Bericht Nr. 160

Definition of the Tycoon Language T1I
A Preliminary Report

Florian Matthes Joachim W. Schmidt

FBI-HH-B-160/92

Dezember 1992 (revidiert August 1995)

Fachbereich Informatik
Universitdit Hamburg
Vogt-Kolln-Str. 30
D-W-200 Hamburg 54
Federal Republic of Germany

Abstract

This document defines the language TL that is used as the application and system pro-
gramming language in the Tycoon database environment. The Tycoon project follows
an add-on approach to generic database programming that emphasizes type-safe system
scalability and extensibility.

TL is a polymorphic second-order functional language with imperative features and in-
ductively defined subtyping rules over types and type operator, extended by language
constructs motivated by the needs of database programming.

Zusammenfassung

Dieses Dokument definiert die Sprache TL, die sowohl als Anwendungs- als auch System-
programmiersprache in der Tycoon Datenbankumgebung verwendet wird. Das Tycoon
Projekt folgt dem add-on-Ansatz zur generischen Datenbankprogrammierung, der beson-
ders die typsichere Systemskalierbarkeit und -erweiterbarkeit unterstutzt.

TL ist eine polymorphe funktionale Programmiersprache zweiter Ordnung mit impera-
tiven Eigenschaften und induktiv definierten Subtypisierungsregeln uber Typen und Ty-
poperatoren, erweitert um Sprachkonstrukte, die durch die Anforderungen der Daten-
bankprogrammierung begrundet sind.

Contents

1 The Rationale behind Tl 1
2 Tl: A Language Overview 3
3 The Tl Grammar 9
3.1 Symbolso 9
3.2 Reserved Keywords 10
3.3 Compilation Units e 11
3.4 Bindings 11
3.0 Values . . . oL 12
3.6 Signatures 13
3.7 Types . o o e e e 13
3.8 Identifier L 14
4 The Tl Abstract Syntax 15
4.1 Syntactic Objects of TL o 15
4.2 Normalization of Tt Programs 15
4.3 Signatures, Bindings and Types oL oL 18
4.4 Values e 18
5 The Static Semantics of Tl 21
5.1 Overview over the Type Notations 21
5.2 Substitutionso 22
5.3 Qualified Type Variables Lo 22
5.4 Contractive Types o o o e 23
5.5 Well-formed Signatures 23
5.6 Well-formed Types 0 o e 24
5.7 Signatures of Types and Values 25
5.8 Subsignatures 25
5.9 Subtypes 25
5.10 Signatures of Bindings Lo 27
511 Types of Values o 28
5.12 Restrictions e e 29

1 The Rationale behind Tl

The functionality of data-intensive applications is provided by a heterogeneous mix of tools
and servers that have been developed independently and that typically communicate only
via narrow, ad-hoc interfaces. Examples of commercially available generic servers are rela-
tional database systems, object stores, transaction monitors, deduction engines, graphical
user interface generators or communication subsystems.

The Tycoon' project aims at a substantially improved server exploitation and database
programmer productivity by providing an integrated linguistic and architectural framework
for the flezible integration of generic services into an open database programming environ-
ment. The Tycoon project activities towards this goal include [Matthes 1992]

> the development and formal definition of a highly generic language kernel supporting
naming, binding and typing of objects and services required for data-intensive applica-
tions in a way that is not biased towards a specific data model.

> the extension of this language kernel to a fully-fledged strongly-typed polymorphic pro-
gramming language (T'L, Tycoon Language) that also includes specific language concepts
for integrating, extending, tailoring and using the generic database servers mentioned
above;

> the definition of the data and program representation as well as the evaluation seman-
tics of an untyped intermediate language (TMmL, Tycoon Machine Language) that not
only supports an eflicient host-specific target code generation but also portability, in-
teroperability in heterogeneous environments and dynamic optimizations analogous to
query optimization in database systems;

> the definition of a data-model-independent object store protocol (Tsp, Tycoon Store
Protocol) that decouples TML evaluators from object stores and their components for
access optimization, storage reclamation, persistence, concurrency, recovery or distribu-
tion.

The overall Tycoon system architecture is sketched in Fig. 1 on page 2. This report presents
the design of TL, an integrated application and system programming language that

> provides uniform and expressive naming, binding and scoping rules for all language
entities (values, functions, types, type operators),

> is not restricted to a particular modeling or programming style (e.g. purely functional,
relational or strictly object-oriented),

> minimizes built-in language functionality in favor of flexible system add-ons [Matthes
and Schmidt 1991a),

> is equipped with powerful type abstraction mechanisms like (bounded) type parameter-
ization, (parital) type hiding and run-time type discrimination [Matthes and Schmidt

1991b],

!'Tycoon: Typed COmmunicating Objects in Open eNvironmens

2 1 THE RATIONALE BEHIND TL

Tycoon Applications

Tycoon Libraries StdLib SQLLib
- Internal Implementation BulkLib ~ NeWSLib
- External Implementation 10Lib

TL second-order lambda calculus,
subtyping, imperative constructs
Compiler
Front-End System Browser
Compiler Symbolic
Back-End Debugger
\
untyped lambda calculus,
TML store semantics,
portable program format
Generated External
Interpreter C-Code Libraries
TSP abstract store protocol

portable data format

Object Store
(Persistence, Concurrency Control, Recovery)

Figure 1: Layers and interfaces of the Tycoon system

> supports the operational requirements of todays data-intensive environments (longevity,

evolution, distribution, merging of independently developed system components) [Schmidt
and Matthes 1991].

A first prototypical set of the TL language processors (scanner, parser, unparser, type
checker, variable allocator, TL to TML translator , T™ML to C translator, TML interpreter,
dynamic object code linker) is currently being implemented at Hamburg University using
the P-Quest system, a persistent version of the Quest language developed by Luca Cardelli
[Cardelli 1989; Cardelli 1990] on top of the Napier Persistent Object Store develped at the
University of St. Andrews [Brown and Rosenberg 1991]. Much emphasis is put on the ex-
changability and reusability of the individual compiler components by using (wherever possi-
ble) compiler generator technology [Schréder and Matthes 1992].

2 TI1: A Language Overview

The type-theoretic core of TL is F<, a second-order lambda calculus with subtyping [Cardelli
et al. 1991]. This core is extended by a rather small set of standard programming concepts
(base types, tuples, arrays, control structures and exceptions) as found in other functional
or imperative programming languages. Some of the characteristic features of TL are sketched
below.

Syntax The regular LL(1) grammar for the concrete syntax of TL is heavily influenced by
languages like Modula-2 , Modula-3 and Quest that all give preference to notations that
are easy to read and understand over concise or cryptic notations that are easy to write
. TL provides adequate notations for the non-trivial bindings and signatures that occur
in highly polymorphic library code. It emphasizes the symmetry between constructs at
the value and type level and supports the easy discrimination between value and type
expressions to simplify type inference in bindings.

