cases that were captured to sup-
port scenarios within an industrial project. The proposed

AKM framework captures the essential components such as
a meta-model based platform, a knowledge base, a rule en-
gine, and a data synchronization (SyncPipes) component.
In particular, the SyncPipes component addresses the chal-
lenge of selective model selection, alignment, and transfor-
mation of data spread across different tools into the AKM
platform. The rule engine component allows experts to
capture domain-specific rules that are used for generating
context-sensitive recommendations. These components rely
on a meta-model based approach that provides the flexibility
to adapt the domain models to meet different organization
and project context. The architecture of the framework and
the technical details to realize the components within the
framework form the main contributions of this paper.

The remainder of this paper is organized as follows. Sec-
tion 2, presents the architecture of the AKM framework. In
Section 3, we demonstrate the results of the application of
our framework by considering usage scenarios in an indus-
trial setting. Section 4, presents an overview of the related
work. Finally, the paper concludes with a short summary
and an outlook on further research.

2. AKM FRAMEWORK

The AK can be classified into four broad categories, namely
context, design, general, and reasoning knowledge [26]. The
context knowledge captures the project-specific information
such as management information and architectural signifi-
cant requirements. The design knowledge comprises of the
architectural designs of the software systems. In our frame-
work, we do not distinguish between context and design
knowledge as we consider the design knowledge to be part
of the context knowledge which is dynamic and evolves as
the project progresses. We refer to the context and design
knowledge as dynamic knowledge and the general knowledge
as static knowledge (as changes are less frequent). The gen-
eral knowledge captures architectural methods, styles, pat-
terns, and organization-specific corporate information (e.g.,
processes and standards) that helps architects while design-
ing software systems. Finally, reasoning knowledge contains
information that guides software architects to apply static
knowledge in the project context. It also maintains design
decisions, rationales, and alternatives that were considered
during decision making in specific project instances, which
can be reused in similar projects.

The high-level layered architecture of the AKM frame-
work is shown in Figure 1. The components within the
framework capture the aforementioned AK categories and
present the information to software architects through dif-

Source tools U
EQ : Model What-if
£ 2| syncpipes designer Rules manager simulator Dashboard
L LY LY Iy Yy
v v v v v
REST API
I Access control
g Rule engine (Reasoning knowledge)
z ‘ Events & notifications ‘ Model-based expressions
o
Meta-model
Static knowledge model ‘ Dynamic knowledge model

Static knowledge Dynamic
base knowledge base

Figure 1: Architecture of the AKM framework

ferent client applications including a synchronization com-
ponent (SyncPipes), model designer, dashboard, rules man-
ager, and what-if simulator. The dynamic knowledge is
kept in-sync with the current state of the project through
the SyncPipes component. The meta-model and the ability
to create a domain model (static and dynamic knowledge
model) at runtime is handled by the platform component
which forms the core of the framework. A software architect
can configure the domain model through the model-designer
client application. The reasoning knowledge is managed by
the rule engine component which captures the reasoning
logic using model-based expressions that accesses the meta-
model for computations. The software architect manages
the rules using the rules-manager client application. The do-
main models, model-based expressions, and model instances
can be managed through REST APIs. Such an architecture
ensures “separation of concerns” between client applications
and the platform. The components of the framework are
elaborated in detail in the subsequent subsections. Each
subsection corresponds to an individual component and cap-
tures the technical details on how to realize each component.

2.1 Platform component

The two main use cases as discussed in [10], which needs
to be addressed by an AKM platform are: (a) one-size-fits-
all approach does not work: the domain model (e.g., AKM
model in this context) should be organization-, domain-,
and project-specific and (b) the domain models should be
reusable and configurable to the project’s context (team size,
development methodology, processes, etc.). To address these
use cases, we propose the use of a meta-model based con-
tent management system that supports the co-evolution of
the domain model and its data (cf. [23]). Such a meta-model
based system allows experts to adapt the domain model and
domain-specific rules at runtime to accommodate different
project needs. In particular, we use the hybrid-wiki meta-
model [20] for the creation of domain models within our
platform. Alternatively, practitioners can also refer to meta-
model based “backend as a service” platforms (e.g., Parsel)
that provide similar flexibility. The main concepts of the
meta-model are Type and Property (analogous to EClass
and EAttribute in Ecore meta-model) which allow users to
create domain models. The Type concept is used to create
a domain-specific concept (e.g., architectural decision) and
Property captures its features (e.g., description or link to de-
cision alternative). Furthermore, each Type can have mul-
tiple Entities (representing data) and each Property can be
mapped to multiple attribute values. For example, a user can
create an instance of an Entity “use model-view-controller
pattern” and can link it to “architectural decision” Type.

