Viewers: A Data-World Analogue of Procedure Calls

February 3, 1993

Kazimierz Subieta Florian Matthes Andreas Rudloff
Joachim W. Schmidt Ingrid Wetzel

University of Hamburg
Department of Computer Science
Vogt-Kolln-Strafie 30
D-2000 Hamburg 54, Germany

e-mail: subieta@dbisl.informatik.uni-hamburg.de

Abstract

A viewer is a reference-valued datum with a special meaning: a value of the data
pointed by the viewer becomes a virtual part of data where the viewer is placed; the value
virtually substitutes the viewer. Viewers are considered to be a data-world analogue of
procedure calls. They possess a large conceptual and pragmatic potential as a result of
new data semantics on which we can base a variety of well-organized data structures.
Various applications of viewers, related to DBPLs and object-oriented data modelling,
are presented: importing common attributes, inheritance and multi-inheritance, stored
selections, projections and joins, viewing a single relational structure as several hierarchi-
cal structures, etc. Methodological and formal aspects of the concept are discussed and a
method of incorporating viewers into a query language is presented.

1 Introduction

Wilkes et al. introduced the concept of “instance inheritance” in [Wilk88, WKS89]. The idea
is based on the observation that inheritance may concern not only methods and attribute
definitions but also some values of attributes. For example, common or default values can
be stored as first-class objects inside a class and then imported as virtual attributes (without
copying) by class members. Ohori et al. [OBB89] introduced in Machiavelli the concept
of coercions or “views”. A Machiavelli view is a set of simple records having references
to complex records. In this way attributes of the complex records are virtually imported
by the simple records, allowing the programmer, for example, to perform a natural join on
the virtual attributes. Independent of this research, LOQIS [SMA90, Subi91] implemented
a concept covering the instance inheritance and Machiavelli views. This concept is called
a viewer. A viewer is a reference-valued datum with a special semantics: a value of data
referenced by the viewer virtually substitutes the viewer. Viewers have some similarities with
the well-known concept of database views as found e.g. in POSTGRES [SRH90], which can
be used to build virtual nested data structures from relational ones. There are, however,
essential conceptual and pragmatic differences between viewers and views; thus they should
be considered as distinct notions. The basic differences are as follows:

e Views are properties of a particular (query) language. Viewers are not connected to any
language: they are properties of data structures.

e Names of views occur explicitly in queries. Names of viewers never occur in queries
(they occur in meta-statements only).

e Views are evaluated dynamically (when they are needed) which has consequences for
performance. Viewers are properties of static data thus there is no performance problem,
however, sometimes they share negative properties of materialized views.

e Updating through views leads to problems (at least in value-oriented frameworks).
There are no problems in updating through viewers (though it may lead to other anoma-

lies).

e View definitions are not updatable from inside the program since their external form is
a source text. Viewers, as normal data, can be updated by assigning new references as
their values.

Viewers play the same part for data as procedure calls for sequences of instructions. They
allow one to see some data from different places in the database structure, similarly as proce-
dures allow utilization of a piece of code in different program points. In view of the analogy we
believe that viewers are of a large conceptual and pragmatic importance, allowing the building
of well-organized data structures. In the paper we discuss various potential applications of
the viewers in data-intensive environments.

Similarly to other data abstractions, viewers introduce a new kind of data semantics.
More semantics inside data supports natural data views and simplification of application
programs, which need not incorporate this semantics into their code. For example, due to
path expressions queries addressing object-oriented data structures are usually shorter than
relational queries. Path expressions are based on additional data semantics such as explicit
hierarchical data structures, pointer links, or referential integrities. Complex objects, object
sharing, classes, is-a relationships, behavioral invariants of classes (methods), active rules,
etc. can be considered as methods of introducing more semantics into data, and viewers have
a similar potential.

Sophisticated methods concerning data semantics (knowledge representation) are consid-
ered in Al. The database domain could rework many Al ideas and they have already been
partly adopted, for example, data abstractions and behavioral properties. This import, how-
ever, is constrained by engineering requirements, in particular, proper performance and easy-
to-understand data views. For example, deductive databases have a potential to represent
advanced data semantics; however, current research does not make evident that the accept-
able performance is feasible. Therefore, in contrast to unlimited inventions of Al, database
researchers must look for such features in the data world which are capable of representing
attractive conceptual modelling primitives, are easy to implement, yield proper performance,
and are easy from the programmer point of view.