Base Types TL carefully avoids any non-standard treatment (like static binding, pervasive
scoping, non-standard associativity, precedence or overloading) of the usually built-
in functions on base types (integers, reals, strings, etc.). In order to achieve maximum
system flexibility, these functions are provided by modules in the standard programming
environment. The module implementations are written in C (resp. Modula-2) and are
dynamically or statically linked to the generated TML or C code. Standard optimization
techniques in the C backend (i.e. inlining) eliminate most of the possible overhead
implied by this approach. Flexible handling of the base types is also supported by the
treatment of integer, real, character and string literals within the relevant TL language
processor components (scanner, type checker, code generator).

Mutability Value variables in a TL binding or signature can be marked with a var keyword.
The phrase let var i = 1) introduces a mutable binding between the variable i and the
value 1. The variable i can be re-bound using a polymorphic assignment function in the
Tycoon programming environment. This function has the signature :=(A <:0k var Ilhs
:A rhs :A) and can redeclared locally (e.g. to attach recovery code to the destructive
assignment). Mutable bindings cover the the concepts of local and global imperative
variables, mutable components in aggregate values and also variable parameters as found
in imperative programming languages. Variable parameters introduce /-value bindings
(aliasing). Modifiability in TL is therefore not captured by first-class type and value
constructors (like ref in ML) but is a property of bindings and signatures. Imperative
and functional realms of TL cannot be strictly separated since it is possible to view a
mutable binding through a signature that defines the binding as immutable. The latter
language design decision is motivated by the desire to provide both, flexible subtyping
and assignment in a statically typed programming language (for an in-depth discussion
of alternative approaches see [Connor et al. 1991]).

Bindings and Signatures TL recognizes the importance of naming, scoping and binding
concepts in large-scale programming. Therefore, the main semantic building blocks of
TL are not values and types in isolation but bindings (ordered associations of types
to type variables and of values to value variables) and signatures (ordered associations
of types to type bounds and values to types) (see also [Burstall and Lampson 1984;
Cardelli 1989]).

4 2 TL: A LANGUAGE OVERVIEW

The scoping rules for type and variable names, the matching rules between bindings
and their signatures and the refinement relation on signatures can all be specified with-
out reference to the paticular context in which bindings or signatures occur. Possible
contexts for signatures include formal function parameters, module interfaces as well
as function types, tuple, record and exception types. Possible contexts for bindings in-
clude actual function parameters, module implementations, tuple, record and exception
values and top level phrases entered interactively.

TL allows to Repeat another named signature in the definition of a new signature and
to open (a projection of) existing bindings for the definition of new bindings. These
language mechanisms can substantially improve the understandability and consistency
of large-scale systems by factoring-out common subsignatures and subbindings. In the
context of tuples and records they also cover aspects of inheritance as found in object-
oriented languages.

Higher-Order Subtyping Type judgements in TTL are understood as partial specifications.
For example, the signature x :A asserts that a value bound to the variable x satisfies at
least the specification given by the type expression A. An actual value binding let x = a
may satisfly a more precise specification x :B. The idea that a value satisfying a stronger
specification B also satisfies a weaker specification A is captured by an inductively
defined subtyping relationship on types (TL notation: B <: A).

For aggregate values, this view coincides with the notion of subtyping based on infor-
mation content [Qhori et al. 1989]. For example, the type Let A = Tuple name :String
end provides less information than the type Let B = Tuple name :String age :Int end.
The view of types as partial specifications generalizes to first-class function values and
leads to the well-known contravariance rule for the function type constructor.

TL provides two type constants to denote the trivial specification (Ok, top type) and
the unsatisfiable specification (Nok, bottom type). The latter appears naturally in the
typing rules for exceptions and empty arrays (see §5.11).

In TL it is necessary to specify a bound for a type variable that appears in a signature
(e.g., X <:A). Again, this bound is to be understood as a partial specification of the
actual type that appears in the matching binding Let X = B and may involve the
constants Ok and Nok.

Finally, TL extends the subtyping relation to type operators, i.e. parameterized speci-
fications (see §5.9)

[Subtype Oper]
SES" < 8 §5,58FA<:B
S F Oper(5')A <: Oper(5”)B

For example, given

Let F' = Oper(X <:Tuple name :String end) Tuple x :X y :X end
Let G = Oper(X <:Tuple name :String age :Int end) Tuple x :X end

F <:G is derivable, since any specification F(X) obtained by instantiating F' with an
actual type parameter X that is admissable for G yields a specification that is at least
as strong as G(X).

The introduction of a top type Ok and the generalization of the subtyping relation to
type operators also covers the notion of kinds (types of types), as introduced in [Cardelli
1989]. For example, all unbounded unary type operators (e.g. List, Array) are subtypes
of Oper(X <:0k) Ok.

Abstract Types TL follows the tradition of modular languages like Modula-2, Modula-3,
Oberon and Quest and uses the dot notation to denote the witness type in an abstract
data type, for example:

Let Nat = Tuple T<:0k zero :T succ(:T) :T eq(:T :T) :T end
let natl = Tuple Let T = Int ... end

let nat2 = Tuple Let T = String ... end

let null(x :natl.T') = natl.eq(x natl.zero)

let nuli2(rep :Nat x :rep.T) = rep.eq(x rep.zero)

Bound specifications in the signature of an abstract data type allow to reveal partial
type information about the witness type T (e.g. compatibility with other witness types).
Special (path name equivalence) rules are introduced for a flexible handling of ADT
values in complex data structures.

Recursive Type Operators The subtyping rules for recursive types and type operators in
TL violate the concept of purely structural subtyping. For example, given

Let Rec List(A <: Ok) = Tuple hd :A tI :List(A) end
Let Rec List2(A <: Ok) = Tuple hd :A
tl :Tuple hd :A tl :List(A) end

end
none of the following subtype relationships is derivable:

List(Ok) <:List2(Ok)
List2(Ok) <:List(Ok)
List <:List2
List2<:List

On the other hand, a single step “unfolding” of List(A) in the definition of List yields
a type operator that is structurally equivalent to List2:

Since the equality between two recursive types in TL is therefore not based on the equal-
ity of their infinite expansions (two regular tree) but on a more restrictive compatibility
notion (see also [Cardelli 1992b]), the problem of checking the equivalence between
parameterized recursive type expressions becomes decidable (compare [Solomon 1978])
and a class of subtype relationships that play an important role in object-oriented pro-
gramming can be handled within TL. For example, given

Let Rec List(E <:0k) = Tuple
cons(:E) :List(E)
hd() :E

6 2 TL: A LANGUAGE OVERVIEW

tl() :List(E)

map(E2 <:Ok {{(:E) :E2) :List(E2)
end
Let Rec List2(E <:0k) = Tuple

cons(:E) :List2(E)

hd() :E

tl() :List2(E)

map(E2 <:Ok {{(:E) :E2) :List2(E2)

powerset(p(:E) :Bool) :List2(List(E))
end

List2(Int) <:List(Int) and List2 <:List are derivable type judgements in TL.

Tuples and Variants The concepts of labeled cartesian product types and discriminated
union types are captured by tuples and variants in TLthat exhibit an interesting subtype
relationship. A pure discriminated union type is represented by a variant type with
variants that do not share common fields while a pure cartesian product type can be
viewed a variant type with a single variant and an anonymous variant label. A prime
motivation behind this view is to simplify the handling of discriminated unions that
share common attributes between their variants.

