A Process-Oriented Approach to
Software Component Definition

Florian Matthes, Holm Wegner, and Patrick Hupe

Software Systems Institute (STS)
Technical University Hamburg-Harburg, Germany
{f .matthes,ho.wegner,pa.hupe}@tu-harburg.de

Abstract. Commercial software component models are frequently based
on object-oriented concepts and terminology with appropriate binding,
persistence and distribution support. In this paper, we argue that a
process-oriented view on cooperating software components based on the
concepts and terminology of a language/action perspective on cooper-
ative work provides a more suitable foundation for the analysis, design
and implementation of software components in business applications.
We first explain the relationship between data-, object- and process-
oriented component modeling and then illustrate our process-oriented
approach to component definition using three case studies from projects
with German software companies.

We also report on our experience gained in developing a class framework
and a set of tools to assist in the systematic process-oriented development
of business application components. This part of the paper also clarifies
that a process-oriented perspective fits well with today’s object-oriented
language and system models.

1 Introduction and Rationale

Organizations utilize information systems as tools to support cooperative activ-
ities of employees within the enterprise. Classical examples are back-end infor-
mation systems set up to support administrative processes in banks, insurances,
or processes in enterprise resource planning.

Driven by various factors (availability of technology, group collaboration is-
sues and organizational needs), there is a strong demand for more flexible and
decentralized information system architectures which are able to support

— cooperation of humans over time (persistence, concurrency and recovery),

— cooperation of humans in space (distribution, mobility, on/offline users), and

— cooperation of humans in multiple modalities (batch processing, transaction
processing, asynchronous email communication, workflow-style task assign-
ment, ad-hoc information sharing).

Another crucial observation is the fact that cooperation support can no longer
be restricted to employees (intra-organizational workflows) but also has to en-
compass inter-organizational workflows involving customers, suppliers, tax au-
thorities, banks, etc.

The objective of our research is to identify abstractions and architectural
patterns which help to design, construct and maintain software components in
such a “cooperative information system” environment [2, 3]

In Sect. 2, we argue that the successful step in information system engineer-
ing from data-oriented to object-oriented information system modeling should
be followed by a second step from object-oriented to process-oriented system
engineering. Only a process-oriented perspective allows software architects and
organizations to identify and to reason about actors, goals, cooperations, com-
mitments and customer-performer relationships which are crucial in a world of
constant change to keep the organizational objectives and the objectives of the
supporting information systems aligned.

In Sect. 3, we illustrate our process-oriented approach to component defini-
tion using three case studies from projects with German software companies.
Details of the underlying process and system model are given in Sect. 4 and 5.

2 Approaches to Component Definition in Information
Systems

In this section, we briefly review the evolution of information system archi-
tectures to highlight the benefits of a process-oriented approach to component
definition. Figure 1 summarizes the main result of this section:

Processes «I- Processes
Process Interface
(Conversation Spec /

Workflow schema)

Objects Objects
Object Interface D -

(CORBA IDL/

COM / JavaBean / ...) lll i I

Data Interface
(SQL DDL/EDI/...)

)

Fig. 1. Three Approaches to Component Definition in Business Information Systems

Interaction between system components in an information system can be
understood at three levels, namely at the level of data access, object interaction
and at the level of process coupling.

At each level, interfaces between system components should be declared in
an abstract, system-independent syntax which also provides a basis for the sys-
tematic implementation of vendor-independent middleware. Abstract concepts
of the interface language are mapped to concrete implementation concepts of
the participating system components. A higher-level interface language includes
concepts of the lower-level interface language but often imposes additional re-
strictions on the use of these concepts. For example, CORBA IDL provides data

attributes and attribute types similar to record attributes and SQL domains,
but also provides mechanisms for data encapsulation at the object level.

2.1 Data-Oriented Component Definition

Database research and development focused on the entities and relationships of
an information system and led to the development of conceptual, logical and
physical data models, generic systems and tools as well as software develop-
ment, processes to support the analysis, design and efficient implementation of
(distributed) data components.