A well-known technique covering many issues related to data semantics lies in the ap-
plication of references (essentially, pointer links). References in network and object-oriented
databases explicitly represent different kinds of dependencies between objects, such as shar-
ing, cyclicity, subordination, aggregation and association. From a practical point of view the
advantage of references is easy implementation and good performance.

From another aspect, pointer links in databases can be compared to goto-s, which have
been recognized as leading to impossible-to-understand programs. There is an analogy: a
CODASYL or an entity-relationship schema for large databases resembles a maze. In rela-
tional databases the situation is even more difficult, since instead of explicit links carrying
semantic information there is an attribute naming convention and assertions in a natural
language. Integrity constraints, such as functional dependencies and referential integrities are
conceptual links in the relational schema, turning it to a similar “maze”. This problem also
occurs in object-oriented databases.

In programming methodologies the problem of “spaghetti-like” structures has been avoided
by structured programming which is based on procedures as semantic units of the programs.
Procedures encapsulate semantic meaning for the designer and the reader of the program,
and thereby allow the understanding of the program as a hierarchical structure. In the data
world a similar notion can be achieved by hierarchically organized data repositories, scoping,
encapsulation, locality of references [MOS91], etc. Still, there is no possibility to organize
different hierarchical data views assuming data sharing and proper performance. Viewers are
the solution to this problem. Navigation according to a viewer is not definite (as pointers and
goto-s are), but always implies returning to data where the viewer is placed; thus the analogy
with procedures.

We will show through examples that viewers are able to cover surprisingly many conceptual
modelling issues that are currently the focus of considerations of DBPL-s and object-oriented
approaches. An advantage of viewers is their capability to simplify queries. Due to viewers the
database designers and programmers receive a full control over so-called automatic navigation,
which was the main motive for the 5-th normal form of relational databases (known also as
universal relation) [BBG78, MUV84].

The rest of the paper is organized as follows. In Section 2 we present various examples of
potential applications of viewers. Section 3 is devoted to more general observations, and in
Section 4 we briefly discuss consequences for database design methodologies, formal aspects,
and modifications of query languages.

2 Viewers: Applications Through Examples

The figures presented in this section show viewers as data having some name, and a pointer
value depicted as an arrow. For retrieval such data structures are equivalent to structures
where all viewers are textually substituted by values of data they point to. For example, the
structure shown in Figure 1 should be understood as the following data !:

PET(NAME (Rex) KIND(dog) LEGS(4) EARS(2) EYES(2))
PET(NAME(Pussy) KIND(cat) LEGS(4) EARS(2) EYES(2))
ANIMAL(LEGS(4) EARS(2) EYES(2))

The value of the datum ANIMAL, being the record LEGS(4) EARS(2) EYES(2), virtually
substitutes the data PROPERTIES.

!Tn this paper we apply a syntax in which a bulk datum with name N and value {v1,v2,..,v,} is written as

N(v1) N(v2) .. N(vn)

(' PET(_ NAME(Rex) KIND(dog) PROPERTIES(7)))

A
(_ANIMAL(LEGS(4) EARS(2) EYES(2)))
A

(PET(NAVE(Pussy) KI ND(cat) PROPERTIES(!)))

Figure 1: Shared attributes

2.1 Object-Oriented Issues

(STUDENT(PDATA(;) STD#(134) FACULTY(Physics)))

(PERSON(NAME(John) BDATE(1970)))

(STUDENT(PDATA(;) STD#(241) FACULTY(Biol ogy)))

(PERSON(NAVE(Bi | 1) BDATE(1972)))

(STUDENT(PDATA(;) STD#(165) FACULTY(Law)))

(PERSON(NAME(Jack) BDATE(1971)))

Figure 2: Example of structural inheritance implemented by viewers

In Figure 2 we present an example of structural inheritance: a STUDENT object inherits
basic data from a PERSON object. This data structure is understood as follows:

PERSON(NAME(John) BDATE(1970))
PERSON(NAME(Bill) BDATE(1972))
PERSON(NAME(Jack) BDATE(1971))

STUDENT(NAME(John) BDATE(1970) STD#(134) FACULTY(Physics))
STUDENT(NAME(Bill) BDATE(1972) STD#(241) FACULTY(Biology))
STUDENT(NAME(Jack) BDATE(1971) STD#(165) FACULTY(Law))

For class hierarchy viewers can act transitively, i.e. they import data imported by other
viewers. (This feature is implemented in LOQIS.) Viewers allow multi-inheritance: any num-
ber of viewers can be stored inside a data object. Note that (similarly to views) viewers
automatically propagate updates of PERSON objects to STUDENT objects.

