
Documenting Recurring Concerns and Patterns in Large-Scale
Agile Development

Ömer Uludağ
Technische Universität München
Garching bei München, Germany

oemer.uludag@tum.de

Nina-Mareike Harders
Technische Universität München
Garching bei München, Germany

nina.harders@tum.de

Florian Matthes
Technische Universität München
Garching bei München, Germany

matthes@tum.de

Abstract

The introduction of agile methods at scale entails unique concerns
such as inter-team coordination, dependencies to other organiza-
tional units, or distribution of work without a defined architecture.
Compared to the rich body of agile software development literature
describing typical challenges and best practices, recurring concerns
and patterns in large-scale agile development are not yet docu-
mented extensively. We aim to fill this gap by presenting a pattern
language for large-scale agile software development as part of our
larger research initiative in close collaboration with 10 companies.
The structure and practical relevance of the proposed language
were evaluated by 14 interviews. In this paper, we showcase our
pattern language by presenting four patterns.

CCS Concepts

• Software and its engineering → Agile software develop-

ment.

Keywords

concerns, large-scale agile development, patterns
ACM Reference Format:

Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. 2019. Document-
ing Recurring Concerns and Patterns in Large-Scale Agile Development. In
Proceedings of ACM Conference (EuroPLoP’19). ACM, New York, NY, USA,
17 pages. https://doi.org/0000001.0000001_2

1 Introduction

Over the past two decades, software development has experienced
substantial growth in the use of agile methods [Maiden and Jones
2010]. Unlike traditional methods that focus on upfront plans and
documentation, agile methods such as Extreme Programming and
Scrum strongly encourage team collaboration, change tolerance,
evolutionary delivery, and active customer involvement [Dingsøyr
and Moe 2014; Kettunen 2007]. The fundamental assumptions are
that small, self-organizing teams develop adaptive software using
the principles of continuous design improvement and testing based
on rapid iterations and frequent feedback loops [Nerur et al. 2005].
Hitherto, agile methods were mostly applied within the so-called
"agile sweet spot": small, co-located teams of less than 15 people
doing greenfield development for non-safety-critical systems in

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/0000001.0000001_2

a volatile environment [Kruchten 2013; Nord et al. 2014]. Their
proven and potential benefits made them also attractive for projects
outside of the sweet spot [Dikert et al. 2016]. Thus, there is an indus-
try trend towards introducing agile methods at scale [Dikert et al.
2016; VersionOne 2018]. The term ’large-scale agile development’
is used to describe multi-team development efforts that make use
of agile principles involving a high number of actors and interfaces
with existing systems [Dingsøyr and Moe 2014; Rolland et al. 2016].
However, the adoption of agile methods at larger scale entails orga-
nizations with unprecedented challenges such as general resistance
to change, coordination challenges in multi-team environments,
and dependencies to other existing environments [Dikert et al. 2016;
Uludağ et al. 2018]. Compared to the rich body of agile software de-
velopment literature describing typical challenges (cf. [Hossain et al.
2009; Inayat et al. 2015]) and best practices (cf. [Beedle et al. 2010,
1999; Coplien and Harrison 2004; ScrumPLoP 2019]), the documen-
tation of concerns and patterns in large-scale agile development is
still scarce. Our study is inspired by the pattern-based approach to
Enterprise Architecture Management (EAM) [Ernst 2010; Schneider
and Matthes 2015] and aims to fill this gap by providing best prac-
tices for recurring concerns of stakeholders in large-scale endeavors.
As a starting point, we introduce the concept of large-scale agile
development patterns and present four patterns that exemplarily
demonstrate the proposed language.
The remainder of this paper is structured as follows. In Section 2,
we present the research approach that follows the pattern-based
design research (PDR) method. In Section 3, we provide an overview
of related works in the field of large-scale agile development and
describe related pattern languages. We elaborate the proposed large-
scale agile development pattern language in Section 4. In Section 5,
we present four patterns. Section 6 shows corresponding evaluation
results. In Section 7, we conclude our paper with a summary of our
results and remarks on future research.

2 Research Approach

Our research initiative aims to document best practices that ad-
dress concerns in large-scale agile development. To balance the
rigor and relevance of the research, we followed the pattern-based
design research (PDR) method as recommended by [Buckl et al.
2013]. The PDR method enables researchers to theorize and learn
from the intervention at the industry partners while performing
rigorous and relevant design science research. It builds on estab-
lished concepts such as patterns and design theories. As depicted
in Fig. 1, the PDR method consists of four phases: observe & concep-
tualize, pattern-based theory building & nexus instantiation, solution
design & application, and evaluation & learning. Within the observe
& conceptualize phase, good practices for recurring concerns are

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Grounding theories
Organized collection of reusable

practice-proven solutions

guide & structure
Solution
design

Configured
design

Instantiated
solution

establish

Theory
(academics)

Practice
(industry)

Observations

select

Δ deviations

pa
tte

rn
-b

as
ed

th

eo
ry

 b
ui

ld
in

g

Design
Theories

Pattern
Language

Pattern
Candidates

configure

learn

observe &
conceptualize

Figure 1: Pattern-based design research [Buckl et al. 2013]

observed and documented following a typical pattern structure (see
Section 4). These pattern candidates are then conceptualized by
using grounding theories and evolve into actual patterns by ful-
filling the rule of three1 [Coplien 1996], which are then integrated
into the large-scale agile development pattern language. Design
theories can be developed by documenting appropriate context and
problem descriptions. Pattern candidates, patterns, the pattern lan-
guage, and design theories together form an organized collection of
reusable, proven solutions. Within the solution design & application
phase, typical stakeholders in large-scale agile development use
this knowledge base and select patterns based on their individual
concerns. The selected pattern must be configured and adapted
to the terminology of the company. After its configuration, the
pattern can be established within the case company. During the
evaluation & learning phase, deviations between the actual and
original pattern configuration are detected and documented, which
can be used to identify new best practices.

3 Related Work and Pattern Languages

According to Version One’s 12th survey on the state of agile, compa-
nies are increasingly applying agile methods to large-scale projects
[VersionOne 2018]. 52% of all respondents worked in organizations
where more than half of the development teams worked with agile
methods [VersionOne 2018]. Despite the relevance of this topic
for practitioners, sound academic research is lacking, especially re-
garding to challenges and success factors [Dikert et al. 2016]. Some
researchers recognized this gap and started to publish scientific
papers, which are described below.
[Dikert et al. 2016] made a first attempt by conducting a system-
atic literature review of industrial large-scale agile transformations.
They presented qualitative findings describing 35 reported chal-
lenges and 29 success factors from 42 different organizations. Chal-
lenge categories that received most attention were agile difficult
to implement, integrating non-development functions, change resis-
tance, and requirements engineering challenges. The most salient
success factors weremanagement support, choosing and customizing
the agile model, training and coaching, and mindset and alignment.
By means of a literature review, [Kalenda et al. 2018] identified

1The rule of three states that a documented pattern must refer to at least three known
uses in practice to ensure the re-usability of the provided solution.

practices, challenges, and success factors of large companies adopt-
ing agile methods. These findings were then compared and used
to study a software company that was in the process of scaling
agile methods. They identified four challenges, namely resistance
to change, quality assurance issues, integrating with non-agile parts
of the organization, and too fast roll-out. In addition, they deter-
mined four success factors: unification of views and values, executive
sponsorship and management support, company culture, and prior
agile and lean experience. In a previous study, we identified typ-
ical concerns of stakeholders and initiatives in large-scale agile
development based on a structured literature review [Uludağ et al.
2018]. Based on the analysis of 73 papers, we identified 14 typical
stakeholders in large-scale agile development, e.g., development
team, scrum master, and software architect. In a subsequent step, we
revealed typical concerns of respective stakeholders. In total, 79
challenges were identified and grouped into eleven challenge cate-
gories, which include culture and mindset, enterprise architecture,
and geographical distribution, to name a few [Uludağ et al. 2018].
Our previous work constitutes the foundation of this paper since it
also identified pattern candidates of some of our pattern language
elements: stakeholders, challenges, and candidates for methodology
patterns, architecture principles, viewpoint patterns, and anti-patterns
[Uludağ et al. 2018]. Speaking of which, [Meszaros and Doble 1997]
recommend reading other related pattern languages while writing
patterns. By doing that, we identified some related pattern lan-
guages (see Table 1). Based on the comparison of related pattern
languages, we identified the following shortcomings, which we aim
to address with our proposed large-scale agile development pattern
language:

• Only 10 out of 507 identified "potentially relevant" patterns
focus on large-scale agile development.