We have created the dynamic and static knowledge mod-
els by instantiating the above meta-model. The dynamic
knowledge model comprises of concepts from the domain of
project management, requirements management, architec-
ture management, implementation, and maintenance. As
motivated in Section 1, providing a consolidated view over
the current state of the different phases of the software en-
gineering lifecycle is crucial for decision making. For con-
structing our dynamic knowledge model and to support the
use cases discussed in Section 3, we analyzed the existing
ontologies [3] [13] [27], Open Services for Lifecycle Collabo-
ration standard [28], and data models of specific tools such as

"https://parse.com/

l Customer H Domain ‘ l Geography ‘
1.*

Key activity

has has

Business plan

0 l Role ‘ l Expertise H Team]

) has has belongs to

X
refers to refers to
elaborated bylj{'

Project

T Person

> Requirement M
Ay

l Quality requirement ‘ l Functional requirement l

pertains to

justifies N -
= Avrchitecture rational
|« blaie(; cin Design alternative

Decision

0.*

1.*
[|

0.*

Activity ‘ l Task !
o depends on
belongs to£ has | l has

l Category ‘ l Status H Priority ‘

l Change request H Issue ‘ l Bug ‘

Figure 2: Dynamic knowledge model to capture the AK

Business Canvas Model, MS Project, Enterprise Architect,
JIRA, and Bugzilla which are extensively used in practice. It
should be noted that since the dynamic knowledge model is
an instance of the meta-model, it can be configured through
the model designer and can be adapted to the project needs
at runtime. The technical details for implementing such a
meta-model based system are described in [9].

The core concept within the dynamic knowledge model
is Project with multiple attributes such as name, descrip-
tion, start date, and end date. As shown in Figure 2, a
Project is associated with its corresponding Business plan
which is further associated with concepts derived from the
Business Model Ontology [22]. The concept Key activity in
the business model ontology is referenced by the concept
Requirement. A project has multiple requirements which
are classified into Functional and Quality requirements. As
also modeled in [13] and [27], an architectural Decision de-
pends on the quality requirements and results in a specific
Architecture. A decision is made by considering multiple
Design alternatives. An Architecture rationale justifies the
decision made by an architect (cf. [1]). The architecture is
further elaborated with concepts such as architecture FEle-
ment composed of Attributes and Methods. All these con-
cepts are derived from the Enterprise Architect [4] modeling
tool’s schema. Furthermore, since an architect needs to have
a consolidated view over the current project plan and the
availability of resources, we have included the concepts from
the project management domain in our domain model. The
concepts and the relationship between the concepts such as
Person, Task, and Assignment are derived from the work in
[8] and the XML schema of the Microsoft Project manage-
ment tool. Also, since tools such as JIRA and Bugzilla are
commonly used during the development and maintenance
phase for managing tasks, we also investigated these tools
and incorporated concepts such as task Categories (Issue,
Bug, and Change request) and their corresponding work-
flows. To provide better readability, Figure 2 captures only
a subset of concepts and their relationships.

2.2 Knowledge base component

The knowledge base component manages the static knowl-
edge base model and its data. The static knowledge base
captures application-generic knowledge including styles, ref-

erence architectures, and corporate knowledge (e.g., tem-
plates for architectural methods and experts who can help
instantiate architectural methods). As shown in Figure 3,
the static knowledge model focuses on the Methods appli-
cable in the architecture lifecycle of a project. Examples
of architectural methods include design methods (attribute
driven design and 4+1 views) or analysis methods (scenario-
based analysis, architecture analysis method, and architec-
ture trade-off). The architectural method belongs to a Phase
in the architecture life cycle and can be composed of multiple
Method steps. A Method confirms to a specific architectural
Standard and requires human, budget, and time Resources.
Within an organization, software architects with expertise
(Ezperts) in specific methods can help other project partners
in applying these methods. Furthermore, specific Methods
could also use the Architectural elements such as architec-
ture styles and patterns in their method steps. Each Method
generates corresponding Artifacts which can be instantiated
using organization-specific Templates.
element

uses | *

| Phase |
belongs to| 1

| Standard |
confirms to | *

Artifact
belongs to

*
Template

Figure 3: Static knowledge model

The knowledge base component covers the following use
cases presented in [17]: (a) persist, modify, and delete AK
elements, (b) search AK elements using keywords and cat-
egories, (c¢) subscribe to AK elements and get notifications
when they are updated, and (d) manage versions of the AK.