It is observed in [RiSc91] that a quite common situation is not that STUDENT is a
PERSON, but that PERSON become a STUDENT. This paraphrasing underlines dynamic
nature of data views (the schema evolution): during the life of a database systems objects
can gain and lose many independent roles. As we can see from the Figure 2 viewers supply
a mechanism for dealing with this problem: any number of roles such as STUDENT can be
dynamically created and deleted.

Figures 1 and 3 present examples of shared attributes. Attribute sharing may be useful

for long attributes, for example, if they represent graphical objects or texts.

('STUDENT(_ NAME(John) ... OPI Nl ON(Unsystematic)))

GOOD_OPI NI ON(
Ef ficient,
tall ented,

systematic

and active)

(STUDENT(_ NANME(Bi | 1) ... OPI NI O\(V() —) -

(STUDENT(NAME(Jack) . .. OPI NI ON(VI(-)—3— »

Figure 3: Utilization of a shared long attribute

Classes in object-oriented approaches can be considered as data repositories storing in-
variant attributes for their members. Several kinds of such invariants can be considered, for
example, common attributes, default attributes, methods, types, constraints, icons, etc. In
Figure 4 we show how class invariants can be imported to particular objects by application
of viewers. The figure shows cases of overriding; Bill is smoking and John has a special firing
procedure.

(_EMP(_ NAME(Jack) . . . PROPS(=y

EMP_CLASS_| NVARI ANTS(
SMXKI

(EMP(NAME(Bi I l')...SMOKI NG yes) PROPS(o%%—» GLASEQ&Q;))

HI RE(proc1)

FI RE(proc2))

(_EMP(_ NAME(John) . .. FI RE(proc3) PROPS(=)—)) -

Figure 4: Importing class invariants

In Figure 5 viewers organize object sharing. Note that viewers allow to introduce local
aliases for objects: a PERSON accessed from inside of another object has an alias WIFE,
HUSBAND, CHILD, MOTHER, etc. In LOQIS we can address to such a structure the query
“Give name of the wife of the father of Mary’s husband” as follows:

(PERSON where NAME = "Mary") .HUSBAND.FATHER.WIFE.NAME

Another query, “For each person over 30, give name, the number of children, the number of
siblings, and the number of first-order cousins of the same generation”, can be formulated as
follows:

((PERSON where AGE > 30) »a (s € count(unique((MOTHER U FATHER).CHILD.NAME)))).
(NAME X count(CHILD) X (s - 1) X
(count (unique ((MOTHER U FATHER) .(MOTHER U FATHER) .CHILD.CHILD.NAME)) - s))

(See [SBMR+92] for detailed specification of this language. o< denotes a navigational join,
".” denotes projection/navigation; other operators have typical meaning.) To formulate this
example in the relational model, PERSON and 5 additional relations should be defined. The
last query is extremely difficult to formulate in SQL and we have doubts if SQL processors are
able to optimize it. Due to viewers implemented as pointer links the query can be executed
in LOQIS in a reasonable time.

PERSON(PERSON(
NAVME(Bob) NANME(Dor i s)
AGE(60) AGE(57)
WFE (VI(HUSBAND(V3(%))
CHI LD{ V2(CHLD (V2(<)))
PERSON(
NANME(John
AGE((35)) PERSON(PERSON(
FATHER(V4(NAME(Ann) NAVE(Mar y)
MOTHER(V5(AGE(5 AGE(30)
CHI LD (V2(FATHER(V4(>)) CHILD (V2(%))
WFE (Vi(MOTHER(V5(3—)— HUSBAND(V3(-)))

Figure 5: Implementation of Shared Objects

2.2 Stored Selections, Joins and Projections

(RUCH_MANC V(=)) ~(EMP(NAME(John) SAL(5000)))
(RICH.MAN(V(<))) (EMP(NAME(Bi I 1) SAL(4000)))
(_EMP(_ NAME(Jack) SAL(3000)))

(_EMP(_ NAME(Bob) SAL(4500)))

Figure 6: Implementation of a stored selection

In Figure 6 we show the possibility to store in objects RICH.MAN the result of the selection
EMP where SAL > 4000. The resulting RICH.MAN data are seen as follows:

RICH_MAN(NAME(John) SAL(5000))
RICH_MAN(NAME(Bob) SAL(4500))