Another motivation is to provide a type-safe solution to a common problem in persistent
systems, namely the need for unforeseen extensions and variations of data structures
without invalidating existing persistent bindings (in databases, files or possibly compiled
programs). For example, an early system version may introduce the following binding

Let Address = Tuple city :String zip :Int end
let a :Address = tuple let city = "Hamburg” let zip = 2000 end

that is still usable in an extended system version with the following type and function
definitions:

Let NewAddress = Variant city :String

case national with zip :Int

case international with country :String zip :String
end

let print(adr :NewAddress) :Ok = . ..
print(a)

Extensible Records As argued in [Atkinson and Morrison 1988; Morrison et al. 1987;
Schmidt and Matthes 1991], long-lived data-intensive applications require naming schemes
that are capable of handling dynamic collections of bindings as they are found, for ex-
ample, in directory structures of operating systems or in data dictionaries of databases.
Extensible records address this need and provide a particular combination of static type
safety and dynamicity that blends well with the subtyping rules of TL. Record exten-
sion operations are also useful for modelling object-oriented programming concepts like
objects with an immutable identity or method dictionaries.

In contrast with other bindings and signatures in TL, record bindings are unordered.
Neither duplicate nor anonymous variable names are permitted in record bindings and
record signatures.

let db = record let parts = ... let suppliers = ... end

The selection of a field in a record value db.parts is checked statically against the
signature of the record type and never fails at run-time. The extension of a record value
with additional bindings let newDB = extend db with let assembly = ...end yields
a record value with the same identity as db and additional static type information.
However, the extension operation may fail at run-time by raising an exception due to
name clashes (e.g. in cases where db is already extended by a field assembly). In contrast
to Napier88 [Dearle et al. 1989], there is no mechanism to remove an existing binding
from a record.

There are several proposals to also check the record extension operation statically, es-
sentially by encoding negative information in record type expressions (e.g. values of
record type X are defined not have an assembly field) [Cardelli 1992a; Wand 1987;
Stansifer 1988; Cardelli and Mitchell 1989; Rémy 1991]. The usefulness of the these
type rules in type system that make heavy use of the subsumption rule is not yet
clear. Therefore, the design of TLgives up some static type safety in favor of language
simplicity.

Since record types are subject to more flexible type rule than plain tuple types, they are
also of interest even if the dynamicity provided by the extend operator is not required:
The record type Record S end is a subtype of Record S’ end if the signatures S
can be obtained by dropping subsignatures at arbitrary positions from S’ (see [Subsig
Red] in §5.8). The subtype graph for record types can therefore form a DAG (multiple
inheritance) and not just a tree (single inheritance) like for tuple types.

Modules and Libraries The modularization facilities in TL are interface, module and
library. An interface is a named tuple type. A module is a named parameterless func-
tion. The evaluation of that function during module linkage returns a tuple value of its
interface type. There may be more than one module implementing the same interface.
The scope for interface and module names is defined by a library. The scope for interface,
module and library names is flat. A library may contain other libraries as its compo-
nent. All components of a nested library except those explicitly listed in a hide phrase
are visible in the surrounding library. A library, an interface and a module may refer to
other libraries, interfaces or evaluated modules only through import statements. Cyclic
import dependencies are not allowed. If a module m1 is imported into a module m2,
the evaluation of m1 precedes the evaluation of m2.

The modularization facilities in TL do not introduce new naming, typing and bind-
ing concepts into the language, they simply resirict the orthogonality of the existing
concepts (functions, tuple types, nesting of scopes, sequential evaluation). These re-
strictions are designed to simplify the tool-supported maintenance of large (possibly
persistent and partially bound) software systems (component replacement, incremental
interface extension, type specialization).

8 2 TL: A LANGUAGE OVERVIEW

Dynamic Types In analogy to the mutability attribute for value variables, a dynamic
(Dyn) attribute can be assigned to type variables in bindings and signatures. The only
difference between dynamic and non-dynamic type variables is the possibility to inspect
the type associated with a type variable at run-time. Compared with other proposals
[Abadi et al. 1989; Abadi et al. 1992] this approach to dynamic types does not require to
explicitly inject and project individual values into infinite union types and blends well
with automatic inference mechanisms for type components in bindings. Furthermore, it
allows to perform reflective type analysis even in cases where no value of the dynamic
type is available.

With respect to decidability, TL is in the same position as FS[Pierce 1992]. Decidability
problems arise through the subtyping rule [Subtype Fun] in combiation with the subsignature
rule [Subsig Ide]. More precisely, there exist syntactically well-formed, but ill-typed TL pro-
grams for which the TL type checker does not terminate. By disallowing the specialization
of bound types assigned to type variables in polymorphic procedures (rule [Subsig Ide]) in the
context of rule [Subtype Fun], termination of the subtype algorithm can be guaranteed [Pierce
1992].

3 The T1 Grammar

The following notation is used for the definition of syntactical and lexical elements. Id denotes
a non-terminal symbol (a meta variable) and A and B denote syntactic expressions.

Idy, ..., Id,::== A; the non-terminal symbols Id; are defined as A (n > 1)

Id a non-terminal symbol

if a terminal symbol

nx" the character x ("" is the empty string """ is a double quote)
(A) means A

AB means A followed by B (binds strongest)

A|B means A or B

[A] means ("" | A)

{A} means (""" |A{A})

3.1 Symbols

The source text of a TL program consists of a sequence of characters that is converted into a
sequence of symbols of the categories int, real, longreal, char, string, identifier, infix, colonInfix
and delimiter.

The set of formatting characters is an implementation-dependent subset of the non-
printable characters and includes at least the characters space, tab, carriage return, line
feed and vertical tab.

Comments are sequences of arbitrary printable or formatting characters that are enclosed
by (* *). Comments can be nested.

To read a symbol, all formatting characters are skipped and then the longest sequence of
characters that forms a symbol is read. Therefore, a space in the source text is only required
between two identifiers or two (colon-) infix symbols that appear in direct succession.

int::=

["~"] digit { digit }
real::=

int " digit { digit } |

int [.7 digit { digit }] "E" int
longreal::=

int [.7 digit { digit }] "D" int
char::=

" (digit | alpha | special | escape | delimiter | reserved) "
string::=

nin £ digit | alpha | special | escape | delimiter | reserved } """
infix::=

special { special }

10 3 THETL GRAMMAR

colonlnfix::=

n: { special }
identifier::=

alpha { digit | alpha }
delimiter::=

H(H'| H)H | H{H | H}H| H[H | H']H | " 1r| non | .o
. ;)

’
digit::=
HOH| ”1”| I'2H| 113n| H4H| n5n| 116n| H7H| I'8H| 11911
h
alpha::=
HAH | HBH | | HZHl rran| an | | "yt
h
reserved::=
n~n | "non
h
special::=
H@H I H#H l H$H I H%H I H&-H l Hoye i l "non I g l H=1 l i I
HIH I H\H I men I H..H I et I Hyn l H/H I [1Rk]] I H?H l H!H
h
escape;l=

H\H (HnH | ngn | npn | rrfn | H\H | Hon | oo | d]g]t d]glt d]glt)
5

Escape characters in character and string literals are interpreted as follows:

\n new line
\t tab
\r carriage return
\f form feed
\ H]
\II n
\\ \
\nnn A single character with the code nnn
(three decimal digits that denote an integer in the interval [0,255]
\f...f\ | The sequence of formatting characters {is ignored

The last rule enables the definition of string literals that exceed the length of a single
source line.