The need for these use cases are also highlighted in [17].
The focus of the knowledge base component is to manage
(gather, structure, store, search, and version) the static ar-
chitectural knowledge and to make them available for the
rule engine that guides software architects based on the cur-
rent state of the project and its context.

2.3 Rule engine component

The rule engine component forms the core of the recom-
mender system. Using the current state of the project (dy-
namic AK) and the application-generic knowledge (static

AK), the rule engine evaluates the rules in the rules reposi-
tory and presents relevant recommendations to software ar-
chitects. These recommendations include suggestion of ap-
plicable architectural methods, domain experts who can be
consulted for the method execution, and highlighting miss-
ing project artifacts and traceability links. The rules within
the rule engine are event condition action (ECA) rules imple-
mented using the model-based expression language (MxL)
[24]. The MxL is a domain-specific language that allows
querying data in the knowledge base. A rule represented us-
ing MxL is an expression and executing a rule implies eval-
uating the corresponding expression. Since MxL is defined
over the meta-model, it can access all the Types - which rep-
resents concepts in the domain model. A simple expression
such as “find(Project). where(Status="‘ongoing’)”, returns all
the instances of Projects that are currently ongoing. For
implementing such rules, practitioners can also use alter-
native business rules management systems such as Drools
[7]. However unlike MxL, these rule engines are typically
model-based and not meta-model based systems. This al-
lows MxL to automatically update the rules as the domain
model evolves. For instance, if the concept non-functional
requirement is changed to quality requirement in the domain
model then the respective rules are updated accordingly.

An event in an ECA rule triggers the execution of the
corresponding rules. We categorize these events into three
broad classes as described below.

- Domain events are triggered due to data-level changes
within the artifacts of a project. Typically, these are the fre-
quently occurring events since they reflect the changes in the
state of a project. The domain events could represent, for
instance, uploading an architecture document of a project,
changing a task’s status in the project, or adding a decision
to use a specific reference architecture. Furthermore, since
data is captured as instances of Entity and Attribute types
in the meta-model (cf. Section 2.1), operations (create, up-
date, or delete) on these types would trigger a domain event.

- Model-change events are triggered when the domain model
is updated to capture the changing project context. For
instance, when a domain expert deletes the relationship be-
tween Decision and Architecture and adds a relationship be-
tween Decision and Architecture Element, the corresponding
rules need to be updated and re-evaluated. Since concepts
belonging to the domain model are represented as instances
of the Type and Property in the meta-model any operation
(update and delete) on them will trigger this event.

- User-triggered events are used when an architect actively
executes (triggers manually) the rules to identify the actions
that need to be performed. These events are generated
through the user interface, for instance when an architect
clicks an architectural method link.

If the condition in the ECA rule is satisfied, then the corre-
sponding action is performed. The conditions are expressed
using MxL expressions and can be either simple or nested
expressions. For instance, a simple expression could include
checking the status of a project and a nested expression
could represent multiple such queries joined by ‘and’ and ‘or’
operators. The actions are the recommendations provided
to software architects only if all the conditions are satisfied.
These actions are also represented as MxL expressions as
they also allow invocation of operations on the data.

To illustrate the application of a simple rule, let us con-
sider the following use case: the system should recommend

domain experts with a minimum of five years of experience
in architecture review and analysis. Furthermore, such a
recommendation should be context-aware, i.e., it is relevant
for software architects only when the following conditions
are satisfied c1) the status of the project is “ongoing”, c2)
the project is in the “design” phase, and c3) the task “pre-
pare architecture documentation” is “complete”. The corre-
sponding ECA rule can be captured as a MxL expression
along with the meta information such as name, description,
and parameters as shown in Listing 1. Parameters are a list
of input variables that can be used within an expression.