The idea shown in Figure 6 allows us to store joins followed by arbitrary selections. In Figure 7
objects RICH_MAN store outer join between DEPT and EMP, followed by selection SAL > 4000;
the result is equivalent to the following data %

RICH_MAN(DNO(D1) DNAME(Toy) NAME(John) SAL(5000))
RICH_MAN(NAME(Bob) SAL(4500))

Stored projections require equipping the viewer with an additional feature: filtering the
data that are seen through it. The simplest way to do this is associating with a viewer a set
of data names; data having other names are not imported. This feature is implemented in
LOQIS. For example, in Figure 7 we can equip viewers V1 with a list containing DNAME and
V2 with a list containg NAME, the result will be the projection of RICH MAN onto attributes
DNAME and NAME:

2Note our convention: when the value of some data is NULL, we do not write it at all.

DEPT(DNQ(D1) DNAME(Toy)))

(DEPT(DNQ(D2) DNAME(Sal es)))

(RECH.MANC V() V2(=y)) ~EMP(_ NAME(John) SAL(5000) DNQ(DI)))
(R CH_MAN(V2(-))) (EMP(_ NAME(Bi | 1) SAL(4000) DNO(DL)))
(EMP(_ NAME(Jack) SAL(3000) DNO(D2)))

EMP(NAVE(Bob) SAL(4500))

Figure 7: Stored outer join followed by selection

RICH_MAN(DNAME(Toy) NAME(John))
RICH_MAN(NAME(Bob))

Richardson and Schwarz [RiSc91] proposed to extend the object concept in order to support
multiple independent roles for objects, preserving object identity. Figure 8 presents how
viewers equipped with the filtering mechanism can support this feature. (Ovals over arrows
denote data filters.) In this approach all attributes of a PERSON are collected in one variable,
thus the uniqueness of identity is preserved. Different person roles are implemented as separate
variables (having their own identities), but they store only viewers. Such an organization has
both advantages: all attributes of a person are identified by a single identity (which may be
important for administrative functions) and simultaneously, this object in a particular role
has a separate identity (which is necessary for limitation of the scope of queries). If necessary,
special coercion functions can be implemented in order to map e.g. a PERSON identity to a
STUDENT identity and vice versa.

This picture shows that viewers support richer data semantics that is typically assumed
in object-oriented approaches. For example, STUDENT has less attributes than PERSON,
but the STUDENT class is a subset of the PERSON class.

2.8 Network Structures Seen as Several Hierarchies

Hierarchical organizations are perhaps the most understandable for humans but have disad-
vantages. For many-many relationships hierarchical data views are undesirable since they
lead to redundancy in representation, which in many cases is undesirable. Moreover, different
users may require different hierarchical views. Considering the SUPPLIER-PART database,
a clerk from the personnel department is interested in suppliers and rarely in parts, and clerk
from the storage department is interested basically in parts, but sometimes his interests con-
cern suppliers. If the database is to be organized hierarchically, the database administrator
should decide which point of view is more important.

Viewers make possible implementation of a network structure which can be considered
as several hierarchies. To explain this topic we introduce some notation. We enhance pre-
viously used prefixed lists (representing instances of data) by context-free grammars. A
database schema is a grammar describing possible database instances; names of types are
non-terminals in the grammar. As usual, {..} means iteration, [..] mean optional data, and |

(STUDENT(Vi(5) V2(=—) ~(STUDENT_CLASS_| NVARI ANTS(. . V3(-)))

PERSON(SSN(55) NAVE(BI | l) q

SEX(M = FACULTY(Law)

| LLNESSES(. .) Y

HOBBI ES(Box) V4(-)—) ~(PERSON_0_ASS_| NVARI ANTS(. .))
NAVE
SEX

HOBBI ES
(PATIENT(_ V5(3) V6(?)) (CLUB_VEMBER(Vi(*)))

(PATI ENT_CLASS | NVARI ANTS(..))

