Arbeitsbereich DBIS
Fachbereich Informatik
Universitat Hamburg TYCOOH
Vogt-Kolln Strafie 30
D-22527 Hamburg (FRG)

Title: P-Quest:
Installation and User Manual

Author: Florian Matthes

Identification: DBIS Tycoon Report 101-91

Status: Initial Version

Date: October 1991

Description: This document explains the installation and use of the P-Quest

system (version 14) on Sun-4 hardware platforms

Related Documents: Tycoon Library Manual (P-Quest Version) [?]
The P-Quest C-Call Facility [?]
The Quest Language and System (Tracking Draft) [?]

Contents

1

What is P-Quest?

P-Quest was developed at the University of Hamburg, Germany, and adds orthogonal
persistence to the programming language Quest developed by Luca Cardelli at DEC
SRC, Palo Alto, USA [?]. The implementation of P-Quest was carried out in the
ESPRIT-II basic research project FIDE and utilizes the Napier persistent object store
provided by the University of St. Andrews, Scotland [?].

P-Quest is an intermediate step in the Tycoon project, a long-term research pro-
gramme to develop an open database programming environment exploiting state-
of-the-art programming language technology for the construction of complete data-
intensive application systems. Specifically, the current P-Quest version is shipped
with an initial set of Tycoon libraries that provide uniform iteration abstractions
over a wide range of generic bulk data structures in addition to a standard library
supporting base types and (formatted) file input and output. These libraries and
a prototypical P-Quest Open-Look user interface library are described in a separate
document [?].

P-Quest is strongly and statically typed and has three levels of entities (i) values, (ii)
types and operators, (iii) kinds. Types classify values, and kinds classify types and
type operators. Kinds are needed because the type level of P-Quest is unusually rich.

Evaluation is deterministic, left-to-right and applicative-order (call by value). P-
Quest has a strong functional flair but it also incorporates imperative features (e.g.
assignments). It provides higher-order functions, loops, conditionals, exceptions and
a limited form of dynamic binding through modules.

The type level provides existential and universal type quantification, inductively de-
fined subtyping over all type constructors, user-defined type operators and recursive
types. Type annotations are only required in signatures since types and kinds within
bindings are automatically inferred by the compiler.

Kinds are used to control the instantiation of type variables. They are means to
denote sets of types, e.g., subtypes of a given type or sets of (higher-order) type
operators with the same signature.

The syntax of P-Quest makes heavy use of initial and final keywords (resembling
Modula-2 and Modula-3) but has virtually no commas and semicolons. New infix and
listfix operators can be declared freely, hovever, there is no overloading of identifiers
and all infix operators have the same precedence and are right-associative.

The P-Quest system runs on Sun-4 hardware platforms under SunOS 4.03 or higher.
P-Quest expressions and programs are statically parsed, scoped, type-checked and
compiled into portable byte-code. P-Quest programs can be either entered and eval-
uated interactively or stored in pre-compiled form as interfaces and modules that are
linked dynamically. The present release of the system is equipped with a C-call facility
to dynamically bind and call operating system or user-defined C library code [?].

The P-Quest compiler, linker, user data, compiled programs, compiled interfaces and
their associated type and dependency information are all kept in a uniform persistent
stable store. However, P-Quest source code is maintained outside the stable store
in operating system text files. In P-Quest there is no distinction between volatile
and persistent data. All entities (interfaces, modules, values, functions, types, kinds
...) that are reachable from named objects in the user environment outlive a single
program execution. Storage allocated for temporary objects or persistent objects that
are no longer reachable is automatically reclaimed by the system. There is no explicit
object deletion operation in P-Quest.

2 Installing P-Quest

Sofware Version: 14 (based on Quest version 12a of DEC SRC)
Required Hardware: Sun 4
Required OS Version: SunOS 4.03 or higher
Space Requirements: 7 MB in /usr/local/lib
8.2 MB for each stable store

To read the P-Quest tape, cd to a directory where P-Quest is to be installed. It should
be on a file system and in a directory that is accessible by all future users of P-Quest.
Then type:

tar xf /dev/rstl

This creates a directory quest.p-sparc in the current directory that contains all P-
Quest binaries and library files. To install P-Quest, first become super user

su

Then create a symbolic link from the directory /usr/local/lib to the newly created
directory:

In -s ‘pwd‘/quest.p-sparc /usr/local/lib
cd quest.p-sparc

Now you have to decide how to make the P-Quest binaries accessible to future P-Quest
users. On most systems, new binaries are installed in the directory /usr/local/bin.
In this case, use the command

Install.p-sparc /usr/local/bin

Alternatively, you can choose any other directory that is on the shell search path,
e.g.,
Install.p-sparc /usr/bin

The script Install.p-sparc just creates symbolic links and changes file access modes
and therefore requires virtually no extra disk space. The files of the distribution
directory are listed in Appendix ?7.