Listing 1: An exemplary MxL expression

Name: getDomainExperts

Description: Recommend domain experts

Parameters: projectName: String

Return Type: Sequence<String>

Method stub:

let projectVar = find (Project).single (name=
projectName) in

let task = find (Task).single(name="prepare
architecture documentation” and project
= projectVar) in

let conditions = if projectVar.status =
ongoing” and projectVar.Phase = "Design
7 and task.status = "closed” then true
else false in

let actions = find (Expert).where(Expertise
= 7Architecture review and analysis”
and Experience > 5).select (name) in

if conditions then actions else []

”

The above rule is evaluated for every domain event related
to Project or Task. This rule can also be triggered by a
user-triggered event and by executing the getDomainFEzx-
perts(‘Amelie’) expression. This example shows how the sys-
tem uses the dynamic knowledge about the current state of
the project along with the static knowledge (with expertise
information) to recommend context-sensitive information to
software architects. It also indicates that the expressions
rely on the concepts from the domain model introduced in
Figure 2. The rules in the repository not only include such
recommendations, but also include actions such as generat-
ing reports or downloading templates based on the decisions
taken by the architects during the project. The rule en-
gine component specifically addresses the use case to offer
automated support in decision making for architects.

2.4 SyncPipes - synchronization component

The SyncPipes component addresses the general use case
of AK integration identified for AKM tools (cf. [17] and
[10]). Specifically, this component empowers architects in
enabling the synchronization of the data that is spread across
software engineering lifecycle tools within one centralized
AKM tool. SyncPipes acts like a “bot” with sensors and
actuators for our platform. The sensors monitor the cur-
rent state of the projects’ artifacts and actuators keep the
information within the knowledge base synchronized.

Figure 4 illustrates the conceptual model of the SyncPipes
component. The Source concept represents various source
tools that can be handled by SyncPipes (e.g., JIRA, MS
Project, Excel, Enterprise Architect) whereas the Target
concept corresponds to our platform. Both the source and
target concepts are specializations of the ToolModel. The

MetaModel uses =

references |+ 2 uses !
1 v *

| ToolModel | | Handler |
’L‘ uses 1

| Source | | Target | | SyncJob |

Figure 4: Conceptual class diagram of SyncPipes

ToolModel provides interfaces to connect with the tools us-
ing user credentials. It also implements methods such as
getTypes and getEntities to work with a unified data-model
representation. The data-model of the source and target
tools confirm to a meta-model represented using the JSON
schema [16] format. The SyncPipes component uses a Map-
per to capture the mapping of the concepts from the source
to the target tool’s data-model. For instance, a software
architect can map a concept “New Feature” in JIRA to “Re-
quirement” in our domain model. The mapper allows archi-
tects to consider only those concepts and attributes that are
relevant and necessary to establish traceability across the
artifacts. Once the mapping is specified by a software archi-
tect, the Handler concept uses the mapping information to
extract data from the source tool, transform the data, and
persist it in the target tool. Subsequently, the Handler also
starts the SyncJob that triggers the transformation process
based on specific events or at regular time intervals. The
above mentioned concepts support selective model selection,
alignment, transformation, and synchronization of data re-
siding in different tools into an AKM platform.

3. USAGE SCENARIOS AND EVALUATION

The proposed architecture of the AKM framework has
been validated in an industrial project named “Architec-
ture Management Enabler for Leading Industrial softwarE
(AMELIE)”. Currently, the prototypical implementation of
the AMELIE system is being tested in different business
domains to evaluate the different components presented in
our AKM framework. To illustrate the major usage scenar-
ios, we consider one of the projects within which the project
stakeholders manage their artifacts in different tools and for-
mats that are most suited for their purposes. The software
architecture team, however, is responsible for consolidating
all the information, taking architectural decisions, and driv-
ing managerial decisions. The considered project deals with
building a component for a data analytics system.

A software architect logs into the AMELIE system, and
creates a new project or selects an existing one. A web page
similar to the one in Figure 5 is shown to the architect. On
the left sidebar of the page, the architect can access dif-
ferent functionalities of the system including gap analysis,
SyncPipes component, architecture metrics, data editor and
personal settings. In the center of the web page, the gap
analysis feature is presented in a dashboard. It consists of
an upper triangular matrix where each row and column rep-
resents a phase in the software engineering lifecycle. The
diagonal cells in the matrix correspond to a specific phase
and indicate semantic gaps within the artifacts of the cor-
responding phases. Initially, for a new project the matrix is
empty and the user gets the recommendation to associate
artifacts for each of the phase. For instance, at the start of
the project, the architect is guided to upload requirement
specification documents to the project using the SyncPipes

component. Grey color indicates that the artifacts are not
yet available in AMELIE. The yellow cell indicates missing
concepts within the synchronized document, for instance,
if the requirements document does not address quality at-
tributes. On resolving inconsistencies within an artifact, the
corresponding cell changes to green color.