Figure 8: An object PERSON in several independent roles

means alternative (exclusive variants).?
We refer to the SUPPLIER-PART relational database, which has the following description:

{ SUPPLIER(SNO(string) SNAME(string)) }
{ PART(PNO(string) PNAME(string) WEIGHT(real)) }
{ SP(SNO(string) PNO(string) QTY(integer)) }

The data view appropriate for a personnel clerk can be represented as the following NF?
structure:

{ SUPPLIER(supplier-type) }

supplier-type «— SNO(string) SNAME(string) what-supplies

what-supplies — { SUPPLIES(part-with-qly) }

part-with-qty < PNO(string) PNAME(string) WEIGHT(real) QTY(integer)

The view emphasizes SUPPLIER data; the information about parts and their quantities is
hidden in the type part-with-qty inside a lower hierarchy level.
The NF? view appropriate for a storage clerk is the following:

{ PART(part-type) }

part-type +— PNO(string) PNAME(string) WEIGHT(real) who-supplies
who-supplies — { SUPPLIED BY(supplier-with-qty) }

supplier-with-qty ~ «— SNO(string) SNAME(string) STATUS(integer) QTY(integer)

Now the PART data are on the first plan; suppliers and quantities of parts supplied by them
are hidden into a deeper hierarchy layer. Current DBMS-s and database theories are not able
to express efficiently simultaneously both hierarchies assuming data sharing. In Figure 9 both

?A data checker based on a schema understood as a context-free grammar is implemented in LOQIS.

hierarchies are represented. Names QTY inside ovals denote data filters. Due to viewers we
have received virtual infinite hierarchical structures (an interesting object for mathematics
and having some flavour of recursion within viewers): each part within supplier again contains
information about suppliers, and so on. This may be convenient for queries such as “Find
suppliers supplying the same parts as Smith does” (in LOQIS: (SUPPLIER where SNAME =
"Smith") .SUPPLIES.SUPPLIED BY.SNAME), or for queries requiring transitive closures.

(suppu ER(SNO(string) SNAME(string) {SUPPLIES(Vi(:) V2(<))} D

@

CSP(SNQ(string) PNOQ(string) QrIY(integer)))

Q@)

CPART(PNQ(string) PNAVE(string) WEI GHT(real) {SUPPLIED BY(V3(-) V4(>))})>

Figure 9: Implementation of two hierarchies

2.4 Data Independence and Version Management

Standard data independency problems concern how to make one record from existing two
records, or how to make two records from existing one. Viewers present relevant facilities.
Let A,B denote lists of attributes. Assume a database contains records R1(A) and R2(B),
and we would like to substitute them by records R3(A B). Thus we make records R3(A B)
and augment the database with records R1(V1(viewer to R3)), and R2(V2(viewer to R3));
V1 has a filter with names of A, and V2 has a filter with names of B. A similar method can be
applied for the case of splitting one record into two. Viewers may be also useful on physical
level for storing long fields, assuming a fixed format of objects. Instead of the value we can
store a viewer leading to an overflow area which would allow retaining of the fixed format.

Data independency problems become difficult in the case of schema evolution which may
require introducing new attributes to existing records. For example, old records Ry(A1,..,A.,)
need to be augmented by attributes Bq,..,B,, and then by attributes Cq,..,Cy. Assuming that
in each record created in the database a space for a viewer is left, extension of the record Ry
can be done as shown in Figure 10.

(RI(AL .. AmVI(-))) (R AL .. AmVI(;)) (RI(C AL .. AmVI(y))

(Re(BL .. Bn V2(-))) (Re(BL .. Bn V2(5)))
'

(R3(C1 .. Gk V3(~))

Figure 10: Extending record R4

In CAD/CAM applications several versions of the same object can exist [Wilk88, WKS89].
Versions represent different states of some object but they may share common sub-objects
and other common properties. Every common property should be a separate object and up-
dating of it should be automatically propagated to all versions. Viewers supply a convenient
mechanism for this purpose. For example, assume that VERSION1 is described by (arbitrarily
complex) attributes ATTR1,..,ATTRx,..,ATTRn, and VERSION2 is made from VERSION2 by
changing attribute ATTRx. This situation can be described as follows:

VERSION1(ATTR1(..)..ATTRx(value of 1-st version)..ATTRn(..))
VERSION2(V(viewer to VERSION1) ATTRx(value of 2-nd version))

VERSION2 inherits all attributes of VERSION1, but ATTRx, which is overridden by own
attribute ATTRx.

3 Viewers and Updates

Viewers require a proper level of data abstraction. If data views and processing are too close
to physical representation there may be no possibility to distinguish viewers from pointers;
in this case viewers introduce no new quality. (By analogy, in assemblers procedure calls are
simply goto-s with some additional features.) Most relational systems have a sufficient level of
abstraction and they deal with persistent pointers (known as tid-s). Thus implementation of
viewers is possible but profits imposed by viewers may be decreased by the 1NF requirement.
We believe that most of all viewers would be profitable in object-oriented database systems
such as O3 [Deux+90] and ORION [KGBW90], which support a high level of data abstraction
and explicitly deal with complex hierarchical objects and persistent pointers.