3 Formatting and Initializing a New Persistent Store

P-Quest programs run against a persistent store that contains the complete P-Quest
environment (programs and data). The first step to develop a P-Quest application
system is therefore usually to create a private persistent store (implemented as a file
in the Unix file system) and initialize it with the interactive compiler environment.

To create a persistent store in the current directory (called “.” according to the Unix
naming conventions), the following command has to be used:

PQFormat . 1200 300

The second parameter specifies the initial (and maximum) size of the persistent store
file measured in 8K pages, while the third parameters specifies the number of 8K
pages that are to be reserved as shadow storage to implement database recovery. In
the example above, a file stablestore of 9830400 bytes will be created in the current
directory. (1200-300) * 8192 bytes = 7.372800 bytes are available for user-data and
2457600 bytes will be used as shadow storage. Additionally, a file named lockfile
will be created in the current directory. It is used to enforce exclusive access to the
persistent store.

The next step is to initialize the the store with predefined P-Quest objects (built-in
exceptions etc.):

PQInit .

The following command loads the interactive P-Quest system (compiler, top level,
linker) into the persistent store:

PQuest . NewQuest.qm

This operation may take a while since the file NewQuest.gqm contains data in a
portable format that needs to be converted into the persistent store format. After
the compiler is successfully loaded into the persistent store, all modules and interfaces
listed in the file Library.qst are automatically imported.

Finally, the P-Quest prompt (“=”) appears. Enter the following P-Quest commands
to preserve the current status of the store:

import store :Store;
store.stabilise();

To leave the P-Quest system, type CTRL-D (“~D”).

The steps described in this section have to be executed only once for each persistent
store.

4 Interactive Commands

Once the persistent store is initialized, it suffices to issue the command
PQuest

to restart the compiler environment. All modules and interfaces listed in the file
Library.qst which are not already cached in the persistent store are imported.

When the P-Quest prompt (“~”) appears, you can evaluate expressions that have to
be terminated by a semicolon,

3+ 4
bind values, types and kinds to names,

let x = 3;
Let T = Int;
DEF SUBT = POWER(Int);

import compiled interfaces and modules,
import print :Print;

call routines from imported modules,
print.string(” Hello World\n”);

read P-Quest source programs from files,
load” Library.qst”;

compile P-Quest interfaces,

interface A
export
x :Int

end;

compile P-Quest modules,

module a :A
export
let x = 3;

end;

and import (link) new modules:

import a:A;
a.x;
import a:A;
a.x;

Note that the module body is evaluated only once.

5 Stability and Recovery

To preserve the top-level value, type, kind, module and interface declarations as well
as the values of all transitively reachable objects including mutable values, the store
has to be “stabilised”. This is achieved by calling a routine from the standard module
store.

import store :Store;
store.stabilise();

This operation can be embedded also into application program to checkpoint the
store (including active stack frames) at arbitrary points in time. However, it should
be noted that the stabilise operation does not preserve the state of external files or of
the screen.

The operation
store.halt();
stabilises the store and immediately terminates program execution.

If you leave the interactive loop of the P-Quest system with CTRL-D (“"D”), or if
the system crashes, all changes to the persistent store since the last checkpoint will
be undone.

By invoking the P-Quest system with the Unix command
PQuestRecover

execution resumes with the next statement after the last store.stabilise() resp. store.halt()
statement.

The following program fragment makes use of this suspension mechanism:

let rec stopAfter(depth :Int) :Ok =
if depth is 0 then
store.halt()
else
print.string(” Entering, depth = ” <> fmt.int(depth) <> "\n”)
stopAfter(depth-1)
print.string(” Leaving, depth = 7 <> fmt.int(depth) <> "\n”)

end;

stopAfter(5);
..let stopAfter : All(depth:Int) Ok = <fun stopAfter()>

Entering, depth
Entering, depth
Entering, depth
Entering, depth
Entering, depth
Exception:

florian@dbisi1> PQuestRecover

1]
= N W e o;

Hamburg University
Tycoon Language Environment Release 1.1

Restart from last checkpoint ...

Leaving, depth
Leaving, depth
Leaving, depth
Leaving, depth
Leaving, depth

1]
o W N =

6 Garbage Collection

The persistence model of P-Quest is based on transitive reachability from the “main
program”. Typically, this main program is the interactive compiler environment (see
Sec ??7 how to load a new main program into a persistent store). By introducing
bindings at the top-level, new, user-defined data structures can be made reachable.
There is no (unsafe) explicit object deletion mechanism. Garbage collection is either
invoked explicitly

store.garbageCollect();

or implicitly, as soon as the system runs out of (persistent) memory. For example,
the following program fragment triggers a garbage collection:

let createGarbage(count :Int) :Ok =
(* create count arrays with 10000 integer elements *)
for i= 1 upto count do
let dummy = arrayOp.new(10000 0)
end;

createGarbage(100); (* allocate 4.000.000 bytes *)
createGarbage(100); (* allocate 4.000.000 bytes *)
There is also a possibility to garbage collect a P-Quest store with a Unix command:

PQCollect .