• Our evaluation results in Section 6 show that practitioners
ask for pattern languages that categorize patterns in the way
they are executed. However, the analyzed pattern languages
do not necessarily meet these expectations.

• The results of our evaluation in Section 6 show that a pat-
tern language should include related stakeholders who apply
patterns to address their concerns. Nevertheless, the con-
cept of stakeholders is yet neglected, making the pattern
language less practical for practitioners as they try to find
relevant patterns for their specific roles as quickly and easily
as possible.

4 Large-Scale Agile Development Pattern

Overview

The application of agile methods on a large scale brings along
unique challenges and difficulties [Boehm and Turner 2005; Dikert
et al. 2016], e.g., increased number of stakeholders and, coordina-
tion complexity, and difficult architectural integration [Badampudi
et al. 2013; Paasivaara and Lassenius 2014]. Tackling these is the
key to reap the full benefits of agility in large-scale settings [Ket-
tunen and Laanti 2008]. There are several scaling agile frameworks
that pledge to resolve the aforementioned issues but are still in a
nascent state [Alqudah and Razali 2016; Dingsøyr et al. 2019]. But
even valuable research studies that provide explanations of how
to address the challenges of large-scale agile development remain

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

Table 1: Overview of Related Pattern Languages

Source Scope & goal

Focus on agile

development

Number of

patterns

Pattern categories Pattern examples

[Coplien 1995]
Collection of patterns for
shaping a new organization
and its development processes

Partially 42 (1) Process patterns;
(2) Organizational patterns

- Code Ownership
- Gatekeeper
- Fire Walls

[Harrison 1996]
Collection of patterns for
creating effective software
development teams

No 4 –
- Unity of Purpose
- Diversity of Membership
- Lock ’Em Up Together

[Beedle et al. 1999] Collection of Scrum patterns Yes 3 –
- Sprint
- Backlog
- Scrum Meetings

[Taylor 2000]
Collection of patterns for
creating product software
development environments

No 9
(1) Establishing a Production Potential;
(2) Maintaining a Production Potential;
(3) Preserving a Production Potential

- Deliverables to Go
- Pulse
- Bootstrapping

[Coplien and Harrison 2004]

Collection of organizational
patterns that are combined
into a collection of four
pattern languages

Yes 94

(1) Project Management;
(2) Piecemeal Growth;
(3) Organizational Style;
(4) People and Code

- Skill Mix
- Demo Prep
- Few Roles

[Elssamadisy 2008]
Collection of patterns for
successfully adopting
agile practices

Yes 38
(1) Feedback Practices; (2) Technical
Practices; (3) Supporting Practices;
(4) The Clusters

- Refactoring
- Continuous Integration
- Simple Design

[Beedle et al. 2010]
Collection of the most
essential best practices
of Scrum

Yes 11 –
- Daily Scrum
- Sprint Backlog
- Sprint Review

[Välimäki 2011]

Enhancing performance
of project management
work through improved
global software project
management practice

Partially 18

(1) Directing a Project; (2) Starting
up a Project; (3) Initiating a Project;
(4) Controlling a Stage; (5) Managing
Stage Boundaries; (6) Closing a Project;
(7) Managing Product Delivery; (8) Planning

- Collocated Kick-Off
- Choose Roles in Sites
- Iteration Planning

[Mitchell 2016]
Collection of patterns to
address agile transformation
problems

Yes 54
(1) Patterns of Method; (2) Patterns of
Responsibility; (3) Patterns of
Representation; (4) Anti-Patterns

- Limited WIP
- Kanban Sandwich
- Controlled Failure

[ScrumPLoP 2019]
Body of pattern literature
around agile and Scrum
communities

Yes 234 (10)

(1) Value Stream; (2) Team; (3) Sprint;
(4) Process Improvement; (5) Product
Organization; (6) Distributed Scrum;
(7) Scaling Scrum; (8) Scrum Core; (9) Misc

- Scrum Master
- Scrum of Scrums
- Portfolio Standup

scarce [Bick et al. 2018]. Thus, following the idea of [Alexander
1977], the identification of recurring concerns and documentation
of best practices in this context seems to be useful. Subsequently,
we will introduce the structure of our pattern language (see Fig. 2).
The pattern language distinguishes between three different types
of patterns:

• Coordination Patterns (C-Patterns) define coordination
mechanisms to address recurring coordination concerns,
i.e., managing dependencies between activities, tasks or re-
sources.

• MethodologyPatterns (M-Patterns) define concrete steps
to be taken to address given concerns.

• Viewpoint Patterns (V-Patterns) define proven ways to
visualize information in form of documents, boards, metrics,
models, and reports in order to address recurring concerns.

In addition, the pattern language includes four additional concepts:

• Stakeholders (in our context) are all persons who are ac-
tively involved in, have an interest in or are in some way
affected by large-scale agile development [Uludağ et al. 2018].

• Concerns can manifest themselves in many forms, e.g.,
goals, responsibilities or risks [42010:2011(E) 2011].

• Principles are enduring and general guidelines that address
given concerns by providing a common direction for action.

• Anti-Patterns (A-Patterns) describe typical mistakes and
present revised solutions, which help pattern users to pre-
vent these pitfalls.

Stakeholders

Concerns

e.g., agile team,
enterprise architect,
product owner

e.g., reduce team dependencies,
building an evolvable architecture

S3 S4S2

Viewpoint Patterns
e.g., sprint dependency matrix,

context map,
cost of delay

Coordination Patterns
Methodology Patterns
Principles

e.g., community of practice,
weighted shortest job first,
strictly separate build and run stagesCO1

e.g., ivory tower,
agile as a golden hammer,
adopting all agile practices in one go

P1
!

Anti-Patterns

C4
?

C3
?

C1
?

Ant1

M1

V3 V4V1 V2

Report

S1

C2
?