So far we have assumed that the data pointed by the viewer substitute it, thus viewers
are invisible at the level of user interfaces. This assumption can be true only for retrieval.
When considering updating the user should be aware of differences between normal updating
and updating of data imported by viewers. The updating semantics for these two cases is
essentially different. Hence, at the level of data types or data description we must explicitly
specify viewers, and some kinds of users (dealing with updating) must be aware of their
existence.

The same concerns operations which must be performed on viewers. A viewer must be
initialized, i.e. a reference must be assigned as its value. The reference being a value of the
viewer must be the subject of updating. The dicussion concerning necessity of updating of
inheritance relationships is presented in [BKKK87]. Thus, the programming language should
provide special statements, which “see” viewers and enable proper operations on them. We
consider that these statements belong to syntactically distinguished layer of the programming
language.

Depending on the kind of binding, we have a different situation. Assuming static binding
and strong typing we must provide capabilities for declaration of viewers and for changing
their values. For example (see Figure 1), extension of DBPL [MRSS92, ScMa92] to deal with
viewers may be as follows:

TYPE

AnimalProps = RECORD
LEGS, EARS, EYES: INTEGER;

10

END;

SinglePet = RECORD
NAME: STRING; KIND: (dog, cat, ... J;
PROPS: IMPORT AnimalProps;
END;
Pet = RELATION NAME OF SinglePet;
VAR
PET : Pet;
ANIMAL, DOG : AnimalProps;
X : INTEGER;
BEGIN
ANIMAL := AnimalProps{4,2,2};
PET = Pet{{"Rex", dog, ANIMAL}, {"Pussy", cat, ANIMAL}};
PET["Rex"] .PROPS := DOG;
X := PET["Pussy"].EARS; (* Possible typing problems *)
END;

The type IMPORT AnimalProps denotes a viewer leading to a variable of type AnimalProps.
Typing of viewers is the same as typing of pointers, and initialization and updating of viewers
can be done by standard capabilities. However, typing of field selections may imply problems,
since viewers can import foreign attributes into the data. If typing of viewers is static and
complete, this import is determined during compilation time, thus the problem is exactly the
same as with multiple inheritance [Card88]. If typing of the viewers’ import cannot be static,
e.g. because overriding by attributes with unknown types or importing random data, static
strong typing is problematic.

Assuming dynamic binding, we can dynamically create, insert, modify and delete viewers;
this approach is implemented in LOQIS. Actions similar to the above DBPL example are the
following:

create permanent ANIMAL
begin LEGS(4) EARS(2) EYES(2) end;
create permanent PET
begin
NAME("Rex") KIND("dog")
PROPS(import from ANIMAL)

end;
create permanent PET
begin
NAME("Pussy") KIND("cat")
PROPS(import from ANIMAL)
end;

LOQIS provides a special assignment operator for changing values of viewers. For exam-
ple, if DOG is another datum similar to ANIMAL, we can use the following construct:

11

store pointer to DOG in (PET where NAME = "Rex") .PROPS;

The identifier of DOG is stored as a value of PROPS. Other operators are the same as
for normal data, for example, deleting the viewer for Pussy can be done by the statement

delete (PET where NAME = "Pussy").PROPS;

Current typing systems are not prepared for such features, thus dynamic capabilities should
be somehow restricted or novel typing ideas should be developed.

Since viewers transfer control to pointed data, updating of data that are seen through
viewers is feasible. However, there is a possibility of updating anomalies. Returning to the
PET-ANIMAL example, assume that Rex in some dogs’ battle lost an ear. If we directly up-
date EARS via the Rex object, it will cause updating in the object ANIMAL and, in consequence,
innocent Pussy will also loss an ear. Instead of updating of the ANIMAL object we should insert
a datum EARS(1) to the Rex object, which will override the datum inherited from ANIMAL.
Such semantics of the assignment operator is a novelty in programming languages and may
lead to some unexpected effects.

If a class of viewers has some predefined external semantics, for example, it represents
the stored view RICH MAN: EMP where SAL > 4000, there is a problem with propagation
of updates to viewers. For example, if Bill’s salary is increased, he will become RICH_MAN,
thus a new datum RICH_MAN should be inserted, with a viewer pointing the Bill’s object.
This problem is the same as for materialized views and can be solved by two methods: by
providing a manual for the programmer saying what should be additionally done when some
update is performed, or more ambitiously, by active rules which will automatically propagate
the update.