For the remaining non-diagonal cells, yellow color indi-
cates discrepancies between phases at the crossing point. For
e.g., a yellow cell within the Requirements row and Func-
tional Architecture column indicates inconsistencies between
concepts in these phases (e.g., an architecture element is not
linked to any requirement). As shown in Figure 5, this in-
formation is presented in the lower section of the screen.
These discrepancies are identified based on the rules in the
rule engine and the concepts in the AK model.

In our reference project the high-level requirements are
managed by project managers in an Excel file as a list of
features with feature IDs, descriptions, responsible person,
feature start date, and feature end date. The concrete tasks
performed by team members are maintained in the JIRA
system. The functional and technical architecture are de-
signed in the Enterprise Architect software and finally, the
source code is maintained in a Git version control system.

A software architect while synchronizing these artifacts,
maps the concepts from the source system to the domain
model of the Amelie system. The mapping hence relates ar-
tifacts. For instance, while importing tasks from JIRA, an
architect can map a field within JIRA such as “feature id” to
“requirements id” in the domain model using the SyncPipes
component. The SyncPipes component resolves the refer-
ences and establishes links between requirements and tasks.
Moreover, synchronization of artifact also triggers a domain
event that executes a rule to suggest context-dependent in-
formation. For e.g., a rule such as “if project.where(Status=
‘ongoing’ and requirementsDocument=true) then [‘Architec-
ture review’] else null” is executed to recommend architects
to perform requirements review. Based on such suggestions,
architects can also start a new activity within the system.
In this case, the decision to perform the activity is automat-
ically captured as an architectural decision and persisted in
the knowledge base. These rules can also be customized to
the project needs using the rules manager component.

Corresponding to each activity and based on the current
state of the project, a software architect gets recommenda-
tions (on the right-hand side of the dashboard) about ex-
perts within the company (cf. rule in Listing 1), training
material, software tools, and templates. These rules can
also be triggered by clicking on each of the cells in the dash-
board which invokes a user-triggered event to evaluate the
rules. The training material and templates for instance are
retrieved from the static knowledge base component pre-
sented in Section 2.2. Finally, a software architect can also
add information as instances of concepts (or entities) in the
domain model (Decision, Design alternative, Architecture,
etc.) using the data editor. Each entity is further repre-
sented using a wiki page which supports multiple off-the-
shelf features including versioning, sharing and discussion.

The viability of the proposed framework is validated through
the presented usage scenario. However, an extensive verifica-
tion of its utility needs to be performed in a broader scope.

4. RELATED WORK

There is a large body of knowledge that captures mod-

Home >> Logout
S Q Software architect: John Doe
9 All | Unico | Knowledge Repository || NFR
Please choose a Value Added Service: Gap Analysis _
] - o -
o] =5 5
-— 3 § G g% 5 @ @
o T2 £ 2 z
v |¥F—] 55 g5 £
= =< T e 2 | Resleduetoss |
= @ E

SWA Training Material

Tasks

Business Case

AMELIE@top+

D9 % @l 2

Requirements

o

Functional Architecture

9)
B

Technical Architecture

NFR Engineering Repository

e|le|leelee

Implementation

SW and System Architecture Wiki

o

Hints Details

Artifacts for Requirements are connected and can be interpreted by AMELIE. Requirements Engineering in Excel is not state-of-the-art: Have you thought about

using a model-driven approach (e.g. with Enterprise Architect)

Available Templates
Volere Template (pdf)
Requirements-Model AMELIE (Best Practice) (eap)

Figure 5: Architecture Management Enabler for Leading Industrial softwarE - Dashboard

els, approaches, and frameworks for managing AK. Models
for AKM focus on the core concept of design decisions and
its associated concepts. We have considered some of these
models [3], [11], [27], [13] in the previous sections to derive
our own AK domain model that supports the use cases of
the AMELIE system. In this section, we focus on some of
the AKM tools which have commonalities with our solution.