Today, virtually all organizations have conceptual models of the information
available in their back-end information systems and systematic mechanisms to
develop and change applications to satisfy new information needs.

For information stored in relational databases, SQL as the “intergalactic
dataspeak” [13] provides both, a language for the exchange of vendor-independent
data description (schemata, tables, views, ...) as well as a language for (remote)
data access (via APIs like ODBC, JDBC, ...; see also Fig. 1).

2.2 Object-Oriented Component Definition

In modern client-server architectures and in cooperating information systems,
the information assets of an enterprise are modeled (and implemented) as collec-
tions of distributed and persistent objects interacting via messages and events.

The interfaces for these components are defined as enriched signatures in
object-oriented languages using concepts like classes, objects, (remote) refer-
ences, attributes, methods, subclasses, interfaces, events, exceptions etc.

These object and component models (CORBA, DCOM, JavaBeans, etc.)
describe the interaction between components by (a)synchronous method invo-
cation extending and adapting the semantics of dynamic method dispatching in
object-oriented programming languages (see also Fig. 1).

The advantage of object-oriented component models over pure data models
on the one hand side and over purely procedural (remote) function libraries on
the other hand is their ability to describe semantic entities which are meaningful
already at the analysis and at the design level. The often quoted classes Customer
and Shipment are examples for such high-level entities.

As exemplified by ODMG using CORBA IDL, an object-component model
can also be used to describe “data-only” components, simply by omitting elab-
orate method and message specifications and only providing (set-oriented) get,
set, insert and delete methods.

2.3 Process-Oriented Component Definition

An object-oriented component definition is “richer” than a data-oriented com-
ponent definition since the methods provide a more suitable protocol for the
interaction between a client and a server component than a sequence of raw
SQL statements working on a shipment table.

However, we still see the following deficiencies of object-oriented component
definitions which call for an even richer process-oriented component definition:

— The interface of a software component rarely consists of a single object in-
terface but of a large number of highly interrelated object interfaces.

— Frequently it is necessary for a server to manage multiple execution contexts,
for example, one for each concurrent client session. Clients then often have
to pass a session handle as an extra argument to each of these methods.

— In particular in business applications, it is desirable to enforce restrictions
on the admissible execution order of certain method calls (“A shipment can
only be send after a payment has been received”).

— The lifetime of such execution contexts tends to be longer than the lifetime
of the server process. Therefore, it becomes necessary to make such execution
contexts first-class persistent and possibly mobile objects.

— If a large system is broken down into autonomous concurrent subsystems (a
collection of agents), synchronization issues can arise

As a solution to these problems we propose not to use object-oriented compo-
nent interface definitions but process-oriented interface definitions between parts
of a business information system following the language/action perspective on
cooperative work [15,4,12, 1]. For details on our model, see [8,10, 6, 14].

In a first step, we identify actors in a business information system. An actor
can either be a human or an active process (thread, task, job, ...) in an infor-
mation system. For example, a customer, an SAP R/3 application server and a
Lotus Notes Domino Server can all be viewed as actors.

In a second step, we identify conversation specifications to describe long-term,
goal-directed interactions between actors. For example, if a customer can browse
through an Internet product catalogue on a Lotus Notes Server to place an order
online, we identify a conversation specification called online shopping. We also
assign roles to actors within a conversation. The actor that initiates the conver-
sation (the online shopper) is called the customer of the conversation. The actor
that accepts conversation requests is called the performer of the conversation.

An actor can participate in multiple (possibly concurrent) conversations in
different roles. For example, Lotus Notes could use the services of SAP R/3 to
check the availability of products. Thus, Lotus Notes would be the customer of
SAP R/3 for this particular conversation specification.

Next, we identify dialog specifications which are process steps within each of
the conversations (catalog/item view, shopping cart dialog etc. for online shop-
ping and a dialog for the availability check). A dialog consists of a hierarchically
structured content specification plus a set of request specifications valid in this
particular process step. For example, the shopping cart dialog could aggregate
a set of shopping cart items (part identification, part name, number of items,
price per item) plus a total, the name of the customer, VAT, etc. In this dialog,
only a restricted set of requests can be issued by the customer (leave shop, select
payment mode, remove item from cart, etc.).