The above definitions allow a scanner implementation that requires just a single character
lookahead.

3.2 Reserved Keywords

The following identifiers and (colon-) infix symbols are reserved keywords and cannot be used
as user-defined identifiers in TL programs.

3.3 Compilation Units 11

3.3

and andif as begin case do downto dynamic_new dynamic_be else elsif
end exception exit export extend fun hide infix if import in interface
let library loop module of ok open orif raise reraise rec then try

tuple typeRep_new upto var variant when while with

Dyn Exception Fun Let Nok Ok Oper Rec Repeat Tuple Variant
=<::71

Compilation Units

Based on the symbols and keywords defined in the previous sections, the grammar of TL is
described by the following productions that define a non-ambiguous LL(1) grammar. Unit is
the root production for the language.

3.4

Unit::=
(Library | Interface | Module | Import | Bindings) ";"

’
Library::=
library identifier Import with { ComponentSignatures }
[hide { identifier } | end
’
ComponentSignatures::=
library { identifier } |
interface { identifier } |
module { identifier ":" identifier }
h
Interface::=
interface identifier Import export Signatures end

Module::=

module identifier Import export Bindings end
Import::=

[import { [":"] identifier }]

Bindings

Bindings::=
{ TypeBindings | ValueBindings | open Valuelde [as Type |
" [Dyn | Type | [var | Value }

TypeBindings::=
{ Let [Rec | TypeBinding { and TypeBinding } }

TypeBinding::=
[Dyn | Typelde Parameters ["<:" Type | "=" Type

12 3 THETL GRAMMAR

ValueBindings::=
{ let [rec | ValueBinding { and ValueBinding } }

ValueBinding::=
[var | Valuelde Parameters [":" Type | "=" Value

3.5 Values

Value::=
fun "(" Signatures ")" [":" Type | Value |
assert Value |

Value,

Value, ::=
Value, { (orif| andif | colonlnfix) Value, }
Value,::=
Values { infix Values }
Values::=
Value, { "(" Bindings ")" | "7" Caselde | "!" Caselde |
"' Fieldlde | "[" Value "]" |
of Bindings end }
Valuey::=
"{" Value "}" |
Valuelde |
ok |
int | char | string | real | longreal |
tuple Bindings end |
variant Caselde of Type [with Bindings | end
record Bindings end |
extend Value [with Bindings | end |
array Bindings end |
exception Value [with Signatures | end |
begin Bindings end |
if Value then Bindings { elsif Value then Bindings }
[else Bindings | end |
case [of | Value { when CaseldeList [with Valuelde | then Bindings }
[else Bindings | end |
loop Bindings end |

exit |
while Value do Bindings end |
for Valuelde "=" Value (upto | downto) Value do Bindings end |

try Bindings { when Value | with Valuelde | then Bindings }

3.6 Signatures

[else Bindings | end |
raise Value | with Bindings | end |
reraise |
typeRep_new "(" ":" Type ")" |
dynamic_new "(" Value ")" |
dynamic_be "(" Value ":" Type ")"

3.6 Signatures

Signatures::=
{ TypeSignatures | ValueSignatures | TypeBindings | Repeat Type }

TypeSignatures::=

[Dyn | [TypeldeList Parameters | "<:" Type
ValueSignatures::=

[var | [ValueldeList Parameters| ":" Type
Parameters::=

{ "(" Signatures ")" }

3.7 Types
Type::=
Oper "(" Signatures ")" ["<:" Type | Type |
Fun "(" Signatures ")" ":" Type |
Type,
Type,::=

Type, { colonlnfix Type, }

Typey::=
Types { infix Type; }

Types::=
Typ€4 { H(H{ Type} u)n}

13

14 3 THETL GRAMMAR

Typey::=
"{" Type "}" |
{ Valuelde "." } Typelde |
Ok | Nok |
Tuple Signatures end |
Variant Signatures { case CaseldeList [with Signatures | } end |
Record Signatures end |
Exception | Signatures | end

3.8 Identifier
ValueldeList, TypeldeList, CaseldeList::=
Ide { "," Ide }

Ide, Valuelde, Typelde, Fieldlde, Caselde::=
identifier | infix (infix | colonlnfix)

4 The T1 Abstract Syntax

The concrete syntax of TL provides several abbreviating notations for values, types, bindings
and signatures and makes heavy use of initial and final keywords. A compact abstract syntax
provides a more adequate starting point for the definition of the static semantics of TL. It
also constitutes the canonical internal representation used by the TL language processors.

4.1 Syntactic Objects of T1

The definition of the abstract TL syntax involves syntactic objects that are denoted by meta
variables according to the following conventions:

S e Sig sequences of signatures
D € Bind sequences of bindings
FE € BindElem single bindings

A, B e Type types

C € Case variants in tuple types
z € Caselde variant labels

X,Y € Ide type identifiers

z,y € ide value identifiers

a,b,c € Value values
p,q € Qualifier selectors of signature components

The infinite sets Ide, ide and Caselde are built from the union of the symbols of the
categories identifier, infix and colonlnfix as defined in § 3.1 extended by the symbol ?, called
the anonymous identifier. These sets and the set of literals (symbols of the categories int,
real, longreal, char, string) constitute the basis for the inductive definition of the sets of the
other syntactic objects as summarized in table 1 and table 2.

4.2 Normalization of Tl Programs

The one-to-one translation from a parse tree of a phrase matching the concrete TL syntax into
an equivalent term in the abstract TL syntax is rather straightforward. It is (conceptually)
preceded by a normalization process that
> introduces the anonymous identifier ? in bindings
‘Aa = Let?=Alet?=a
and in signatures

<:A:B = 7<A7:BB

An anonymous identifier 7 matches any other identifier z, X in the subtyping rules for
signature matching [Subsig ide, Subsig Ide, Subsig Ide Let] in §5.8.