Figure 2: Conceptual overview of the proposed pattern lan-

guage

Fig. 3 depicts the current version of our large-scale agile develop-
ment pattern language, which can also be found on our prototypical
web application2. The four highlighted nodes in Fig. 3 represent the
four patterns that will be presented in Section 5. A detailed listing
of the large-scale agile development patterns and concepts can be
2https://scaling-agile-hub.sebis.in.tum.de/#/patterns

https://scaling-agile-hub.sebis.in.tum.de/##/patterns

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Figure 3: Current version of the large-scale agile development pattern language *

found in Appendix B.
Popular pattern forms include, among others, the Alexandrian Form,
Gang of Four Form, Coplien Form, and Fowler Form [Ernst 2010;
Fowler 2006]. All have specific benefits and limitations depending
on the context [Ernst 2010]. Since there is no ideal pattern form, the
author must consider his / her experience, the intention, and target
audience when selecting either an existing form or creating a new
one [Buschmann et al. 2007b; Ernst 2010]. According to [Fowler
2006], this choice is a personal decision and should also consider
one’s writing style and the ideas to be conveyed. Large-scale agile
development patterns follow a template similar to [Buschmann
et al. 1996; Ernst 2010]. Fig. 4 depicts the meta-model and the key

C-Pattern V-Pattern
type
data collection

M-Pattern

Pattern
identifier
name
alias
summary
example
context
problem
forces
solution
variants
consequences
other standards
known uses

Concern
identifier
name
category
scaling level

Principle
identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
consequences
other standards
known uses

Anti-Pattern
identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder
identifier
name
alias

see also
* *

see also
* *

see also

*

*
see also

*

*
see also

*

*

is addressed by

*

*
is addressed by
*

*is addressed by

*

*

has
*

*

Figure 4: Meta-model of the proposed pattern language

elements used to document the concepts and patterns of the pattern

language. All elements have an identifier and name which simplify
referencing. A stakeholder has an additional section called alias
that contains a list of synonyms and related role names. A concern
has two additional sections called category and scaling level which
denote the category and at which organizational level a concern
occurs. Besides identifiers and names, principles, patterns, and anti-
patterns consist of eight common sections: the problem and context
sections describe problems and situations to or in which they apply.
The forces section describes why the problem is difficult to solve.
summary shortly recapitulates the solution. The consequences sec-
tion contains associated benefits and liabilities, while the optional
other standards and see also sections provide references to other
solutions and frameworks. The alias section provides a list of syn-
onyms. The example section illustrates the problem to be addressed.
Principles and patterns consist of variants and known uses sections
showing variants and alternatives as well as proven applications in
practice. The type and binding nature sections are unique to princi-
ples and indicate their topic and whether they are recommended or
mandatory. The solution section explains the recommended solution
for a pattern. Specific to anti-patterns, the general form and revised
solution sections include the recurring, not working solution and
a revised solution presented. V-Patterns have type and data collec-
tion sections which show the visualization concept and collection
processes required for their creation. Similar to [Buschmann et al.
2007a], we label our patterns with the star notation to denote our
level of confidence in the pattern’s maturity. Two stars mean that
the pattern effectively addresses a genuine problem in its current
form. One star denotes that the pattern addresses a real problem
but needs to mature. No stars indicate that the pattern is a useful
solution to an observed problem but requires significant revision.
Wewill showcase in the following four patterns in order to highlight
the differences between the presented pattern types and concepts,
namely Strictly Separate Build and Run Stages (representing
Principles), Community of Practice (showing C-Patterns), Itera-
tion Dependency Matrix (demonstrating (V-Patterns), and Don’t
Use Agile as a Golden Hammer (illustrating A-Patterns).

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5 Exemplifying the Large-Scale Agile Development Pattern Language

5.1 Principle: Strictly Separate Build and Run Stages (P-1) *

Principle Overview

Alias Build and Run
Summary Strictly Separate Build and Run Stages ensures that an application’s

deployment phases are clearly separated.
Type Software Architecture
Binding Nature Recommended

5.1.1 Example
For one and a half years, four agile teams of RetailCo have been developing a cloud-based e-commerce platform. However, over the last few
iterations, the operability and stability of the e-commerce platform of RetailCo have deteriorated dramatically. The agile teams of RetailCo
have difficulties in delivering new versions of the platform in time. The platform also shows long downtimes due to massive traffic at bigger
shopping-events such as Black Friday. Moreover, the product owner of the e-commerce platform receives customer complaints due to several
bugs in the purchasing process.

5.1.2 Context
The release of stable and reliable cloud-native platforms in large-scale agile development is difficult because multiple agile teams work in
parallel on the same software in complex setups aiming to release it as quickly and frequently as possible.

5.1.3 Problem
The following concern is addressed by Strictly Separate Build and Run Stages:

• How can a cloud-native application be developed in a stable and timely manner?

5.1.4 Forces
The following forces influence Strictly Separate Build and Run Stages:

• The code of a cloud-native application is changed at run-time, thus, is not reproducible.
• The build, run, and release phases of the deployment process of a cloud-native application are not self-contained, so the entire
deployment workflow must be triggered.

• Deviations between the codes in the execution and staging environment are not traceable.

5.1.5 Variants
A possible variant for Strictly Separate Build and Run Stages would be to add a design step before the build stage. Within the design
step, a high-level design of the upcoming small feature is created with every iteration. This can help to understand the dependencies of the
application such as existing libraries the application is going to use.

5.1.6 Consequences
The following benefits of Strictly Separate Build and Run Stages are known:

• Traceability and reproducibility of releases
• Rollback to previous releases
• Faster releases of codebases to production
• Building a stable and reliable application
• No code is deployed without testing

The following liabilities of Strictly Separate Build and Run Stages are known:
• High degree of automation
• Deployment process is complicated

5.1.7 See Also
In order to measure the level of adherence of agile teams with Strictly Separate Build and Run Stages, the following V-Patterns should
be considered:

• Deployment Time
• Deployment Freqency
• Change Freqency
• Mean Time to Change

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.1.8 Other Standards
Strictly Separate Build and Run Stages is also suggested by the Twelve-Factor App [Wiggins 2017].
Strictly Separate Build and Run Stages is extended by the Beyond the Twelve-Factor App [Hoffman 2016].

5.1.9 Known Uses
The following uses of Strictly Separate Build and Run Stages are known:

• GlobalInsureCo
• CarCo
• ITCo
• RetailCo
• PublicInsureCo

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5.2 C-Pattern: Community of Practice (C-1) *

C-Pattern Overview

Alias Community, Guild
Summary A Community of Practice are groups of people who share a concern, a set of problems,

or a passion about a topic, and who deepen their knowledge and expertise in this area by
interacting on an ongoing basis [Wenger et al. 2002].

5.2.1 Example
A vehicle dynamics development department of CarCo aims to transform its current traditional matrix organization to an agile organization by
launching a large-scale endeavor with seven agile teams and more than 100 involved stakeholders. During this transformation process, CarCo
has difficulties in aligning the agile teams working in the same department as they have no regular meetings on discussing common topics.
Furthermore, the software architects of the large-scale agile endeavor recognize that the agile teams use some tools that are incompatible
with each other making the integration of their sub products nearly impossible.

5.2.2 Context
Traditional agile approaches such as Scrum do not offer support large-scale cross-team coordination. Thus, establishing efficient coordination
and knowledge sharing mechanisms between agile teams as well as between the experts in the teams might be difficult without having
suitable knowledge sharing forums.

5.2.3 Problem
The following concern is addressed by Community of Practice:

• How to create a platform for active knowledge sharing and discussion?

5.2.4 Forces
The following forces influence Community of Practice:

• Facilitating shared context and knowledge across the organization is difficult
• Internal silos create gaps in knowledge and communication between agile teams

5.2.5 Solution
A Community of Practice meet regularly for knowledge sharing about a specific domain [Wenger et al. 2002]. The focus is to talk about
practices that are applied and not to discuss theories. The participants of a Community of Practice are typically not from the same team,
but from many different teams all across the organization. In the best case, many different practices can be presented and discussed, leading
to a wide knowledge base. The participation in a Community of Practice is usually voluntary. In contrast to the M-Pattern Empowered
Community of Practice, a traditional Community of Practice is not able to make binding decisions for the organization.