Farenhorst et al. [15] propose an AK sharing system
named “Environment for Architects to Gain and Leverage
Expertise”. This system emphasizes the use of a knowledge
base for maintaining best practices, architecture documents,
and yellow pages that provides user-specific content. The
system also includes blogs, wikis, and discussion boards for
enabling collaboration between architects. The user inter-
face of the system is personalizable and helps users to easily
access and manipulate the content. However, this AK shar-
ing tool does not provide any context-specific information
based on the current state of the projects.

Many of the AK platforms including PAKME [6], Ad-
Kwik [25], and ArchiMind [13] achieve collaboration and
knowledge sharing through wiki-based systems. PAKME
[6] considers concepts from project management and con-
tact management in its domain model, similar to the dy-
namic knowledge model in our platform. The focus of this
tool is only to persist, search, retrieve, and present AK to
end users and does not cover aspects of knowledge synchro-
nization and rule-based context-sensitive recommendations.
On the other hand, the ADkwik platform has a broader
scope and the components in this platform including depen-
dency management, decision workflow and import/export
have commonalities to our proposed solution. However, the
authors of [25] do not provide details on how to realize such
an architecture. Furthermore, since these platforms are not
meta-model based systems, the ability to adapt the domain
model and the rules at runtime is limited.

AKM tools such as Decision Architect (DA) [19] and AD-

vISE [18] enable software architects to explicitly document,
trace, and analyze architectural decisions. DA is a plug-in
for the Enterprise Architect system and concepts within the
DA can be mapped to the modeling elements in the Enter-
prise Architect. Since Enterprise Architect provides plug-ins
to capture artifacts from different phases of the software en-
gineering lifecycle, DA can trace the impact of architecture
decisions across artifacts. The major constraint for such
systems is that stakeholders need to use a standard set of
tools during projects’ lifecycle. Weinreich et al. [2] further
analyze these tools elaborately in their literature study.
Capilla et al. [10] also present a detailed comparison of
AKM tools. Through their research they have identified
interesting challenges that restrict the adoption of AKM
approaches in industry. Some of these challenges are ad-
dressed through our AKM framework, including interoper-
ability with tools from different phases of software engineer-
ing lifecycle to establish traces between artifacts and the
support for runtime decision making in ongoing projects.

5. CONCLUSIONS AND FUTURE WORK

AKM systems play a vital role in supporting software ar-
chitects during the execution of large industrial software
projects. These systems need not only provide reference
material using knowledge repositories, but also observe the
current state of the project to provide context-sensitive in-
formation. This can only be achieved if the system can con-
solidate organization- and project-specific data from differ-
ent sources and then reason about the data.

In this paper, we have presented the architecture of a
meta-model based AKM framework to support software ar-
chitects for managing AK. The meta-model based approach
allows architects to configure the AK model to their project-
specific needs at runtime. Using this meta-model, other
components such as the rule engine and synchronization en-
gine provide different services to the client applications. The

rule engine allows experts to write domain-specific rules to
provide context-sensitive recommendations during the ex-
ecution of projects. The SyncPipes component allows an
architect to consolidate data from all the relevant sources.
The presented AKM framework is realized in the AMELIE
system that is currently being used and evaluated in different
industrial settings. We have demonstrated the application
of our AKM framework using an industrial project. Our
claim that meta-model based platforms provide the ability
to adapt domain models at runtime has only been proved
in domain such as enterprise architecture management, col-
laborative product development and content management
systems (cf. [23]), but not explicitly in the software architec-
ture domain. Therefore, as part of our future work, we plan
to extensively evaluate the components of the framework in
different project contexts and share the lessons learned from
applying a meta-model based AKM framework in practice.

6. ADDITIONAL AUTHORS

Additional authors: Florian Mittruecker (Siemens AG -
Corporate Technology, Otto-Hahn-Ring 6, 81739 Miinchen,
Germany, email: florian.mittruecker@siemens.com).

7. REFERENCES

[1] Iso/iec/ieee systems and software engineering —
architecture description. ISO/IEC/IEEE
42010:2011(E), pages 1-46, Dec 2011.

[2] A fresh look at codification approaches for SAKM: A
systematic literature review. Lecture Notes in Comput.
Seci., 8627 LNCS:1-16, 2014.