For each request specification in a dialog there is a specification of the set
of admissible follow-up dialogs. If this set contains more than one dialog, the

performer can continue the conversation at run-time with any of these dialogs.
For example, the addItemToShoppingCart request in the item view dialog could
either lead to the shopping cart view or to an out of stock error dialog.

It should be emphasized that a dialog specification fully abstracts from the
details and modalities of dialog processing at run-time. For example, the di-
alog could be carried out synchronously via a GUI interface or via HTTP or
asynchronously via email or a workflow-style task manager.

Contrary to object interactions via message passing, this “form-based” or
“document-based” style of interaction at the level of dialogs also fits well the
(semi-)formal interaction between humans. For example, we are all used to a
form-based interaction with public authorities.

We consider the ability to abstract from the modalities of an interaction
(local/remote, synchronous/asynchronous, short-term/persistent, involving sys-
tems/humans) as a major contribution of our process model since it makes it
possible to uniformly describe a wide range of interactions.

Acceptance

Re%\%’ﬂaﬁon
Customer % \\ % Performer
Feedback A/érmance

Completion

Fig. 2. Phases of typical customer-oriented conversations

Figure 2 illustrates the basic structure of a typical customer-oriented conver-
sation. In the first step, the request-phase, a customer asks for a specific service
of a performer (“I want to order a hotel-room”). In the second negotiation-phase,
customer and performer negotiate their common goal (e.g. conditions, quality of
service) and possibly reach an agreement. To do this, several dialog iterations
may be necessary. In the third performance-phase, the performer fulfills the re-
quested activity and reports completion back to the customer (“we accepted
your order”). The optional fourth feedback-phase gives the customer a chance to
declare his/her satisfaction and may also contain the payment for the service.

It should be noted that we deliberately restrict our model to binary cus-
tomer/performer relationships and that we do not follow established workflow
models (from CSCW) that focus on process chains involving multiple perform-
ers from different parts of the enterprise. For example, in our model a workflow
with three specialized performers could be broken down into a coordinator that
takes a customer request and that initiates three separate (possibly concurrent)
conversations with the three performers involved.

This example also illustrates that conversation specifications are an excellent
starting point for component definitions since they help to identify data and con-
trol dependencies. Moreover, it becomes much simpler to assign (data, behavior
and also process) responsibilities to actors than it is the case for pure data- or
object-oriented models.

To summarize, conversation specifications include data specifications (similar
to complex object models) and behavior specifications (similar to methods in
object models) and they provide additional mechanisms for process modeling:

— Actors and their roles in the network of conversations of an enterprise are
modeled explicitly and at a high level of abstraction.

— The context of a request is modeled explicitly. For example, it is possible to
access the history or the client of a conversation.

— It is possible to restrict requests to certain steps (dialogs) within a process.

— It is possible to specify (aspects of) the dynamic behavior of the process
through the set of follow-up dialogs defined for a requests.

Finally, it should be noted that conversation, dialog, request and content
specifications can be used as static interfaces between components. Only at run-
time, conversations, dialogs, requests and contents are created dynamically as
instances of these classes. This corresponds to the distinction between schema
and database at the data level and the distinction between interface and object
at the object level.

3 Three Case Studies

In this section, we illustrate our process-oriented approach to component defini-
tion using three case studies from projects with German software companies. The
goal of these projects was to investigate whether the abstract process component
model described in [8,10] and successfully implemented in persistent program-
ming languages [6, 14] is also a suitable basis for the implementation of process
components using commercially relevant technology.

The conceptual basis for these projects is summarized in Table 1 that shows
the (rough) correspondence between the abstract process component model con-
cepts on the one hand side and the implementation concepts of the respective lan-
guages or systems used to systematically realize these concepts. We also added a
column describing the relationship between Java HTTP-Servlets and our model.