> expands abbreviating notations in bindings

15

16

4 THETL ABSTRACT SYNTAX

let x(S1)...(S,) A =a
let x(S5,)...(S,) = a

Let X(S,)...(5,) <tA =B
Let X(5,)...(5,) = A

let x = fun(S;) ... fun(S,) :A = a

let x = fun(S;) ...fun(S,) = a

Let X = Oper(S,)...Oper(S,) <:A =B
Let X = Oper(S;) ...Oper(S,) = A

TN

and in signatures

X3 A ...x, A

var x; (A ...var x, A

Dyn X, <:A...Dyn X,, <:A
x :Fun(S,) ...:Fun(S,) :A

X :Oper(S,) ...Oper(S,) A

X1, o0, X JA

var xy, ..., X, ‘A
Dyn X, ..., X,, <A
x(81)...(5,) :A
X(S1) ...(5.) <:A

TR

> transforms infix and listfix function applications into a standard prefix notation
x; infix x5 = {infix(x; x2)}
x; colonlnfix x, = {colonlnfix(x; x2)}

fofx; ...x, end = flarrayx; ...x, end)

> transforms infix type operator applications into prefix notation

X, infix X, = {infix(X; X,)}
X colonlnfix X, = {colonlnfix(X; X;,)}

v

replaces missing else branches in if and try expressions (but not in case expressions)
by an empty expression sequence (that evaluates to ok, see [Value seq empty] in §5.11),
for example,

ifathen bend = 1ifa then b else end

> normalizes elsif branches into nested if expressions

if a; then b, if a; then b,
elsif a, then b, else
N if a, then b,
end
end end

> replaces assertions by conditionals

if a then ok

else
raise exception

“Assertion in file ... at line . .. failed”
end

assert a =

end

4.3 Signatures, Bindings and Types

A, B ::

S, X =A

p.X
Bool | Int | String

o Xn <t A,)B

Case(z;,91)...Case(z,,5,)

empty signature
value signature

type signature

type definition
signature inheritance

empty binding
sequential binding
parallel binding
binding inheritance
binding projection

value binding
constrained value binding
type binding
constrained type binding

supertype of all types (top)
subtype of all types (bottom)
type identifier

abstract type identifier

base type identifiers

array type

(polymorphic) function type
tuple type (with variants)
record type

exception type

recursive type (1 < n)

type of mutable values
dynamic type

type operator

type operator application

variants in tuple types (0 < n)

value signature selector
field signature selector

Table 1: Abstract syntax for signatures, bindings and types

17

18 4 THETL ABSTRACT SYNTAX

4.3 Signatures, Bindings and Types

Table 1 summarizes the inductive definition of signatures, bindings and types in TL.

The distinction between type signatures and type definitions in signatures reflects the fact
that most type judgements provide a partial information (X <: A) and that only in few cases
(e.g. Let type bindings in the local scope) the ezact type associated with a type variable X
is available (X = A).

The base type constants (Int, Bool ...) are required to denote the types of TL literals
and the argument types expected by built-in language constructs (e.g. booleans for the con-
ditional). They do not appear in the concrete TL syntax since they are not hard-wired as
keywords but bound to identifiers in the programming environment.

The rather heavy notation for recursive types is required to directly represent mutually
recursive type bindings, like

Let Rec X<:0Ok = F(Y) and Y<:0k = G(X);

This binding is represented in the abstract syntax as a parallel binding of two type variables
(X and Y) to two independent recursive types that both describe the full recursive equation
system:

X = Rec(X;, X; <: Ok = F(X,), X, <: Ok = G(X,))

and

Y = Rec(X,, X; <: Ok = F(X,), X, <: Ok = G(X)))

This representation proved to be advantageous for the definition of the scoping and typing
rules and the implementation of the relevant checking algorithms. The bound specifications
in recursive type bindings (<:Ok in the example above) are required to simplify the checking
of type operator applications within the recursive binding, for example

Let Rec Al = A2(A2) and A2 = A3(A3) and ...
and An = Oper(X(Y <:0k) <:0k) X(Int)

has to be written as

Let Unary = Oper(X(Y <:0k) <:0k) Ok
Let Al <:Unary = A2(A2) and A2 <:Unary = A3(A3) and ...
and An <:Unary = Oper(X(Y <:0k) <:0k) X(Int)

The var attribute of value bindings and signatures and the Dyn attribute of type bindings
and signatures are both mapped to explicit type constructors. This implies that types like
Var(Var(A)) do not appear in TL programs.

Finally, it should be noted that entities of the value level enter the type level via qualifiers
for abstract data types. The syntax for qualifiers is restricted and just allows simple path
expressions involving value variables.

4.4 Values

Table 2 summarizes the inductive definition of values in TL. The syntax is quite standard
and therefore does not require further explanation.

4.4 Values

a,b::= ok the canonical value of type Ok
| int integer literals (s. §3.1)
| real floating point literals (s. §3.1)
| lIongreal double precision floating point literals (s. §3.1)
| char character literals (s. §3.1)
| string string literals (s. §3.1)
| =z value identifier
| fun(S)a (polymorphic) function constructor
| a(D) function application
| arr(D) array constructor
| afb array element selection
| tup(D,z,D') tuple constructor (with variants)
| red(D) record constructor
| a.x tuple, record and execption field selection
| alz variant projection
| a?z variant test
| extend(a,D) record extension
| exc(a,D) exception value generation
| seq(D) sequential evaluation
| if(a,by,by) conditional
| case(a, variant analysis (0 < n,1 < k;)

(2’11 .- -Zlklvylvbl) cee
(an .. -annvynvbn)7b)

| case(a, exhaustive variant analysis
(Z11+ o 21k, Y1, 01) - - (1<n,1<k)
(2ot -+ 2t s b))

| loop(a;) loop

| exit loop exit

| while(a,b) pre-check loop

| for(z,a,as,as) integer iteration

| try(a, exception handling (0 < n)

(a1,91,01) .. .(@n, Yn,bn),0)

| raise(a,D) exception generation

| reraise exception propagation

| andif(a,b) conditional conjunction

| orif(a,b) conditional disjunction

Table 2: Abstract syntax for values

20 4 THETL ABSTRACT SYNTAX

The syntax does not contain an assignment operator since assignments are provided by a
polymorphic function in the programming environment with the following signature:?

:= (A <:Ok var lhs :A rhs :A)

There are two multi-branch case expressions. The type rules for one version requires an
exhaustive enumeration of all possible variant values, while the other is equipped with a
non-empty else branch.

?Different implementations of the assignment function may attach recovery or concurrency control func-
tionality to the plain destructive update operator.

5 The Static Semantics of T1

A medium-term goal in the Tycoon project is to provide a formal definition of all static and
dynamic aspects of the language. For the purpose of this preliminary language definition, only
the static semantics of TL have been captured formally (omitting modules, libraries, object
locality, the enforcement of the proper nesting of exit statements in loops, and the inference
rules for type arguments in function applications).

The dynamic semantics of TL are implicitly defined by a mapping of TL terms to untyped
terms of the underlying untyped Tycoon machine language TML. The evaluation semantics of

TML in turn are defined w.r.t. the abstract operational semantics of the Tycoon store protocol
Tsp.

5.1 Overview over the Type Notations

The following notations are used for the definition of the static semantics of TL:

Al X The type A is contractive in variable X §5.4
S sig The signatures 5 are well-formed §5.5
S redstg | The signatures S are well-formed record signatures | §5.5
A type The type A is well-formed §5.6
A% s | The type A has signatures S §5.7
P g The selector p identifies a value with signatures S | §5.7
S < §" | S are subsignatures of 5 §5.8
S T<u:]? S’ | S are tuple subsignatures of 5’ §5.8
S ?C:d: S’ | S are record subsignatures of 5’ §5.8
A<:B A is a subtype of B §5.9
DS The bindings D have signatures S §5.10
a: A The value a has type A §5.11

The last column indicates the section that contains the definition of each judgement. Note
that virtually all definitions are mutually recursive and closely follow the structure of the
inductive definition of the underlying syntactic objects given in the previous section.