In the presented examples we recognized the necessity of filtering of data imported by
viewers. This can be done by attaching a list of names to a viewer. Another kind of filtering
is overriding: testing if a data having a particular name is already present in the object
containing a viewer, and then do or do not the import. Sometimes filtering of data according
to equality of names may be irrelevant since names equivalence may be quite casual, or we
would like to import data in spite of the name conflict; see aliasing of imported methods
in Oz. Thus we can assign to a viewer a rule determining renaming of data during the
import. Further inventions in this respect could be based on analogy with procedures: viewers
with parameters, viewers with encapsulated meaning, etc. We think that such ideas should
be carefully tested in some real environments, to show that they make sense, yield proper
performance, and are easy for database programmers and users.

4 Design Methodologies, Formalization and Query Languages

Assuming that viewers are cheap from the point of view of either consumption of storage,
access times, and additional maintenance functions, we suggest extensive use of this facility
in database systems. Viewers may change methodologies of database design because of the
following factors:

e They provide a possibility of expressing simultaneously different data views required by
particular applications, without the necessity of introducing one global data view and
then transforming it by some external views mechanisms.

12

e They allow more freedom in changing the data view without destroying existing pro-
grams (dataindependence), thus relaxing the initial responsiblity of the database schema
designers.

By analogy with procedures, viewers may have meaning in the structural database design,
relying on top-down designing of data hierarchies, starting from the most important levels for
particular data applications, and step-by-step refinement of necessary details down in the data
hierarchy. Such a design methodology is already assumed in the entity-relationship approach,
but integrating independently developed parts presents actually an essential methodological
problem. As we observed in Section 2.3, viewers make possible independent development of
hierarchies and then integrate them by establishing shared parts. This may present a new
potential for the database design.

Several aspects of viewers call for the formal approach. One of them is formalization of
intensional and extensional data, and the mappings between them. Intensional data involve
viewers, while extensional data are obtained by developing all viewers according to their
meaning. This leads to some substitution concept (macro-substitution), or theory of rewriting
rules. We recall, however, that semantics of procedure calls based on the textual substitution
has been abandoned because it does not support locality of objects with which the procedure
deals. It is not excluded that some concept of the locality control for viewers will require an
approach different from the textual substitution.

The second aspect is formalization of schemata (both intensional and extensional) and
mapping between them. This aspect may have meaning for the database design. For example,
equivalence between some constructs of intensional and extensional schema may be the basis
for unification, normalization or optimization.

Formalization could concern utilization of viewers in languages, for example, in query op-
erators or programming primitives. The goal of such investigations is establishing equivalent
query constructs which is important for optimization. Another goal is recognizing a new
quality introduced by viewers to the current database or knowledge-base theories.

Viewers have a direct impact on query languages. In principle each query language, e.g.
SQL, can deal with viewers because from the programmer or user point of view viewers
are invisible during data retrieval and manipulation. In many cases viewers can substitute
views; for example, POSTQUEL [SRH90| features extending the relational model can be
equivalently based on viewers. However, there are “meta” functions, such as creation and
updating of viewers, which cannot be consistently handled by value-oriented languages. In
fact, the idea is based on the concept of data identifier, thus only query language that deal
with this concept are appropriate.

For reasons of space we do not attempt to fully specify a query language that is rele-
vant for viewers. (See [Subi9l, SBMR+92] for detailed description of such a language.) We
adopted the stack machinery of classical programming languages to define operators of query
languages. In this approach the central role is played by notions of scoping and binding.
Essentially, viewers do not introduce a new quality to this mechanism; it requires minor
corrections of scoping and binding rules. Such a mechanism is implemented in LOQIS. For
example (see Figure 9), the query “Give names of suppliers together with quantities of bolts
supplied by them” can be expressed in LOQIS as

SUPPLIER. (SNAME X sum((SUPPLIES where PNAME = "bolt").QTY))

13

In this example we employed viewers V1 and V2 for the automatic navigation. Relational
queries without automatic navigation are much more complex; for comparison see the follow-
ing equivalent SQL query:

select SUPPLIER.SNAME, sum(SP.QTY) from SUPPLIER, PART, SP
where SUPPLIER.SNO = SP.SNO and SP.PNO = PART.PNO

and PART.PNAME = "bolt"

group by SP.SNO, SUPPLIER.SNAME

5 Summary and Conclusion

In the paper we presented viewers, a concept which can be considered a data-world analogue
of procedure calls. Viewers make possible the representation of surprisingly many conceptual
modelling issues in data-intensive applications. They can be implemented efficiently, yielding
good performance, since in fact they are pointers. Simultaneously they simplify database
queries due to automatic navigation. These factors motivate implementation of viewers to-
gether with related language functionalities in current or prototyped database systems. This
idea is implemented in a prototype database programming system LOQIS. The implementa-
tion and further experiments convinced us that the idea of viewers is worth wider popularity
in scientific and practical communities.