Several cells in the table are marked as “not applicable” (n.a.), since some
of the systems lack the required modeling support. However, these concepts can
be emulated by a systematic use of other language constructs.

Figure 3 summarizes the agents and conversation specifications of the three
case studies. In this diagram, an agent is indicated by a circle with an arrow.
A conversation specification between two agents is indicated by a line with two
arrows connecting the agent icons. If there are multiple agents that are based
on the same conversation specifications, the icons of these agents are stacked.

Model Concept

Tmplementation Concept

SAP R/3 Dynpro
Technology

SAP R/3 BAPI
Technology

Lotus Notes
Technology

Java Server
Technology

Microsoft ASP
Technology

Agent

R/3 Application
Server

R/3 Application
Server

Domino / Lotus
Server

HTTP-Server +
Servlets

HTTP-Server +
ASP Extension

Performer Role

Collection of

Collection of

Collection of

Collection of

Collection of

related Dynpros | related BAPIs Agents Servlets ASPs
Customer Role || n.a. n.a. n.a. noa. noa.
Conversation R/3 Dynpro Client Session / | Session Serviet-Session | ASP-Session
SAP Transaction
Dialog Dynpro Screen n.a. Document HTMIL-Form HTMIL-Form
Request Modification of BAPI Method User Bvent HTTP-Request | HTTP-Request
GUI Variable Invocation (RFC)
Content Dynpro Screen BAPI Method Content of a HTML- HTML-
Field Arguments document Document Document
Rule PBO / PAI- Tmplementation | Agent Servlet Embedded Script
Module of BAPI (RFC) (Event Handler) Code
Conversation EPC Description | n.a. noa. noa. noa.
Specification of Dynpro
Request Spec EPC Bvent noa. noa. HTMIL-Form HTMIL-Form

Content Spec

(T/O values of
EPC transition)

n.a.

n.a.

DTD

DTD

Table 1. Mapping of Process Component Model Concepts to Implementation Concepts

‘<—>.<—>. programmer

coordinator

reporter (direct) customer,
front desk

a) u)

distributor trave back-office
CuStomer auency hotel A (R/3)
internet shop <—>6<—>‘<—>.
www-browser \ / ‘<—>.
b) R/3 c) mobile agent hotel B

Fig. 3. Agents and Conversations of Three Case Studies

Each agent is annotated with the letter(s) P or C depending on his role(s) in
the participating conversations (performer or customer role).

Figure 3 is described in more detail in the following subsections. At this
point, we should note that some of the agent patterns depicted in this figure
(coordinator, mediator, broker) tend to appear in multiple application domains.

3.1 Process-Oriented Modeling of an Internet Shop

In this example, an internet shop was created to support internet customers with
HTTP clients and inhouse customers using Lotus Notes clients. The internet
shop was implemented using a Lotus Notes Domino server. This implementa-
tion is based on a rather generic implementation of the agent model outlined
in Sect. 2. This generic subsystem is responsible for managing multiple conver-
sations and to decouple visual details of the user interface from the rule-based
agent implementation.

Using this generic infrastructure, the system implementor first defines the
conversation specification including dialogs, requests and specifications for the
admissible follow-up dialogs in each dialog step. The developer can utilize the
standard Notes tools to design the dialogs and their content layout.

In a next step, the application developer implements rules (event handlers)
for each request specification that appears in a dialog. This event handler at run
time has to return a dialog object to be displayed to the user in the next process
step. Each rule has access (via database variables) to the contents and requests
of previous dialogs in the current conversation.

The shop also uses a SAP R/3 system for invoices, accounting and product
availability checks. All client conversations share a common conversation with
the SAP R/3 system which effectively serializes client dialog steps.

3.2 A Workflow Manager for Software Bug Tracking

The next example illustrates how conversation specifications can be used to
structure the interaction between multiple human agents within an enterprise.