5.2.6 Variants
A Community of Practice can be set up for a variety of domains. A Community of Practice have been identified in the following domains:
Architecture, Testing, Interfaces, Deployments, Leadership, and Infrastructure. In addition, a Community of Practice can also have some
decision-making power for different topics, which is described in the M-Pattern Empowered Community of Practice.

5.2.7 Consequences
The following benefits of Community of Practice are known:

• Encouraging knowledge sharing for diverse topics
• Breaking up silos
• Enabling a culture of continuous improvement

The following liabilities of Community of Practice are known:

• Requiring an active involvement of participants
• Topics in the agenda could be too diverse and broad
• Providing right incentives to the participants is challenging

5.2.8 See Also
Community of Practice may be utilized in combination with the following M-Patterns:

• Consensus-Based Decision Making
• Empowered Community of Practice

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.2.9 Other Standards
Community of Practice is also recommended and practiced by the following scaling agile frameworks:

• Disciplined Agile Delivery [Ambler and Lines 2012]
• Large-Scale Scrum [Larman and Vodde 2016]
• Scaled Agile Framework [Scaled Agile 2019b]
• Spotify Model [Kniberg and Ivarsson 2012]

In addition, the Community of Practice is also described by [Coplien and Harrison 2004] as Community of Trust.

5.2.10 Known Uses
The following uses of Community of Practice are known:

• GlobalInsureCo
• CarCo
• ITCo
• RetailCo
• PublicInsureCo

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5.3 V-Pattern: Iteration Dependency Matrix (V-1) *

V-Pattern Overview

Alias Sprint Dependency Matrix, Program Board
Summary Iteration Dependency Matrix visualizes dependencies among teams for the upcoming

iterations.
Type Board

5.3.1 Example
The program manager and solution architect of RetailCo’s e-commerce platform of RetailCo want to coordinate four agile teams for the five
upcoming iterations. Thereby, they need a clear idea of which features or enablers will be done by which agile team in which iteration. In
addition, they want to identify cross-team dependencies which might impact their delivery.

5.3.2 Context
In a Common Planning, cross-team dependencies between agile teams has to be detected and managed.

5.3.3 Problem
The following concerns are addressed by Iteration Dependency Matrix:

• How to visualize dependencies between agile teams?
• How to coordinate multiple agile teams that work on the same product?
• How to consider integration issues and dependencies with other subsystems and teams?

5.3.4 Forces
The following forces influence Iteration Dependency Matrix:

• Agile teams that work in the same large-scale agile development program have to be coordinated, i.e., delivering on the same cadence,
timing the release of different features, and managing dependencies.

• Some dependencies between agile teams are not immediately visible.

5.3.5 Solution
Iteration Dependency Matrix visualizes dependencies between agile teams working on the same product for future iterations. The
exemplary visualization in Fig. 5 shows team names as vertical headings, while iteration names are shown as horizontal headings. The
blue rectangles represent features, while enablers are depicted as yellow rectangles. Important program milestones or events are depicted
as orange rectangles. Each enabler or feature belongs to one team and one iteration. A feature may depend on other enablers. These
dependencies are indicated by red strings.

Legend
Map Symbols Visualization Rules

1 2 4 5

System

Reportin
g

UX

Data

Finalize Credit

CalculationStaging

Environment

REST

Interfaces
Test

AutomatizationAuthenti-

fication

Milestone / EventC

B Enabler

A Feature D Team

E Iteration

Dependency

Input Mask Workspa
ce

Frame
Test UI

Response

Rate

Customer

Data Credit Entry Account Data

Schema Add Balances

to Customers

Finance
Status

Export

Reports

Balance

Overview Price Te
stingBooking

P&L

Calculation Balance

Services Account

Control

3

Query

Managem
ent Financial

Reporting

Beta Rel
ease

Remote Client

Config

Display

Balance

Import PDF

Reports

Springbo
ot

V2.0

Risk Rep
orting

AB

Feature (A) is implemented by
Team (D) in Iteration (E)

AD

E

Ve
rti

ca
lA

lig
nm

en
t

Horizontal Alignment

Feature (A) is dependent on
Enabler (B)

Figure 5: Exemplary view for Iteration Dependency Matrix

The underlying information model of Iteration Dependency Matrix is shown in Fig. 6.

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

EnablerFeature

Work Item

name: String

Implementation
Relationship

Team

name: String

Iteration

id: Integer

dependency

0..*

0..*

with

1..1

1..*

i n

1..1

1..*

by
1..1 1..*

Figure 6: Underlying information model of Iteration Dependency Matrix

5.3.6 Variants
Additional variants exist for IterationDependencyMatrix. First, enablers may be omitted if the organization does not make a differentiation
between enablers and features, i.e., for budgetary reasons (see Fig. 7(b)). However, this variant is not advised as the importance of architectural
improvements might be neglected. In addition, the Iteration Dependency Matrix could be simplified by omitting milestones or events
that would happen in the upcoming iterations (see Fig. 7(b)). The Iteration Dependency Matrix can also be visualized digitally by the use
of software development team collaboration tools. This variant has the advantage that useful information is stored in a digital format and
that it can also be used in a distributed Common Planning.

5.3.7 Consequences
The following benefits of Iteration Dependency Matrix are known:

• Visualizing and tracking inter-team dependencies
• Revealing unplanned risks and dependencies
• Providing a visual overview of work to be done
• Optimizing development flow

The following liabilities of Iteration Dependency Matrix are known:
• High manual effort during its creation
• After the Common Planning, it might be abandoned
• Less effective when agile teams are remote

5.3.8 Data Collection

• Frequency: Features, enablers, and goals are usually written throughout the development process.
• Responsible person: Responsible persons are e.g., the business analyst, product manager, product owner, program manager or solution
architect.

• Data source: Software development team collaboration tools.
• Classes to be documented: Team, enabler, feature, and iteration.

5.3.9 See Also
Iteration Dependency Matrix is used by the following C-Pattern:

• Common Planning

5.3.10 Other Standards
Iteration Dependency Matrix is also known as the Program Board in the Scaled Agile Framework [Scaled Agile 2019a].

5.3.11 Known Uses
The following uses of Iteration Dependency Matrix are known:

• CarCo
• RailCo
• BankingITCo
• RetailCo

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

• IndustryCo

(a) BankingITCo (b) RetailCo

Figure 7: Two observed Iteration Dependency Matrices

5.4 A-Pattern: Don’t Use Agile as a Golden Hammer (A-13) *

A-Pattern Overview

Alias Law of the Instrument, Law of the Hammer, Maslow’s Hammer, One Size Fits All
Summary Don’t Use Agile as a Golden Hammer shows why it is not advisable to use agile methods

in order to solve many kinds of problems.

5.4.1 Example
Success stories of the autonomous driving department with the application of agile methods reached the IT department of LuxCarsCo. The
IT management decided to transform all current IT projects to agile.

5.4.2 Context
Agile methods have become very popular in the last few years. Deciding when agile methods are appropriate for a particular project is a
difficult task as different aspects have to be considered, e.g., project size, project objectives and requirements, project team, technological
realization, and so on.

5.4.3 Problem
The following concerns are addressed by Don’t Use Agile as a Golden Hammer:

• How to choose the correct software development approach?
• How to decide whether agile methods should be used for a given project?