References

[BBGT78] C. Beeri, P.A. Bernstein, N. Goodman. A Sophisticate’s Introduction to
Database Normalization Theory. Proc. of 4th VLDB Conf., Berlin, Germany,
pp-113-124, 1978

[BKKKS87] J.Banerjee, W. Kim, H.J. Kim, and H.F. Korth. Semantics and implementation
of schema evolution in object-oriented databases. Proc. ACM SIGMOD Conlf.
pp-311-322, 1987.

[Card88] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76, pp.138-164, 1988

[Deux+90] 0O.Deux et al. The Story of Oy. IEEE Transactions on Knowledge and Data
Engineering, 2:1, pp.91-108, 1990.

[KGBW90] W.Kim, J.F.Garza, N.Ballou, D.Woelk. Architecture of the ORION Next-
Generation Database System. IEEE Transactions on Knowledge and Data En-
ginering, Vol.2, No.1, 1990, pp.109-124

[MOS91] F. Matthes, A. Ohori, and J.W.Schmidt. Typing Schemes for Objects with
Locality. Proc.1st Intl. East/West Database Workshop on Next Generation
Information System Technology, Kiew, USSR 1990 Springer Lecture Notes in
Computer Science, Vol.504, pp.106-123, 1991.

[MUV84] D. Maier, J.D. Ullman, M.Y. Vardi. On the Foundations of the Universal Rela-
tion Model. ACM Transactions on Database Systems, Vol.9, No.2, pp.283-308,
1984

14

[MRSS92]

[OBBS9]

[RiSc91]

[ScMa92]

[SRH90]

[SMA90]

[Subi9l]

[SBMR+92]

[Wilks8]

[WEKSS9]

F. Matthes, A. Rudloff, J.W. Schmidt, K. Subieta. The Database Programming
Language DBPL, User and System Manual. FIDE, ESPRIT BRA Project 3070,
Technical Report Series, FIDE/92/47, 1992

A. Ohori, P. Buneman, V. Breazu-Tannen. Database Programming in Machi-
avelli - a Polymorphic Language with Static Type Inference. Proc. of ACM
SIGMOD 89 Conf., 1989, pp.46-57

J. Richardson, P. Schwarz. Aspects: Extending Objects to Support Multiple,
Independent Roles. Proc. of ACM SIGMOD 91 Conf., 1991, pp.298-307

J.W. Schmidt, F Matthes. The Database Programming Language DBPL, Ratio-
nale and Report. FIDE, ESPRIT BRA Project 3070, Technical Report Series,
FIDE/92/46, 1992

M.Stonebraker, L.A.Rowe, and M.Hirohama. The Implementation of POST-
GRES. IEEE Transactions on Knowledge and Data Engineering, 2:1, pp.125-
142, 1990.

K.Subieta, M. Missala, and K. Anacki. The LOQIS System. Institute of Com-
puter Science Polish Academy of Sciences Report 695, 1990.

K.Subieta. LOQIS: The Object-Oriented Database Programming System
Proc.1st Intl. East/West Database Workshop on Next Generation Information
System Technology, Kiew, USSR 1990 Springer Lecture Notes in Computer
Science, Vol.504, pp.403-421, 1991.

K. Subieta, C. Beeri, F. Matthes, A. Rudloff, J.W. Schmidt, I. Wetzel. A
Stack-Based Approach to Query Languages. Hamburg University, Department
of Informatics, DBIS, unpublished report, 1992

W.Wilkes. Instance Inheritance Mechanism for Object Oriented Databases.
Proc. of Workshop on Object-Oriented Database Systems, Bad-Miinster,
Oct.1988. Springer Lecture Notes in Computer Science, Vol.334, pp.274-279,
1988.

W.Wilkes, P. Kahold, and G. Schlageter. Complex and composite objects in
CAD/CAM databases. Proc. 5th Conf. on Data Engineering, Los Angeles, Cal-
ifornia, pp.443-450, 1989.

15