[3] D. Ameller and X. Franch. Ontology-based
architectural knowledge representation: structural
elements module. In Advanced Inform. Syst. Eng.
Workshops, pages 296-301. Springer, 2011.

[4] E. Architect. Sparx systems, 2010.

[5] M. A. Babar, T. Dingsgyr, P. Lago, and H. van Vliet.
Software architecture knowledge management.
Springer, 2009.

[6] M. A. Babar and I. Gorton. A tool for managing
software architecture knowledge. In Proceedings of the
Second Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and
Design Intent, page 11. IEEE Computer Society, 2007.

[7] P. Browne. JBoss Drools business rules. Packt
Publishing Ltd, 2009.

[8] B. Bruegge and A. H. Dutoit. Object-Oriented
Software Engineering Using UML, Patterns and
Java-(Required). Prentice Hall, 2004.

[9] T. Biichner, F. Matthes, and C. Neubert. Data model
driven implementation of web cooperation systems
with tricia. In Objects and Databases, pages 70-84.
Springer, 2010.

[10] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and
M. A. Babar. 10 years of Software Architecture
Knowledge Manag.: Practice and Future. J. of Syst.
and Soft., 2015.

[11] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou,
and J. M. Kiister. An enhanced architectural
knowledge metamodel linking architectural design
decisions to other artifacts in the software engineering
lifecycle. In Software Architecture, pages 303-318.
Springer, 2011.

[12] R. C. De Boer and H. Van Vliet. Experiences with
semantic wikis for architectural knowledge
management. In WICSA, pages 32-41. IEEE, 2011.

[13] K. A. De Graaf, A. Tang, P. Liang, and H. Van Vliet.
Ontology-based software architecture documentation.
In WICSA and ECSA, 2012 Joint Working
IEEE/IFIP Conf. on, pages 121-130. IEEE, 2012.

[14] R. Farenhorst and R. C. de Boer. Knowledge
management in software architecture: State of the art.
In Soft. Architecture Knowl. Manag., pages 21-38.
Springer, 2009.

[15] R. Farenhorst, P. Lago, and H. Van Vliet. Eagle:
Effective tool support for sharing architectural
knowledge. Int. J. of Cooperative Inform. Syst.,
16:413-437, 2007.

[16] F. Galiegue and K. Zyp. Json schema: Core
definitions and terminology. Internet Engineering Task
Force (IETF), 2013.

[17] P. Liang and P. Avgeriou. Tools and technologies for
architecture knowledge management. In Soft.
Architecture Knowl. Manag., pages 91-111. Springer,
2009.

[18] L. Lytra, H. Tran, and U. Zdun. Supporting
consistency between architectural design decisions and
component models through reusable architectural
knowledge transformations. In Software Architecture,
pages 224-239. Springer, 2013.

[19] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt,
and P. Avgeriou. Industrial implementation of a
documentation framework for architectural decisions.
In WICSA, pages 225-234. IEEE, 2014.

[20] F. Matthes and C. Neubert. Wikideam: Using hybrid
wikis for enterprise architecture management. In Proc.
of the 7th Int. Symp. on Wikis and Open
Collaboration, pages 226-226. ACM, 2011.

[21] C. Miesbauer and R. Weinreich. Classification of
design decisions—an expert survey in practice. In
Software Architecture, pages 130-145. Springer, 2013.

[22] A. Osterwalder et al. The business model ontology: A
proposition in a design science approach. 2004.

[23] T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and
F. Matthes. Lessons learned in aligning data and
model evolution in collaborative information systems.
In Companion Proc. of ICSE, 2016 in press.

[24] T. Reschenhofer, I. Monahov, and F. Matthes.
Type-safety in ea model analysis. In EDOCW, pages
87-94. TEEE, 2014.

[25] N. Schuster, O. Zimmermann, and C. Pautasso.
Adkwik: Web 2.0 collaboration system for
architectural decision engineering. In SEKFE, pages
255-260. Citeseer, 2007.

[26] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and
M. A. Babar. A comparative study of architecture
knowledge manag. tools. J. of Syst. and Soft., pages
352-370, 2010.

[27] A. Tang, P. Liang, V. Clerc, and H. van Vliet.
Supporting co-evolving architectural requirements and
design through traceability and reasoning. Relating
Software Requiremens and Software Architecture, 2011.

[28] O. C. S. Workgroup. Oslc core specification version
2.0. OSLC, Tech. Rep, 2010.