5.4.4 Forces
The following forces occur in the context of Don’t Use as a Golden Hammer:

• Several successes tempt the organization to solely use agile methods
• Large investment has been made in agile training
• Lack of motivation to explore alternative methods

5.4.5 General Form
A software development team has gained a lot of attention within the organization due to its success by using agile methods. As a result, the
organization believes that every new product should be developed by the use of agile methods. In some cases, the use of agile methods will
not solve the problem.

5.4.6 Variants
A possible variant for Don’t Use Agile as a Golden Hammer is that not only the management of an organization forces the use of agile
methods for software projects, but also existing software development teams obsessively operate use of agile methods.

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.4.7 Consequences
The following benefits of Don’t Use Agile as a Golden Hammer are known:

• Management-Buy-In
The following liabilities of Don’t Use Agile as a Golden Hammer are known:

• Failed projects

5.4.8 Revised Solution
The most important aspect of the revised solution is: Try to avoid Don’t Use Agile as a Golden Hammer. This can be done by using evidence
why the use of agile methods might not be appropriate, i.e., in simple projects in which the technological realization and requirements
are known (see Fig. 8). Don’t Use Agile as a Golden Hammercan also be avoided when a conscious effort towards the exploration of
alternative software development methods is made. Use Community of Practice to facilitate the exchange of ideas and experiences and to
understand their rationale for applying agile methods.

Complicated

Co
m

pl
ic

at
ed

un
kn

ow
n

unknownknown

kn
ow

n
Re

qu
ir

em
en

ts

Technological Realization

Chaotic

Complex

Simple

people
(Agile)

(A
gi

le
)

(Agile)
(Traditional
Waterfall)

Figure 8: Stacey Matrix [Stacey 1996] adapted to software development

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

6 Evaluation

We interviewed 14 large-scale agile development experts from 10
organizations to assess the structure and practical relevance of the
proposed pattern language. The companies are mainly headquar-
tered in Germany, predominantly active in the IT, insurance, and
retail sector, and employ around 2,000 to 200,000 people. Most of
them started with large-scale agile development a few years ago.
We prepared a questionnaire (see Appendix A) containing scale
response (on a five-point Likert scale) and open-ended questions to
collect expert feedback on our proposed pattern language. Table
2 lists the roles and professional experiences of all interviewed
experts with large-scale agile development. During the interviews,

Table 2: Interview partners for evaluating the proposed pat-

tern language

No Alias Main role

Professional experience

(in years)

1 EA1 Enterprise Architect 1-3
2 PM1 Project Manager 1-3
3 AD1 Agile Developer 3-6
4 AC1 Agile Coach 3-6
5 EA2 Enterprise Architect 3-6
6 EA3 Enterprise Architect 3-6
7 SA1 Solution Architect 3-6
8 PA1 Platform Architect >6
9 PKE1 Principal Key Expert 3-6
10 AC2 Agile Coach 3-6
11 AC3 Agile Coach >6
12 PO1 Product Owner >6
13 EA4 Enterprise Architect 3-6
14 AD2 Agile Developer <1

we provided a definition of each concept and presented the overall
structure of the pattern language by demonstrating five examples
(including their relationships to recurring concerns and other con-
cepts) using our prototypical web application. In the following, we
present the results of our evaluation3 (see Fig. 9).
Overall evaluation of the pattern language concepts: Stake-
holders were rated as the most valuable concept of the pattern
language (µ = 1.00; σ = 0.0). Concerns were rated the second most
valuable concept (µ = 1.14; σ = 0.18). The inclusion of V-Patterns
was considered very valuable (µ = 1.43; σ = 0.41). The usefulness
of M-Patterns was received high (µ = 1.50; σ = 0.37). The concept
of C-Patterns was considered very useful (µ = 1.71; σ = 0.44).
Interviewees broadly agreed that principles should be included in
the pattern language (µ = 1.79; σ = 0.60). A-patterns received a
positive feedback (µ = 2.00; σ = 0.42). Initiatives were rated less
useful (µ = 2.50; σ = 0.65)
Stakeholders: The concept of stakeholders was rated indispens-
able (AD1), as it provides transparency about relevant roles and
their concerns (EA1, EA3, PM1). One interviewee also stated that:

3In this paper, we do not present the evaluation results of the relationships between the
pattern concepts, because their usefulness was mainly influenced by the importance
the interviewees associated with the respective pattern concepts.

"patterns are developed for stakeholders" (EA2).
Concerns:Main arguments for including concerns in the pattern
language were that they provide a good starting point for decision
making (EA1) and that users can directly access relevant patterns
by navigating stakeholder-specific concerns (EA1, PM1). AC1 also
stated that "concerns are one of the best ways for describing stake-
holder roles". Other respondents expressed concerns as the central
motivation of the pattern language (AC1, AD2, EA2, EA3, SA1).
Downsides were that concerns are too detailed (AC2), and should
bemade less specific (EA4). AC3 added that some concern categories
such as coaching, training, human resources, etc. were missing.
V-Patterns: The interviewees mentioned the following benefits of
including V-Patterns in the pattern language: they can be used as a
communication medium (EA1), create a common ground between
stakeholders (PO1), help with decision-making (EA4), and provide
early feedback and transparency (PA1). EA2 considers V-Patterns
in large-scale agile development to be as important as V-Patterns
in the EAM pattern catalog, which he uses regularly [Ernst 2010;
Khosroshahi et al. 2015]. AD1 and AC2 added that V-Patterns are
useful as a reference book since they provide a wide-ranging toolkit
for solving recurring concerns. EA3 recommended that V-Patterns
should be extended by an additional section to document underly-
ing data collection processes required for their creation.
M-Patterns: Main arguments for including M-Patterns in the pat-
tern language were that they provide concrete guidance on how to
solve problems (AC1, AD2 EA3, SA1) and that they "represent the
core of the pattern language" (SA1). According to PO1, M-Patterns
can be used as change vehicles within the organization and depend
on the organizational maturity level to be applied. AD1 and EA2
claimed that the application could be difficult and may require some
adaptions to be used. EA4 proposed to merge the concepts of C-
and M-Patterns as "they are very similar". In contrast, 71.43% of
the interviewees regarded the separation of C- and M-Patterns as
helpful.
C-Patterns: Interviewees stated that C-Patterns provide best prac-
tices and proven mechanisms to common coordination and com-
munication concerns (AD2, EA2, PA1, PM1). They also show which
persons have to meet and enable subject-related alignment and
coordination (EA1). PKE1 added that the variants section of C-
Patterns could be helpful to document alternative meetings formats.
Although AD1 and EA3 perceived C-Patterns as very relevant in
practice, they claimed that the content discussed in meetings are
very complex and highly context specific, thus, making them diffi-
cult to generalize.
Principles: Positive arguments for including principles in the pat-
tern language were that they reduce the complexity of large-scale
agile development endeavors (AD2) and provide a common direc-
tion and guidance for agile teams (AD2, EA1, EA3, PO1). Intervie-
wees highlighted that principles should be stated explicitly (AC2,
PA1) as they are helpful for new employees and improve under-
standability (AC2). PO1 added that principles foster mindset control
without prescribing concrete methodologies, thus stimulating un-
derstanding and empowerment of agile teams (P01). In this context,
EA4 perceived architecture principles as essential for the success of
large-scale agile development endeavors. The relationship between
principles and V-Patterns was considered valuable (AC2, EA1) as
the compliance of agile teams with principles can be ensured by