At StarDivision Inc., a cooperative information system was created for track-
ing and removing bugs in software (see Fig. 3 a). There are three kinds of human
actors and one software actor:

— A reporter is a human agent (a member of the support staff) that is a
customer in a conversation ReportBug, which starts with a dialog where a
description of the bug is entered. This conversation ends when the reporter
is informed that the bug has been fixed. There can be multiple reporters.

— The distinguished coordinator agent (a centralized software system imple-
mented with the Microsoft Transaction Manager and Active Server Pages)
is the performer for the ReportBug conversation but also a customer in two
other conversations (AssignBug and RemoveBuyg).

— A distributor is a human agent responsible for the correctness of a particular
software component. The AssignBug conversation is used by the coordinator
agent to request the distributor to propose a programmer who may be able
to remove the bug. There can be an arbitrary number of distributors.

— A programmer is a human agent that may be able to locate a bug and report
successful removal of the bug back to the coordinator.

The task of the coordinator agent is to implement each ReportBug conversa-
tion by a sequence of AssignBug and RemoveBug conversations. If a program-
mer is not able to remove a bug, the bug report is returned to the distributor
who has to propose another programmer to solve the bug.

Each human agent has access to a list of the active conversations he is in-
volved in. The list items are grouped by role and conversation specification and
also indicate the currently active dialog step of each conversation. A human
agent can switch freely between conversations and issue requests (as customer)
or create follow-up dialogs from a list of possible follow-up dialogs (as performer).

Similar to the system described in the previous section, this system has been
implemented based on a generic subsystem for conversation management and

reporter coordinator JL programmer
report bug ug received

bug accepted
bug fixed

bug fixed (bug not fixed

paniadas podal
paubisse bnq

distributor

Fig. 4. Agents and Conversation in the Bug Tracker

dialog visualization. Since the main objective of the bug tracking software is to
keep track of the state and of the history of problem-solving conversations in the
enterprise, only very little code had to be written to implement the performer
and customer rules of the coordinator.

Despite the fact that our process model described in Sect. 2.3 is based on
purely sequential conversations, the implementation of agents (more precisely the
implementation of the customer and performer rules) may introduce concurrency
by initiating multiple conversations.

reporter coordinator programmer

report bug ug received

bug accepted
bug fixed|

bug fixed bug not fixed

panigdal Lodal
paubisse bnq

distributor

Fig. 5. Petri Net for combined Conversations of Bug Tracker

Figure 4 and 5 illustrate how agents (as process-oriented software compo-
nents) can be composed systematically via conversation specifications using a
Petri-Net formalism:

— In a first step, one draws a state for each dialog in a conversation. The
states are drawn at the borderline between two grey boxes. Each grey box
corresponds to one of the participating agents. In Fig. 4 there are three
conversations with two resp. three dialogs.

— In a second step, one connects a state with its follow-up states via transitions
based on the conversation specification.

— In a third step, additional transitions and states (internal to an agent, but
possibly connecting multiple of its roles) are added to formally define the
desired interaction and synchronization between the agent’s conversations.
Since agents should be self-contained, autonomous software components, the
only way to establish connections between roles of different agents are states
corresponding to dialogs of conversations.

The resulting Petri-net (cf. Fig. 5) could be analyzed formally for deadlocks,
safety and liveness. Alternatively, simulations could be carried out to detect
mismatches between the design and the system requirements.

3.3 A Broker for Hotel Reservations

The last example in this section illustrates the use of process-oriented compo-
nent specifications in a distributed environment that also supports conversations
between mobile and persistent agents [7,9].

The work described here is the result of a cooperation project with SAP AG
which is interested in technologies and architectures suitable for the construction
of scalable cooperative software architectures [11].

Diagram (c) in Fig. 3 summarizes the agents and conversations in this par-
ticular scenario. The main agent developed in this project is a broker agent (e.g.,
Hotel A) implementing a virtual hotel front desk. This front desk is a performer
for a Room Reservation conversation that can be carried out via three different
communication media, namely a HTML front-end for customers, message pass-
ing for remote agents at travel agencies and message passing for mobile agents
that visit the front desk through the Internet. The front desk has to be able to
use a (legacy) system like SAP R/3 as a back-office system to do controlling,
material management etc. which is not an integral part of room reservations.