The order-preserving concatenation of signatures and bindings is denoted as follows:

5,8 the signatures in 5 followed by signatures in 5’
D, D' the bindings in D followed by bindings in D’

Despite the fact that signatures are ordered sequences, the following notation treats them
like finite mappings from value names to types resp. type names to type bounds:

x € Dom(S) the value variable z is defined in §
X € Dom(S) the type variable X is defined in S

The type rules of TL are presented as a system of axioms and deduction rules where the
judgements in the premises and consequences in general refer to a static environment. The
environment itself is represented as an ordered list 5 of signatures:

S FJ in the static environment S the judgement J is true

21

22 5 THE STATIC SEMANTICS OF TL

5.2 Substitutions

The type rules for the instantiation of polymorphic function [Value apply] in § 5.11 and of
type operators [Type apply] in § 5.6 use the following notation to denote the variable capture
avoiding substitulion of free type variables in a type expression by an actual type parameter:

A{X «— B} A where each free occurence of X is substituted by B

This substitution operation could be made more explicit by replacing the applied occurence
of a variable name by the (relative) index of its defining occurence witin the static environment
and thereby reducing the substitution operation to a mere index manipulation [de Bruijn 1972;
Abadi et al. 1990P.

A sequence of bindings D passed as actual parameters to a polymorphic function or a
type operator defines an iterated substitution of the type variables X defined in D by their
associated type expressions:

A{< D} A where all X,z € Dom(D) are substituted as follows

[Subst empty] [Subst Ide]
SED =S §SS8FD X< B
SFA{<0}=4 SFA{< D, D'} = A{< D}{X — B}

[Subst Let] [Subst ide]
SFD =5 S5FD :X=8B SFD =5 SS58FD z:B
StA{< D, D'} =A{< D}{X «— B} S+A{< D, D'} = A{< D}

5.3 Qualified Type Variables

The access to the type information associated with individual type or value components in
a tuple or a record [Subtype Dot] [Value tuple dot] [Value record dot] requires the qualification
of type variables by a path that identifies the enclosing tuple or record value to avoid name
conflicts with type variables in the global scope and to achieve the type abstraction implied
by packaged type components.

qualify(7T;p; 5) substitute in T each occurence of X € Dom(S5) by p. X
where T' € Sig U Type. This qualification is defined inductively as follows:
qualify(T;p;0) =T

qualify(7; p; S,z : B) = qualify(T{z < p.z};p;5)
qualify (T; p; 5, X <: B) = qualify(T{X — p.X };p;5)

qualify (7'; p; 5, X = B) = qualify(T{X — p.X};p; 9)

*This is also the mechanism used in the TL type checker.

5.4 Contractive Types 23

5.4 Contractive Types

A final auxiliary notation is required in rule [Type Rec] in § 5.6 to restrict the structure of
recursive types to contractive type expressions.

SHA|X In environment 5 type A is contractive in variable X

Systems of recursive type equations Rec(X;, X; <: 4, = B;...X, <: 4, = B,) that
are contractive in their recursion variable X; define well-formed regular trees, the basis for
semantic models of type structures [MacQueen et al. 1986] as well as termination proofs for
type checking algorithms [Ohori 1989].

The following judgements are independent of the identifiers occuring in the the static
environment:

Y|IXeY#£X

Ok|X Nok|X Booll]X Int|]X String| X
Y| X Fun(S):B|X Tup(5;C)|X Red(S5)]X Exc(5)|X Arr(4)|X
Var(A)| X & A| X
Dyn(A)| X & Al X

The last three judgements refer to the static environment 5
[Contractive Oper]
S, 8+FB|lX
S FOper(S)B| X

[Contractive Rec]
StRec(X;, X, <: A =B,...X,
StRec(X, X, <:A=B;...X,

[Contractive Apply]
SFA<:Oper(S)B SkED S5 SEB{<D}|X
SHFAD)|X

The above definition is well-founded although rule [Contractive Rec] itself requires the defi-
nition of well-founded types, since the syntax of TL does not allow statically nested recursive
type declarations.

5.5 Well-formed Signatures

[Sig empty] [Sig ide] [Sig Ide] [Sig Ide Let]
S A type S A type S A type
F o sig FS z:A sig FS X < A sig FS X =A sig
[Sig Repeat]
SEFAS & L8 sig

F S, Repeat(A) sig

24 5 THE STATIC SEMANTICS OF TL

[Redsig]
FS5,8 sig (8 =051,5NX € Dom(5)=>X ¢ Dom(S,))
SE S redsig

5.6 Well-formed Types

[Type Builtin] [Type Ide]
FS sig A€ {0Ok,Nok,Bool, Int, String} FS, X <A, S sig X ¢ Dom(S5)
S A type S, X <A 5"F X type

[Type Ide Let]
FS, X< A,8 sig X ¢ Dom(S5)
S, X =A,5F X type

[Type Do?] [Type Fun]
SEp S g S,5"F X type X € Dom(S5") FS,8 sig 5,9F B<:0k
SEp.X type S+ Fun(S’) : B type
[Type Tup]

1<n z#zi1#5 FS55sig F558,5s9 i=1...n
S+ Tup(5’; Case(z;,5,)...Case(z,,5,)) type

[Type Red] [Type Exc]
SE S redsig FS,5 sig
S+ Red(S5') type S+ Exc(S5") type

[Type Rec]
S, X1 < A,.... X, <A, FB; <A 1=1...n 1<j<n
S, Xy=58B,....X,=B,FB;|X; i=1...n
SFRec(X;,X)<:4 =B,...X, <t A, = B,) type

[Type Var]
SHA<: Ok
S F Var(A) type

[Type Dyn] [Type Arr] [Type Oper]
S F A type SHA<: Ok 5,85 stg 5,5 F B type
S+ Dyn(A) type S+ Arr(A) type S+ Oper(S5')B type

[Type Apply]
SFA<:Oper(S)B SED 5
SFA(D) type

5.7 Signatures of Types and Values

5.7 Signatures of Types and Values

[Select ide]
SkFz:A SEFA

[Select dot]
S’ Stp o

Sig

S/

x € Dom(5")

5,8 Fx

Sig

w9

Skaz g

[Select Tup]
S+ A:Tup(S5;C)

[Select Red]
S+ A:Red(S5)

Skopea

Sig

[Select Exc]
S+ A:Exc(5)

; S//

Sig

SE A g SEA T g

[Select Fun]
St A:Fun(S'): B

[Select Oper]

S+ A:Oper(5)B

SEHA

Sig

SE A g SEAW g

5.8 Subsignatures

[Subsig reflexive] [Subsig ide]

F 5,5 sig SES <2 85" §585FA<B
SES < § SES x: A< 5z B
[Subsig Ide] [Subsig Ide Let]

SES <= 8" §,8FA< B

SES < 8"

Sig

SI

S,8FA<:B

SES X <A <: 5 X<:B

[Subsig Repeat]
SES < 5" S§,5FA

[Subsig Tup]
S:i:g g FS5,5:,9, sig

SES, X=A<: 5" X<:B

SES < 5]

S F 5, Repeat(A) <:: 5", 5"