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

c) ”V-Pattern" into the pattern language? Very useful Not useful at all

d) ”M-Pattern" into the pattern language? Very useful Not useful at all

e) ”C-Pattern" into the pattern language? Very useful Not useful at all

g) "A-Pattern" into the pattern language? Very useful Not useful at all

h) ”Initiative" into the pattern language? Very useful Not useful at all

2. Would you use patterns to address recurring concerns in
large-scale agile development? Highly likely Highly unlikely

3. Would large-scale agile development patterns help you
with your daily work? Highly likely Highly unlikely

b) ”Concern" into the pattern language? Very useful Not useful at all

Very useful Not useful at alla) "Stakeholder" into the pattern language?

f) ”Principle" into the pattern language? Very useful Not useful at all

1. In your opinion, how useful is the integration of the concept:

1 2 3 4 5

Figure 9: Evaluation results of the large-scale agile development pattern language

the use of KPIs (EA1). Although other participants acknowledged
the usefulness, they rated them less applicable in this context (AD1,
EA2, PM1, SA1). AC1 and EA3 had two recommendations. First, the
binding nature should be included indicating mandatory or recom-
mended principles. Second, principles should not have a solution
section as this is the task of an M-Pattern.
A-Patterns: A-Patterns prevent pattern users from running into
the same traps (EA1), show what not to do (PM1), and raise aware-
ness of failed approaches (EA2). AD2 added that A-Patterns save
time because "you don’t have to relive the same problem". PO1 per-
ceived them as important but noted that "people still make these
mistakes". EA4 mentioned the potential disadvantage that "everyone
must understand how it is meant". Some interviewees questioned the
usefulness of A-Patterns as they are not connected with other con-
cepts of the pattern language (AD1, EA3, SA1). We asked whether
A-Patterns should be connected with other concepts and 92.68% of
interviewees replied positive. They agreed that A-Patterns should
have a problem section, thus, being connected with concerns and
stakeholders, to provide A-Patterns with more context. This enables
more usability, as users can find stakeholder-relevant A-Patterns
faster in comparison to other pattern languages without this con-
nection. They also stated that the revised solution section should
refer to C-Patterns, M-Patterns, and V-Patterns, to find appropriate
solutions.
Initiatives: Some respondents said initiatives are helpful when
concerns cannot be directly related to stakeholders (AC1, AD1) and
if concerns occur on different organizational levels (EA1, PKE1).
On the other hand, they were considered redundant (PM1) since
they do not provide additional information or value (AC1, PM1,
SA1). Two respondents found this concept too abstract (AC1) or not

relevant for industry (EA2). In addition, they were also confused
about the denotation of initiatives (AC2, AC3, PA1). Several intervie-
wees recommended removing initiatives from the pattern language
structure as it increases complexity (EA2, PKE1, PO1, SA1).
Usefulness and Support of Patterns: The majority of respon-
dents indicated that they would use patterns to address recurring
concerns in large-scale agile development.
Based on the evaluation, we made the following adjustments to the
large-scale agile development pattern language structure:

• Initiatives are removed and are instead represented by the
scaling level attribute of concerns.

• Principles are extended by a binding nature attribute to indi-
cate recommended or mandatory principles.

• The solution section of principles is removed so that they
remain generic and refer to related M-Patterns.

• A-Patterns are connected with concerns, stakeholders, C-,
M-, and V-Patterns.

• V-Patterns are extended by an optional data collection at-
tribute so that recommended data collection processes are
described.

As already indicated in Section 4, the mentioned adjustments are
already incorporated in the overview andmeta-model of the pattern
language shown in Fig. 2 and Fig. 4.

7 Conclusion and Outlook

Given the heterogeneity of large-scale projects, the nascent state of
scaling agile frameworks and empirical studies [Dikert et al. 2016;
Dingsøyr et al. 2019], large-scale agile development is a field sus-
ceptible to practice-driven design research. The proposed language
provides the structure for documenting practice-proven solutions

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

to recurring large-scale agile development concerns. The pattern
language includes typical stakeholders, their concerns, principles,
M-Patterns, V-Patterns, C-Patterns, and A-Patterns. It also links
to other standards to allow easy integration and comparison. This
pattern language was evaluated by interviewing 14 large-scale agile
experts from 10 organizations and by observing and documenting
new patterns, four of which were presented in this paper.
The results of this paper provide compelling directions for future
research. We will continue to collect data from our large-scale agile
development workshops [Uludağ 2019] and case studies with indus-
try partners. In parallel, we will conduct structured interviews with
different types of stakeholders, such as agile coaches, enterprise
architects or product owners, to identify role-specific concerns and
pattern candidates. Based on a structured survey among companies
worldwide, we will publish the Large-Scale Agile Development Pat-
tern Catalog containing concerns and patterns. In future work, we
will assist our industry partners to select relevant patterns and to
introduce them in their organizations. This will help us to evaluate
the pattern implementations in practice and to observe changing
pattern implementations. With this, we also aim to close the re-
search activity cycle of the PDR method [Buckl et al. 2013].

Acknowledgements

This work has been sponsored by the German Federal Ministry of
Education and Research (BMBF) via the Software Campus Project
SaM-IT 01IS17049 project.

References

ISO/IEC/IEEE 42010:2011(E). 2011. Systems and software engineering – Architecture
description. Technical Report. ISO/IEC/IEEE.

Christopher Alexander. 1977. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York.

Mashal Alqudah and Rozilawati Razali. 2016. A review of scaling agile methods in
large software development. International Journal on Advanced Science, Engineering
and Information Technology 6, 6 (2016), 828–837.

Scott Ambler and Mark Lines. 2012. Disciplined agile delivery: A practitioner’s guide to
agile software delivery in the enterprise. IBM Press.

Deepika Badampudi, Samuel A. Fricker, and Ana M. Moreno. 2013. Perspectives on
Productivity and Delays in Large-Scale Agile Projects. In Agile Processes in Software
Engineering and Extreme Programming, Hubert Baumeister and Barbara Weber
(Eds.). Springer, Berlin, 180–194.

Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Østergaard, Ademar Aguiar,
and Ken Schwaber. 2010. Essential Scrum Patterns. In 14th European Conference on
Pattern Languages of Programs. The Hillside Group, Irsee, 1–17.

Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland. 1999.
SCRUM: An Extension Pattern Language for Hyperproductive Software Develop-
ment. Pattern Languages of Program Design 4 (1999), 637–651.

Saskia Bick, Kai Spohrer, Rashina Hoda, Alexander Scheerer, and Armin Heinzl. 2018.
Coordination Challenges in Large-Scale Software Development: A Case Study of
Planning Misalignment in Hybrid Settings. IEEE Transactions on Software Engineer-
ing 44, 10 (2018), 932–950.

Barry W. Boehm and Richard Turner. 2005. Management challenges to implementing
agile processes in traditional development organizations. IEEE Software 22, 5 (2005),
30–39.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda.
2013. Pattern-Based Design Research – An Iterative Research Method Balancing
Rigor and Relevance. In 8th International Conference on Design Science Research in
Information Systems. Springer, Berlin, 73–87.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007a. Pattern Oriented
Software Architecture Volume 4: A Pattern Language for Distributed Computing. John
Wiley & Sons, Chichester.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007b. Pattern Oriented
Software Architecture Volume 5: On Patterns and Pattern Languages. John Wiley &
Sons, Chichester.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
1996. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. John
Wiley & Sons, Chichester.