The mobile agents and the travel agency agent may in turn act as brokers
on behalf of customers contacting the agency via internet, e.g. to identify the
cheapest offer available.

The agent Hotel B in Fig. 3 (c) and 6 illustrates an important aspect of our
process model: There can be multiple, possibly different agent implementations
for the same conversation specification (RoomReservation in our case).

Each of these agents utilizes a common generic object-oriented class frame-
work which provides means of defining (abstract) conversation-specifications,
agents, roles, rules etc. [14]. This framework also supports conversations between
persistent and mobile agents and is implemented in the programming language
Tycoon, a persistent programming language developed by our group.

Moreover, we developed on top of this framework a so-called “generic cus-
tomer” application, which transparently and automatically visualizes conversa-
tions and dialogs (using HTTP) so that a human user can interact directly with
any agent in the distributed system.

generic
% www customer Hotel A back-office

Browser

http TBC R/3
erforme!
WWwW TBC
Browser i TBC k
i { ; generic j

ustomel TBC

http
agent

TBC mobile
TBC agent
TBC

erformet £ Hotel B

performer i
travel agency : dpplication

logic

customer|

Fig. 6. Scenario for a Hotel Reservation System

4 Building a Generic Conversation Management
Framework

In this section we briefly highlight the major steps necessary to build a generic
conversation management framework. Details can be found in [14, 8, 6].

The first step is to define (persistent and mobile) representations for con-
versation specifications that match the object model of Fig. 7. The recursive
definition of the class ContentSpec supports complex dialog contents based on
atomic types (bool, int, real, string, date, time, currency) and structured
types like records, variants, 1ists, and multiple-choices. All of these con-
structs may be combined orthogonally. Finally, specifications may appear as the
contents of conversations which is useful for “higher-level” (meta-)conversations.

In an object-oriented implementation language, this model maps directly
into a class hierarchy. Using the visitor pattern, the construction of generators
to dynamically instantiate conversations, dialogs and contents, to visualize con-
versations, dialogs and contents and to transmit these objects is straightforward.

The implementation of concurrent conversations and the synchronization be-
tween multiple concurrent conversations of a single agent is more intricate, in
particular, if agents have to be persistent (i.e. outlive individual operating sys-
tem processes) or if agents are allowed to migrate between address spaces while
they are participating in conversations.

A detail from the RoomReservation conversation specification of the hotel
reservation system is depicted as a state diagram in Fig. 8. The Search dialog
has two attributes denoting the date of arrival and the number of days the
customer wants to stay at the hotel. The content of the dialog ProductList is a
single-choice-list which contains the different products that match the customer’s

ConversationSpec

name

initial dialog l <%

DialogSpec

replies
»| name

RequestSpec ContentSpec
name name B
SpecContentspec AtomicContentSpec ChoiceContentSpec SequenceCSpec CompoundCSpec
DialogSpecCS ConvSpecCS ContentSpecCS SingleChoiceCS MultipleChoiceCS RecordCSpec VariantCSpec

Fig. 7. An Object-Oriented Model for Conversation Specifications

query. In the ProductList dialog, three requests can be issued by the customer:
Return to the Search dialog to refine the search, move to the ProductView
dialog to view details of a single product, or order the product selected from the
product list.

search details

Search ProductList ProductView

description :String
products :SingleChoice(String) salesPrice :Currency
picture :Image

dateOfArrival :Date
numOfStays :Int

refine search back

orden

Fig. 8. A Detail from the RoomReservation Conversation Specification

The actual definition of an agent implementing this conversation as a per-
former looks as follows:

(* create a hotel front-desk agent *)
let agent :Agent = Agent.new("Hotel Front Desk"),
(* use existing RoomReservation specification *)
let convSpec :ConversationSpec = CvSpecFactory.create("Reservation"),
(¥ create a performer role for this conversation specification *)
let perf :PerformerRole(PerformerContext) =
PerformerRole.new(agent, convSpec),
(* add rules to the performer for all 3 dialogs *)

perf.addRule("Search", "search", PerfRuleSearch.new),

perf.addRule("ProductList", "details", PerfRuleDetails.new),
perf.addRule("ProductList", "order", PerfRuleOrder.new),
perf.addRule ("ProductList", "refine", PerfRuleRefineSearch.new),

perf.addRule ("ProductView", "back", PerfRuleBack.new),

A performer rule is simply an object of a class with a method transition()
which creates the follow-up dialog and initializes the dialog content. All per-
former rules are subclasses of a common superclass PerformerRule which en-
capsulates rule management details.

As a concrete example, the class PerfRuleDetails contains the implemen-
tation of the performer rule for the dialog ProductList and for the request
details. Each transition method is executed in the context of an active conver-
sation by a separate thread and may access the (typed) contents of the current
dialog and the current request. The result is the follow-up dialog.

class PerfRuleDetails super PerformerRule(PerformerContext)
public transition(conv :Conversation(PerformerContext),
dialog :Dialog, request :Request) :Dialog {
(¥ create and tnitialize the follow-dialog *)
let next :Dialog = conv.newDialog("ProductView"),
(*¥ fetch current product key from current dialog "ProductList" *)
let product :Product =
lookupProd(dialog.content ["products"].singlechoice.current),
(* set attributes of next dialog "ProductView" *)

next.content["description"].str := product.name,

next.content["salesPrice"].currency := product.price *
conv.history[‘‘Search’’].content. [¢ ‘num0OfStays’’].int,

next.content["picture"].image := product.picture,

next (¥ return the next dialog *)

5 State-Enriched Type Checking

The rule implementation shown at the end of the previous section exhibits a
significant potential for improvements exploiting the static knowledge already
present in conversation specifications:

— Type-safe access to the contents of the current dialog should be supported.
Thereby, spelling errors and also errors caused by schema changes can be
detected at compile-time.

— The validity of the follow-dialog should be checked already at compile-time.

— Warnings should be issued if an implementor writes code to attach rules to
requests which are not valid in a given dialog.

— Type-safe access to the dialog contents of earlier steps of a conversation
should be supported. This requires a non-trivial control flow analysis of con-
versation specifications to detect which dialogs are guaranteed to, cannot or
may appear in the history. We have formalized this decision procedure using
temporal logic formulae [5].

We have implemented these improvements by means of a so-called state-
enriched type checker which is able to verify the consistency of rule implementa-
tions based on the additional knowledge of the dynamics of the system described
by an object of class conversation specification. The state-enriched type checker
makes use of a (typed) representation of the history and the current dialog.

As a consequence, the body of the rule described in the previous section can
be written in a more concise and type-safe way as follows:

nextDialog("ProductView"), (* create the next dialog *)
(* fetch current product from the current dialog "ProductList" *)
let product = lookupProd(dialog.products.current),

(* set attributes of next dialog "ProductView" *)
next.description = product.description,

next.salesPrice = product.price * history.numOfStays,
next.picture = product.picture,

The state-enriched type checker ensures that the dialog to be created in
the nextDialog statement is valid. Similar checks are performed on requests
generated in customer rules. The checker also ensures that variables referenced
by the identifiers dialog or next are declared in the corresponding dialogs. In
comparison to the former dynamically-typed code, no type information has to
be specified; the dialogs’ variables are completely statically typed.

One of the biggest advantages of state-enriched type checking becomes appar-
ent when changing conversation specifications, e.g. when extending or refining
an existing conversation specification by adding new paths, new dialogs or mov-
ing attributes from one dialog to another. Without typechecking, all rule code
implementing the specification would have to be verified to check the compliance
with the altered specification. In our example, the checker can verify that access
to the variable num0fStays which is set in a previous dialog, is correct.

6 Concluding Remarks

In this paper we described our business conversations model which is based on
a process-oriented perspective on software components. We illustrated the use
of this model using three practical examples and explained in quite some detail
how such software components can be implemented in different technologies
using generic conversation management frameworks.