This command performs a full garbage collection on the persistent store in the current
directory.

7 Exchanging Data and Defining Search Paths

As you may have noticed by now, compiled interfaces and modules are created as
separate Unix files with the extension “.x”. Only when a module or interface is
imported, this file is linked into the persistent store. This makes it possible to share
libraries between separate persistent stores.

The search path for “.x” files and files loaded with the load command is initialized
to

.:/:/usr/local/lib/quest.p-sparc

Therefore, P-Quest first scans the current directory, then the root directory and finally
the P-Quest installation directory. The inclusion of the root directory allows the
specification of files by their absolute path names, e.g.,

load ” /users/dbisl/Test.qst”;
The search path can be changed at the P-Quest top level as follows:
command ”SetPath .:./graphicenv”;

Using the generic import and export mechanisms of P-Quest, it is also possible to
write arbitrary complex data structures (including functions) onto a file and to re-
load them into another persistent store, preserving circularities and sharing within
the data structure.

let w = writer.file(”data.x”);

let a = 3;

dynamic.extern(w dynamic.new(a) dynamic.portable);
writer.close(w);

The file data.x contains a single integer (a). It can be re-imported as follows:

let r = reader.file(”data.x”);

let a = dynamic.be(:Int dynamic.intern(r dynamic.portable));
reader.close(r);

a

7

8 Linking Stand-Alone Applictions

For some applications it is desirable to have a persistent store that only contains the
application program and not the full P-Quest compilation environment.

The following P-Quest declaration defines a main program function prog that is stat-
ically linked to the standard modules (e.g. print, store) it transitively imports. It is
important that the main program function does not return but terminates by raising
an exception:

let prog() :Ok =
begin
print(”Hello World\n”)
store.stabilise()
print(”Hello World 2\n”)
raise exception exit:Ok end end

end;

To generate a stand-alone P-Quest boot file in portable format, the generic export
mechanism is used:

let w = writer.file(” Prog.qm”);
dynamic.extern(w dynamic.new(prog) dynamic.portable);
writer.close(w);

The program Prog.qm is then executed in the persistent store found in the current
directory:

PQuest . prog.qm

Subsequent PQuestRecover and PQuest commands will execute Prog.qm. To re-load
the compiler environment into the store, use the command:

PQuest . NewQuest.qm

9 Compatibility Issues

Since P-Quest uses the same portable data format like Quest Version 12, it is possible
to exchange binary data freely between both systems. To “intern” the data file data.x
and the program Prog.qm into the non-persistent Quest environment, simply write:

let r = reader.file(”data.x”);

let a = dynamic.be(:Int dynamic.internPortable(r));
reader.close(r);

a;
let r = reader.file(” Prog.qm”);

let f = dynamic.be(:All()Ok dynamic.internPortable(r));

reader.close(r);

f);

The “intern” of binary data “externed” by Quest into a P-Quest object store works
analogously.

Restrictions: P-Quest and Quest Programs that make use of the store module as
well as P-Quest programs that utilize the module ccall cannot be exchanged (they
will fail at run time).

A Files Included in the Distribution Tape

File Name: Short Description

*.spec Source code for Tycoon library modules

*.spec.x Compiled interface descriptions

*impl.x Compiled Tycoon library modules

*.info.x Debugger information for Tycoon library modules (unused)
Install.p-sparc | Installation script (csh)

Library.qst P-Quest statements executed whenever the interactive

environment is entered (imports standard Tycoon modules)
NewQuest.qm | Byte code for the bootstrapped P-Quest system

PQCollect Stand-alone garbage collection program
PQFormat Program to create a new persistent store
PQInit Program to initialize an existing persistent store
PQM Interpreter for P-Quest byte code

PQStatistics Stand-alone program to generate store statistics

References

[BR91] A.L. Brown and J. Rosenberg. Persistent Object Stores: An Implementation
Technique. In Proceedings of the Fourth International Workshop on Persis-

[Car89]

[Car90]

[Mat91]

[MM91]

tent Object Systems, Martha’s Vineyard, Massachusetts. Morgan Kaufmann
Publishers, January 1991.

L. Cardelli. Typeful Programming. Digital Systems Research Center Re-
ports 45, DEC SRC Palo Alto, May 1989.

L. Cardelli. The Quest Language and System (Tracking Draft). Digital
systems research center, DEC SRC Palo Alto, 1990. (shipped as part of the
Quest V.12 system distribution).

F. Matthes. Tycoon Library Manual (P-Quest Version). DBIS Tycoon Re-
port 102-91, Fachbereich Informatik, Universitat Hamburg, West Germany,
October 1991.

B. Mathiske and F. Matthes. The P-Quest C-Call Facility. DBIS Tycoon Re-
port 103-91, Fachbereich Informatik, Universitat Hamburg, West Germany,
October 1991.

