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Topic Modeling for Employee Objective
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Some common Topic Modeling approaches include LDA, LSA, PLSA
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Research Questions

RQ1: Could using embedding vectors lead to better results than Latent Dirichlet
Allocation model?

RQ2: If the word embedding models are able to provide better results, then which
type of embedding model is better suited?

RQ3: Could using a traditional algorithm such as LDA in tandem with the
Embedding models provide better results?
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System Architecture - Block Diagram
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System Architecture of the Topic Modeling Framework that shows the interaction between the front-end and
the back-end. 'Employee Analytic’ tab reads meta-data from back-end before displaying options. It also fetches
the requested results from back-end. 'Precompute Data’ tab reads a new data file and generates results for all
selected combination using the NLP engine and stores the result in back-end.
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Employee Objective Dataset

Column Name Column Value

User ID ****0000

Global Key HR

Functional Area Human Resources

Location Temecula

Objective Name Operational Excellence

Objective Description None

Objective Comment | appreciate that Kathy has been continuing to work * * * * * * * is a vital part of our support to our * * * * * ****

¥R R wxx supports * information which is very much appreciated. | also * * * * * * * *** '"TOA to Sick
Time and recently * * * * project among *. Thank You, Kathy! * * * * * November 2019.

Objective Metric Support * * * * * and other activities focused around * and * for *. Support the * * *, includes * *, * * and
other * along the way. Also expected is a regular * * * * * accurate * is recorded in **** * * * and is
reflected in * * or selected tool. * * * * * * initiatives * * * *. * and * * * * the * of key insights for a further
deep dive utilizing *. Continue to * * knowledge of * * * * * * cluster. * * * on a regular basis. Support
efforts * from the * * * * * * management and the * for * * Acknowledgement of same.

Form Template Name 2019 Performance Management

some information is redacted to anonymize the data for privacy reasons as this is a private dataset.



Employee Objective Dataset Analysis Summary

~33,000

Extract Remove Objectives Merge objectives
: . Truncate at :
relevant = redundant  |—| with english belonging to
.. length 219
columns objectives text same employee
4078 3281

511



Job Description Dataset

Column Name Column Value

Id 12612628

Title Engineering Systems Analyst

Full Description Engineering Systems Analyst Dorking Surrey Salary ****K Our client is located in

Dorking, Surrey and are looking for Engineering Systems Analyst our client
provides specialist software development Keywords Mathematical Modelling,
Risk Analysis, System Modelling, Optimisation, MISER, PIONEEER Engineering
Systems Analyst Dorking Surrey Salary ****K

Location Dorking

Contract Time permanent

Contract Type full_time

Company Gregory Martin International
Category Engineering Jobs

Salary 20000 - 30000/annum 20-30K



Job Description Dataset Analysis Summary
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columns descriptions text 9
>200,000 >200,000
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Topic Modeling
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Methodology - Block Diagram

Objectives

|

v . 2
Pre-processing
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¥ il; I ' , j@f —l i Frequency
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2
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A Block diagram of the methodology used in this study. An objective document is passed through a
Pre-processing step first, then one of five type of feature spaces is selected which is used of clustering. Next,

one of the three topic word retrieval technique is selected to get the top topic words. Last step is post
processing to remove redundant topics from clusters.
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Analytical Measures

1) Coherence Score: (> @ o)
e Measures the degree of similarity between topics in a cluster. LPRUSORR
e Outputs a value between 0 and 1. (e )

D(w;,w;) +1 IR NP
SCOr€yUMass (wz-,w‘]-) — lOg ( [l),(w])) Y ' ’ X "
(! |

2) Silhouette Score:

e Examines the compactness of the data point features within a cluster and how well the clusters
are separated from each other.

e Outputs a value between +1 and -1.

The visua!

ization of the clustered data. The visualization of the clustered data.
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Results

Experiments using Embedding Models on Job Description Dataset I

Embedding Model Coherence Scores Silhouette Score
Sentence BERT 0.5333 0.0638
BERT 0.5857 0.1321
XLNET 0.4938 0.1324
Sentence RoBERTa 0.5499 0.0427
ELECTRA 0.5743 0.1169
Sentence DistiBERT 0.6040 0.0435
XLM 0.6118 0.0744

Coherence scores and Silhouette Scores when using feature space from Embedding Models for
clustering before post-processing step with 10 clusters, frequency-based topic word retrieval
approach on Job Description dataset



Results

Experiments using all feature spaces on Job Description Dataset sebis

Feature Spaces Coherence Scores Silhouette Score
LDA model 0.4629 N/A
Embedding Model 0.5333 0.0638
Embedding Model + LDA 0.6001 0.0745
Embedding Model + Autoencoder 0.6280 0.1392
Embedding Model + LDA + Autoencoder 0.6083 0.2456

Coherence scores and Silhouette Scores when each feature space is used for clustering. Score are
captured before post-processing step with 10 clusters, frequency-based topic word retrieval
approach on Job Description dataset.



Results - Human Evaluation

System Effectiveness Layout Adequacy
Results Quality Explainability and Transparency
Effectiveness of Visualizations Use Intention
Privacy Concerns Effort to use the system

The questionnaire consists of 16 statements, divided into 8 evaluation aspects.




Results - Human Evaluation
Summary of Survey

The participant read the statement and expressed their agreement/dis-agreement with the statement
on a 1-5 scale: [Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree].
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Research Questions

RQ1: Could using embedding vectors lead to better results than Latent Dirichlet
Allocation model?

Yes, using a Word Embedding model for Topic Model can lead to better results.

RQ2: If the word embedding models are able to provide better results, then which
type of embedding model is better suited?

Sentence Transformers Models such as Sentence BERT, Sentence RoBERTa and
Sentence DistilIBERT provide the best results.

RQ3: Could using a traditional algorithm such as LDA in tandem with the
Embedding models provide better results?

No, using Word Embedding in tandem with an LDA model provide almost the
same result as using a Word Embedding model alone.
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Feature Space from LDA Model

k=10 on Job Description dataset
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Feature Spaces with Sentence BERT Embedding Model

K =10, Job Description Dataset
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Discussion - Conclusion

Sentence Transformers such as Sentence BERT and Sentence RoBERTa
provide an accurate feature space for clustering.

Clusters obtained using Embedding model is similar to the one obtained from
feature concatenation and Autoencoder.

Silhouette score and Coherence score is not a good measure of evaluation
for task such as Topic Modeling.

Quality dataset is essential for performing an unsupervised task such as
Topic Modeling.
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