[Subsig Red]
S 81,5, 85 redsig S F Sy, S5 <5 81

Tup
S F Sl,Sz < S{

Tup
S, 91 F S5y <t S

Red

SE Sy, 8,85 < 8,88

5.9 Subtypes

[Subtype reflexive] [Subtype transitive]
S A type

[Subtype Nok]

SFA<: A SEA < A

SHA< Ok

SFA< A SHA< A

[Subtype Ok Builtin]
FS sig A€ {Bool,Int,String}

SF Nok <: A

[Subtype Ok Fun]
SF Fun(Y): B type

SHA< Ok

S FFun(Y): B <: Ok

25

26 5 THE STATIC SEMANTICS OF TL

[Subtype Ok Tup] [Subtype Ok Rcd] [Subtype Ok Exc]
S F Tup(S5’; C) type S+ Red(S5') type S+ Exc(S5) type
S F Tup(S;C) <: Ok S FRed(S5) <: Ok S FExc(5') <: Ok

[Subtype Ok Arr] [Subtype Ok Var] [Subtype Ok Dyn]
S Arr(A) type S+ Var(A) type SEA<: Ok
SFArr(A) <: Ok S F Var(4) <: Ok S FDyn(A) <: Ok

[Subtype Ide] [Subtype Ide Let]

FS, X< A,8 sig X & Dom(5") FS,X<:A,58 sig X & Dom(5)

S, X <A SFX< A S, X=A,FX <A

[Subtype Ide Let2] [Subtype Dot]

FS, X <t A5 sig X ¢ Dom(5') Skp 3§ X <t A,8" X ¢ Dom(8")

S, X=A,5FA: X SFp.X <:qualify(A; p; 5)

[Subtype Fun] [Subtype Arr]

SES" <2 8 S, 85"FA< B SHFA<:B

SFFun(S'): A <:Fun(S5"): B S+ Arr(A) <: Arr(B)

[Subtype Tup]
Sk S0, 8 <h 8.8 i=1..n 1<n
Sk S8;,5 sig j=1...m 1<m
S+ Tup(Sy; Case(z,5;)...Case(z,,5,)) <:
Tup(S;; Case(z,5])...Case(z,,5)) Case(2],5])...Case(z],,5!'))

m?~m

[Subtype Red] [Subtype Exc] [Subtype Var]
Red

Sk g &g Sk g < g S+ A type
S FRed(5) <: Red(S5") S F Exc(85) <: Exc(5") S+ Var(4) <: A

[Subtype Dyn Elim] [Subtype Dyn]
S A type SHFA<: B
SFDyn(A)<: A S+ Dyn(A) <: Dyn(B)

[Subtype Non-Rec Rec]
A # Rec(Y, D)
SFA<: Bi{< X, =Rec(Xy,D),...., X, = Rec(X,,D)}
SFA<:Rec(X;,X;<: A =5B,...X,<: A4, =18B,)

[Subtype Rec Non-Rec]
A # Rec(Y, D)
Sk Bi{< X; =Rec(X;,D),..., X, =Rec(X,,D)} <: A
SFRec(X;, X;<:A =8B..X, <A, =B,)<: A

5.10 Signatures of Bindings 27

[Subtype Rec Rec]
S"HA <A 5SS B <t B

S"F Rec(X;, X; <: Ay =B;...X,, <t A, = B,) <:Rec(X[, X <: A} = By ... X], <t A = B)

where
S" = X| <:Rec(X],D),.. .X]/»_l <: Rec(X]'»_l,D'),X]'» < A},
X]I'+1 < Rec(XJ'»H,D'), ... X! <:Rec(X], , D"
S = X;<:Rec(X1,D),...X;-1 <:Rec(X;-1,D), X; <: X]'»,
Xit1 <: Rec(Xi41, D), ... X, <: Rec(X,, D)
D = X <A =8B.. . X, <A =B,
D = X1<1A1:Bl,...,Xn<2An:Bn
[Subtype Oper] [Subtype Apply]
SES" <2 8 S§,8FA<B SFA<:Oper(S)B SED 5
S F Oper(5')A <: Oper(5")B SEHA(D)<: B{< D}

5.10 Signatures of Bindings

[Bind empty] [Bind ide] [Bind ide restrict]

F S sig SEFD =5 55Fa:A SFEFD =S5 S55Fa:A
SFo @ SFDz=a: 5,z:A SFDz:A=a: 5 2: A
[Bind Ide] [Bind Ide restrict]

SED =S5 5,8FA type SEFD 8§ S 8FB<A

SFD,X=A:58X=A SFD,X<:A=B:: 5 X=8
[Bind and]

SEFD =S SS8FE =S5 it=1...n 1<n
Sl_D,E1||En i Sl,Sl,...,Sn

[Bind rec]
SED =85 8,8 :A,...,x, A Fa; A i=1...n 1<n

St D,rec(zy: Ay =aq|...|zp 1 Ay =ay) o Szt Ay, an Ay

[Bind open]
SED =8 S 85Fp S
S+ D,open(p) :: 5, qualify(S”;p; ")

Sig

[Bind open restrict]
SED =S5 S,5Fp ST SEA S S E ST < 5
S+ D,open(p, A) = 5, qualify(S5";p; ")

Sig Sig

28 5 THE STATIC SEMANTICS OF TL

5.11 Types of Values

[Value subsumption] [Value ok] [Value ide]
SFa:A SHFA<'B F S sig FS,z:A S sig x¢ Dom(5")
Sta:B S Fok: Ok S,z A, SFa: A
[Value fun] [Value apply]
5,8 Fa:A Sta:Fun(S):A SFHD =5
S+ fun(5')a : Fun(S5') : A Sta(D): A{«< D}
[Value array] [Value array empty]
SED wx:A...2,: A 1<n F S sig
Starr(D): Arr(A) S Farr(): Arr(Nok)
[Value index] [Value tuple]
Sta:Arr(A) SEb:Int SED S
Skalb]:A S Ftup(D) : Tup(5’; Case(?,0))

[Value tuple variant]

S+ A:Tup(S5';Case(z,5:)...Case(z,,5,)) SFED 5.5 1<z<n
SFEtup(D;z;A4)): A

[Value tuple dot]

Sta:Tup(S,z:A,5"C) x¢ Dom(S5")

St a.xz : qualify(A;a; 5")

[Value variant project]

Stz : Tup(S’; Case(z,5;)...Case(z,,5,))

St alz : Tup(S’, S;; Case(?,0)

[Value variant test] [Value record]

S F z: Tup(S’; Case(z,5,)...Case(z,,5,)) SED 5 SES redsig

S+ 2?2 : Bool SFred(D): Red(5)

[Value record dot] [Value extend]

Sta:Red(5,z:A,5") Sta:Red(S') S,8FD 8" SES,S redsig

Sk a.x: qualify(A4;a; 5) S F extend(a, D) : Red(5, 5")

[Value exception] [Value seq empty] [Value seq ide]
Ska:String SEFD 5 F .S sig SEFD =5 S5858Fa:A
S Fexc(a, D) : Exc(5) S+ seq(©): Ok Stseq(D,x=a): A