James O. Coplien. 1995. A Generative Development-process Pattern Language. In
Pattern Languages of Program Design, James O. Coplien and Douglas C. Schmidt
(Eds.). ACM, New York, 183–237.

James O. Coplien. 1996. Software Patterns: Management Briefs. Cambridge university
Press, Cambridge.

James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile Software
Development. Addison-Wesley, Boston.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. 2016. Challenges and Success
Factors for Large-Scale Agile Transformations: A Systematic Literature Review.
Journal of Systems and Software 119 (2016), 87–108.

Torgeir Dingsøyr, Davide Falessi, and Ken Power. 2019. Agile Development at Scale: The
Next Frontier. IEEE Software (2019). Special Issue: Large-Scale Agile Development.

Torgeir Dingsøyr and Nils Moe. 2014. Towards Principles of Large-Scale Agile Develop-
ment. Springer, Berlin, 1–8.

Amr Elssamadisy. 2008. Agile Adoption Patterns: A Roadmap to Organizational Success.
Addison-Wesley, Boston.

Alexander M. Ernst. 2010. A Pattern-based Approach to Enterprise Architecture Manage-
ment. Dissertation. Technische Universität München, München.

Martin Fowler. 2006. Writing Software Patterns. https://www.martinfowler.com/
articles/writingPatterns.html. Accessed: 2019-02-02.

Neil B. Harrison. 1996. Organizational Patterns for Teams. In Pattern Languages of
Program Design 2, John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.).
Addison-Wesley, Boston, 345–352.

Kevin Hoffman. 2016. Beyond The Twelve-Factor App. O’Reilly Media, Sebastopol.
Emam Hossain, Muhammad A. Babar, and Hye-Young Paik. 2009. Using Scrum in

Global Software Development: A Systematic Literature Review. In 4th International
Conference on Global Software Engineering. IEEE, Limerick, 175–184.

Irum Inayat, Siti S. Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin Shamshir-
band. 2015. A systematic literature review on agile requirements engineering
practices and challenges. Computers in human behavior 51 (2015), 915–929.

Martin Kalenda, Petr Hyna, and Bruno Rossi. 2018. Scaling agile in large organizations:
Practices, challenges, and success factors. Journal of Software: Evolution and Process
30, 10 (2018), e1954. https://doi.org/10.1002/smr.1954

Petri Kettunen. 2007. Extending Software Project Agility with new Product Develop-
ment Enterprise Agility. Software Process: Improvement and Practice 12, 6 (2007),
541–548.

Petri Kettunen and Maarit Laanti. 2008. Combining agile software projects and large-
scale organizational agility. Software Process: Improvement and Practice 13, 2 (2008),
183–193.

Pouya A. Khosroshahi, Matheus Hauder, Alexander W. Schneider, and Florian Matthes.
2015. Enterprise Architecture Management Pattern Catalog Version 2.0. Technical
Report. Chair of Software Engineering for Business Information Systems (sebis),
Technical University of Munich.

Henrik Kniberg and Anders Ivarsson. 2012. Scaling Agile @ Spotify.
Philippe Kruchten. 2013. Contextualizing Agile Software Development. Journal of

Software: Evolution and Process 25, 4 (2013), 351–361.
Craig Larman and Bas Vodde. 2016. Large-Scale Scrum: More with LeSS. Addison-Wesley

Professional.
Neil Maiden and Sara Jones. 2010. Agile Requirements Can We Have Our Cake and

Eat It Too? IEEE Software 27, 3 (2010), 87–88.
Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing. In

Pattern Languages of Program Design 3, Robert C. Martin, Dirk Riehle, and Frank
Buschmann (Eds.). Addison-Wesley, Boston, 529–574.

Ian Mitchell. 2016. Agile Development in Practice. TamaRe House, London.
Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. 2005. Challenges of

Migrating to Agile Methodologies. Commun. ACM 48, 5 (2005), 72–78.
Robert L. Nord, Ipek Ozkaya, and Philippe Kruchten. 2014. Agile in Distress: Architec-

ture to the Rescue. In 15th International Conference on Agile Software Development.
Springer, Berlin, 43–57.

Maria Paasivaara and Casper Lassenius. 2014. Communities of practice in a large
distributed agile software development organization âĂŞ Case Ericsson. Information
and Software Technology 56, 12 (2014), 1556 – 1577. Special issue: Human Factors
in Software Development.

Knut H. Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. 2016. Prob-
lematizing Agile in the Large: Alternative Assumptions for Large-Scale Agile De-
velopment. In 37th International Conference on Information Systems. Association for
Information Systems, Dublin.

Scaled Agile. 2019a. PI Planning. https://www.scaledagileframework.com/pi-planning.
Accessed: 2019-02-02.

Scaled Agile. 2019b. Scaled Agile Framework. https://www.scaledagileframework.com.
Accessed: 2019-02-02.

Alexander W. Schneider and Florian Matthes. 2015. Evolving the EAM Pattern Lan-
guage. In 20th European Conference on Pattern Languages of Programs. ACM, New
York, 45:1–45:11.

ScrumPLoP. 2019. Published Patterns. https://sites.google.com/a/scrumplop.org/
published-patterns/. Accessed: 2019-02-02.

https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/writingPatterns.html
https://doi.org/10.1002/smr.1954
https://www.scaledagileframework.com/pi-planning
https://www.scaledagileframework.com
https://sites.google.com/a/scrumplop.org/published-patterns/
https://sites.google.com/a/scrumplop.org/published-patterns/

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Ralph Stacey. 1996. Strategic Management & Organizational Dynamics: The Challenge
of Complexity. Pitman Publishing, London.

Paul Taylor. 2000. Capable, productive, and satisfied: Some organizational patterns for
protecting productive people. In Pattern Languages of Program Design 4, John M.
Vlissides, James O. Coplien, and Norman L. Kerth (Eds.). Addison-Wesley, Boston,
611–636.

Ömer Uludağ. 2019. Scaling Agile Practices Workshops. https://wwwmatthes.in.tum.
de/pages/1lihu1sjq8jpk/Scaling-Agile-Practices-Workshops. Accessed: 2019-02-02.

Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. 2018. Identi-
fying and Structuring Challenges in Large-Scale Agile Development Based on a
Structured Literature Review. In 22nd International Enterprise Distributed Object
Computing Conference. IEEE, Stockholm, 191–197.

Antti Välimäki. 2011. Pattern Language for Project Management in Global Software
Development. Tampere University of Technology, Tampere.

VersionOne. 2018. 12th Annual State of Agile Report. Technical Report. VersionOne.
Etienne Wenger, Richard Arnold McDermott, and William Snyder. 2002. Cultivating

communities of practice: A guide to managing knowledge. Harvard Business Press.
Adam Wiggins. 2017. The Twelve-Factor App. https://12factor.net/. Accessed:

2019-02-20.