The technology and formalization of state-enriched type checking may have
other interesting application areas (e.g., verifying the consistency of a set of
interacting Java Servlet implementations or generating strongly-typed access
code to CGl-arguments).

A necessary condition for process-oriented component specifications to be-
come practically relevant is the availability of a widely accepted syntax/language
to write down and to exchange such specifications in distributed heterogeneous
environments. One could either “abuse” CORBA IDL as a starting point for con-
versation specification or one could utilize SGML/XML documents that conform
to an agreed-upon ConversationSpecification DTD.

References

1.

2.

10.

11.

12.

13.

14.

15.

J. Austin. How to do things with words. Technical report, Oxford University Press,
Oxford, 1962.

Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John Mylopou-
los, Mike Papazoglou, Klaus Pohl, Joachim Schmidt, Carson Woo, and Eric Yu.
Cooperative information systems: A manifesto. In Mike P. Papazoglou and Gun-
ther Schlageter, editors, Cooperative Information System: Trends and Directions.
Academic Press, 1997.

Giorgio De Michelis, Eric Dubois, Matthias Jarke, Florian Matthes, John My-
lopoulos, Joachim W. Schmidt, Carson Woo, and Eric Yu. A three-faceted view of
information systems. Communications of the ACM, 41(12):64-70, December 1998.
F. Flores, M. Graves, B. Hartfield, and T. Winograd. Computer systems and
the design of organizational interaction. ACM Transactions on Office Information
Systems, 6(2):153-172, 1988.

Patrick Hupe. Ein Typsystem zur Analyse dialogorientierter Workflows in kooper-
ativen Informationssystemen. Studienarbeit, Fachbereich Informatik, Universitét
Hamburg, Germany, November 1998.

Nico Johannisson. Eine Umgebung fiir mobile Agenten: Agentenbasierte verteilte
Datenbanken am Beispiel der Kopplung autonomer ”Internet Web Site Profiler”.
Diplomarbeit, Fachbereich Informatik, Universitat Hamburg, Germany, April 1997.
B. Mathiske, F. Matthes, and J.W. Schmidt. On migrating threads. Journal of
Intelligent Information Systems, 8(2):167-191, 1997.

F. Matthes. Business conversations: A high-level system model for agent coordi-
nation. In Database Programming Languages: Proceeding of the 6th International
workshop; proceedings / DBPL-6, Estes Park, Colorado, USA, August 18 - 20,
1997. Springer-Verlag, 1998.

F. Matthes and J.W. Schmidt. Persistent threads. In Proceedings of the Twen-
tieth International Conference on Very Large Data Bases, VLDB, pages 403-414,
Santiago, Chile, September 1994. (An extended version of this text appeared as
[MaSc94b]).

Florian Matthes. Mobile processes in cooperative information systems. In Proceed-
ings STJA’97 (Smalltalk und Java in Industrie und Ausbildung), Erfurt, Germany,
September 1997. Springer-Verlag.

Volker Ripp. Verbesserung der Lokalitit und Wiederverwendbarkeit von
Geschiftsprozeflspezifikationen: Probleme und Lésungsansétze am Beispiel kunde-
norientierter Hotelgeschéftsprozesse. Diplomarbeit, Fachbereich Informatik, Uni-
versitdit Hamburg, Germany, March 1998.

J. Searle. Speech acts. Technical report, Cambridge University Press, Cambridge,
1969.

M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, and P. Bern-
stein. Third-generation data base system manifesto. ACM SIGMOD Record, 19,
September 1990.

Holm Wegner. Objektorientierter Entwurf und Realisierung eines Agentensystems
fiir kooperative Internet-Informationssysteme. Diplomarbeit, Fachbereich Infor-
matik, Universitdt Hamburg, Germany, May 1998.

T.A. Winograd. A language/action perspective on the design of cooperative work.
Technical Report No. STAN-CS-87-1158, Stanford University, May 1987.