A Questionnaire

A.1 General questions

Name, Organization, Role description, Personal large-scale agile de-
velopment experience level, Organizational large-scale agile devel-
opment experience level, Operation level, Country of headquarters,
Sector, Number employees

A.2 Pattern language concepts

In your opinion, how useful is the integration of the concepts:
"Stakeholder", "Initiative", "Concern", "Principle", "Coordination
Pattern", "Methodology Pattern", "Viewpoint Pattern", and "Anti-
Pattern" into the pattern language? (five-point Likert scale question)

Why is the concept: "Stakeholder", "Initiative", "Concern", "Prin-
ciple", "Coordination Pattern", "Methodology Pattern", "Viewpoint
Pattern", and "Anti-Pattern" useful / not useful for you? (open-ended
question)

Does the differentiation between "Coordination Pattern" and "Method-
ology Pattern" help you? (yes-no question + open-ended question)

In your opinion, should the "Anti-Pattern" concept be connected
to another concept from the pattern language? (yes-no question)
If yes, with which concept from the pattern language should the
concept "Anti-Pattern" be connected? (open-ended question)

A.3 Relationship between pattern language

concepts

In your opinion, how useful is the relationship between the con-
cepts: "Stakeholder" and "Concern", "Initiative" and "Concern", "Con-
cern" and "Principle", "Concern" and "Coordination Pattern", "Con-
cern" and "Methodology Pattern", "Concern" and "Viewpoint Pat-
tern", "Principle" and "Viewpoint Pattern", "Coordination Pattern"
and "Viewpoint Pattern", "Methodology Pattern" and "Viewpoint
Pattern", and "Coordination Pattern" and "Methodology Pattern"?
(five-point Likert scale question + open-ended question)

A.4 Discussion

Is there another concept you would like to see in the pattern lan-
guage? (open-ended question)

Would you use patterns to address recurring concerns in large-
scale agile development? (five-point Likert scale question)

Would large-scale agile development patterns help you with your
daily work? (five-point Likert scale question)

B Current patterns and concepts in the pattern

language *

B.1 Stakeholders

• S-1: Development Team
• S-2: Product Owner
• S-3: Scrum Master
• S-4: Software Architect
• S-5: Test Team
• S-6: Product Manager
• S-7: Program Manager
• S-8: Agile Coach
• S-9: Enterprise Architect
• S-10: Business Analyst
• S-11: Solution Architect
• S-12: Portfolio Manager
• S-13: Support Engineer
• S-14: UX Expert

B.2 Concerns

• C-1: How to coordinate multiple agile teams that work on the
same product?

• C-2: How to consider integration issues and dependencies with
other subsystems and teams?

• C-6: How to manage technical debts?
• C-8: How to ensure that non-functional requirements are con-
sidered by the development team?

• C-9: How to find the right balance between architectural im-
provements and business value?

• C-13: How to share common vision?
• C-14: How to create a proper upfront architecture design of
the system?

• C-21: How to manage dependencies to other existing environ-
ments?

• C-26: How to align and communicate architectural decisions?
• C-34: How to ensure the reuse of enterprise assets?
• C-41: How to deal with unplanned requirements and risks?
• C-56: How to define clear roles and responsibilities?
• C-64: How to define a lightweight formal review process for
new technologies?

• C-67:How to encourage development teams to talk about tasks
and impediments?

• C-78: How to synchronize sprints in the large-scale agile de-
velopment program?

• C-79: How to ensure that the development phases are clearly
separated and executed in an iterative fashion?

• C-80: How to ensure that development teams comply with
architecture principles?

https://wwwmatthes.in.tum.de/pages/1lihu1sjq8jpk/Scaling-Agile-Practices-Workshops
https://wwwmatthes.in.tum.de/pages/1lihu1sjq8jpk/Scaling-Agile-Practices-Workshops
https://12factor.net/

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

B.3 A-Patterns

• A-1: Don’t Force Traditional Project Management
Concepts to Agile Software Development

• A-2: Don’t Adopt All Agile Practices in One Go
• A-3:Don’tMisinterpret theMeaning ofWorking Soft-
ware Over Comprehensive Documentation

• A-4: Don’t Spare Expenses on Agile Mindset Education
• A-5: Don’t Assume a Tacit, Implicit Understanding of
Architecture, its Scope, and the Architect’s Role and
Responsibility

• A-6: Don’t Build an Ivory Tower
• A-7: Don’t Overshoot Coordination Meetings
• A-8: Don’t Force Traditional Job Behaviors to Agile
Software Development

• A-9: Don’t Put Individual Goals Over Team Goals
• A-10: Don’t Creep Old Bureaucracy in Agile Software
Development

• A-11: Don’t Mix Old Approaches with Agile Software
Development Approaches

• A-12: Don’t Use Agile Practices out-of-the-box with-
out Adapting to your Own Needs

• A-13: Don’t Use Agile as a Golden Hammer
• A-14: Don’t Try to Reduce the Amount of Communica-
tion in Large-Scale Agile Development Programs by
Documentation

• A-15: Don’t Consider Knowledge Sharing Strategies
and Projects in Isolation

• A-16: Don’t Add New Developers into New Teams, In-
stead Add Them into Existent Ones

• A-17: Don’t Develop a Single Reqirement Involved
Multiple Agile Teams in Different Locations

B.4 Principles

• P-1: Strictly Separate Build and Run Stages

B.5 M-Patterns

• M-1: Cadence-Based Development
• M-2: Collaborative Establishment of Architecture
Principles

• M-3: Continuous Delivery Pipeline
• M-4: DevOps
• M-5: Kanban
• M-6: Scrum
• M-7: Architectural Runway
• M-8: Extreme Programming
• M-9: ScrumXP
• M-10: ScrumBan
• M-11: Capturing NFRs in Definition of Done
• M-12: Architecture Spike
• M-13:Weighted Shortest Job First Prioritization
• M-14: Collaborative Adoption of new Technologies

B.6 C-Patterns

• C-1: Community of Practice
• C-2: Common Planning
• C-3: Scrum-of-Scrums

• C-4: Center of Excellence
• C-5: Sprint Planning
• C-6: Common Retrospective
• C-7: Sprint Review
• C-8: Backlog Refinement
• C-9: System Demo
• C-10: Inspect and Adapt
• C-11: Sprint
• C-12: Daily Standup
• C-13: Sprint Retrospective
• C-14: Supervision

B.7 V-Patterns

• V-1: Iteration Dependency Matrix
• V-2: Responsibility Assignment Matrix
• V-3: Architecture Solution Space
• V-4: Business Capability Map
• V-5: Weightest Shortest Job First
• V-6: Global Impediment Board
• V-7: SoS Board
• V-8: Kanban Board
• V-9: Portfolio Canvas
• V-10: SWOT Analysis
• V-11: ROAM Board
• V-12: Objectives Board
• V-13: Business Object Model
• V-14: Application Interface Map
• V-15: Solution Context Map
• V-16: Value Stream Map
• V-17: Persona
• V-18: Burndown Chart
• V-19: Technical Debt Backlog
• V-20: Speed to Market
• V-21: Impediment Board
• V-22: Starfish
• V-23: Run the Sail Boat

	Abstract
	1 Introduction
	2 Research Approach
	3 Related Work and Pattern Languages
	4 Large-Scale Agile Development Pattern Overview
	5 Exemplifying the Large-Scale Agile Development Pattern Language
	5.1 Principle: Strictly Separate Build and Run Stages (P-1) *
	5.2 C-Pattern: Community of Practice (C-1) *
	5.3 V-Pattern: Iteration Dependency Matrix (V-1) *
	5.4 A-Pattern: Don't Use Agile as a Golden Hammer (A-13) *

	6 Evaluation
	7 Conclusion and Outlook
	References
	A Questionnaire
	A.1 General questions
	A.2 Pattern language concepts
	A.3 Relationship between pattern language concepts
	A.4 Discussion

	B Current patterns and concepts in the pattern language *
	B.1 Stakeholders
	B.2 Concerns
	B.3 A-Patterns
	B.4 Principles
	B.5 M-Patterns
	B.6 C-Patterns
	B.7 V-Patterns