[Value seq ide restrict] [Value seq Ide]

SEFD =5 S558Fa:A SEFD =5 5 5FA type
Stseq(D,z:A=a): A Stseq(D,X=A4):0k

5.12 Restrictions 29

[Value seq Ide restrict] [Value if]
SEFD =S5 S 5FB< A Sta:Bool SHbO:B SHEV:B
Stseq(D,X <: A= B):0k S+ if(a,b,b'): B

[Value case]
S F a:Tup(9’; Case(z],51)...Case(z],,5n))
SHb:B
S,y; : Tup(5’,5";Case(?,0))Fb;: B 0<n i=1...n
S, 88" < S, g=1.k
Ui Uil 25 CUZ 20 2 # 2y i #0575
S+ case(a, (211215, Y1, 01) - - (Zn1+ - - Zak, s Yns 0n), 0) = B

[Value case exhaustive]
S F a:Tup(5’; Case(z;,5)...Case(z),,5n))
S,y; : Tup(5’,5";Case(?,0))Fb;: B 1<n i=1...n
5,8 8" < S, j=1.k
Ui Uitz = Uy 2l 2 # 2 i 20,5 # 5
St case(a,(z11 .21k, Y1,01) - (Zn1 - - - Znkyy Yns b))+ B

[Value loop]
SFa:O0k
S Floop(a) : Ok

[Value exit] [Value while]
F S sig Sta:Bool SFEb:Ok
S F exit : Nok S + while(a,b) : Ok
[Value for]

Sta:Int SFb:Int S,z:Intkc: Ok
S+ for(z,a,b,c): Ok

[Value try]
Sta:B
SkHb:B
Sta; :Exc(S;) t=1...n 0<n
S,z; : Tup(S;; Case(?,0))Fb,: B i=1...n
St try(a,(ay,z1,b1)...(an,2,,0,),0): B

[Value raise] [Value reraise]
Sta:Exc(S) SED 5 F .S sig
S F raise(a, D) : Nok S I reraise : Nok

5.12 Restrictions

The rule [Subtype Var| is not applicable in function signatures since the implementation of
variable parameters (l-value bindings) is incompatible with the implementation of value pa-
rameters (r-value bindings). This restriction is checked statically.

30 REFERENCES

References

Abadi et al. 1989: Abadi, M., Cardelli, L., Pierce, B. C., and Plotkin, G.D. Dynamic typing
in a statically typed language. Digital Systems Research Center Reports 47, DEC SRC Palo
Alto, Juni 1989.

Abadz et al. 1990: Abadi, M., Cardelli, L., Curien, P.-L., and Lévy, J.-J. Explicit substitu-
tions. Digital Systems Research Center Reports 54, DEC SRC Palo Alto, Februar 1990.

Abadri et al. 1992: Abadi, M., Cardelli, L., Pierce, B., and Rémy, D. Dynamic typing in
polymorphic languages. In Proceedings of the ACM SIGPLAN Workshop on ML and its
Applications, Juni 1992.

Atkinson and Morrison 1988: Atkinson, M.P. and Morrison, R. Types, bindings and parame-
ters in a persistent environment. In Atkinson, M.P., Buneman, P., and Morrison, R., editors,
Data Types and Persistence, Topics in Information Systems. Springer-Verlag, 1988.

Brown and Rosenberg 1991: Brown, A.L. and Rosenberg, J. Persistent object stores: An im-
plementation technique. In Proceedings of the Fourth International Workshop on Persistent

Object Systems, Martha’s Vineyard, Massachuselts. Morgan Kaufmann Publishers, Januar
1991.

Burstall and Lampson 1984: Burstall, R. and Lampson, B. A kernel language for abstract
data types and modules. In Semantics of Data Types, volume 173 of Lecture Noles in
Computer Science. Springer-Verlag, 1984.

Cardelli and Mutchell 1989: Cardelli, L. and Mitchell, J.C. Operations on records. Digital
Systems Research Center Reports 48, DEC SRC Palo Alto, August 1989.

Cardelli et al. 1991: Cardelli, L., Martini, S., Mitchell, J.C., and Scedrov, A. An extension
of system F with subtyping. In Ito, T. and Meyer, A.R., editors, Theoretical Aspects of
Computer Software, TACS’91, Lecture Notes in Computer Science, pages 750-770. Springer-
Verlag, 1991.

Cardelli 1989: Cardelli, L. Typeful programming. Digital Systems Research Center Re-
ports 45, DEC SRC Palo Alto, May 1989.

Cardelli 1990: Cardelli, L. The Quest language and system (tracking draft). Digital Systems
Research Center, DEC SRC Palo Alto, 1990. (shipped as part of the Quest V.12 system
distribution).

Cardelli 1992a: Cardelli, L. Extensible records in a pure calculus of subtyping. Digital
Systems Research Center Reports 81, DEC SRC Palo Alto, Januar 1992.

Cardelli 1992b: Cardelli, L. F-sub, the system. Digital systems research center, DEC SRC
Palo Alto, Februar 1992. (shipped as part of the Fsub 1.4 system distribution).

Connor et al. 1991: Connor, R., McNally, D., and Morrison, R. Subtyping and assignment
in database programming languages. In Database Programming Languages: Bulk Types and
Persistent Data, pages 363-382, Nafplion, Greece, 1991. Morgan Kaufmann Publishers.

REFERENCES 31

de Bruyn 1972: de Bruijn, N.G. Lambda-calculus notation with nameless dummies: a

tool for automatic formula manipulation with application to the Church-Rosser theorem.
Indag. Math., 34(5):381-392, 1972.

Dearle et al. 1989: Dearle, A., Connor, R., Brown, F., and Morrison, R. Napier88 — a
database programming language? In Proceedings of the Second International Workshop
on Database Programming Languages, Salishan, Oregon, Juni 1989.

MacQueen et al. 1986: MacQueen, D.B., Plotkin, G.D., and Sethi, R. An ideal model for
recursive polymorphic types. Information and Control, 71:95-130, 1986.

Matthes and Schmidt 1991a: Matthes, F. and Schmidt, J.W. Bulk types: Built-in or add-on?
In Proceedings of the Third International Workshop on Database Programming Languages,

Nafplion, Greece. Morgan Kaufmann Publishers, September 1991. (also appeared as TR
FIDE/91/27).

Matthes and Schmidt 1991b: Matthes, F. and Schmidt, J.W. Towards database application
systems: Types, kinds and other open invitations. In Proceedings of the Kiev East/West
Workshop on Next Generation Database Technology, volume 504 of Lecture Notes in Com-
puter Science, April 1991.

Matthes et al. 1991: Matthes, F., Ohori, A., and Schmidt, J.W. Typing schemes for objects
with locality. In Proceedings of the Kiev Fast/West Workshop on Next Generation Database

Technology, volume 504 of Lecture Notes in Computer Science, April 1991. (also appeared
as TR FIDE/91/12).

Matthes 1992: Matthes, F. Generic Database Programming: A Linguistic and Architectural
Framework. PhD thesis, Fachbereich Informatik, Universitit Hamburg, Germany, September
1992. (in German).

Morrison et al. 1987: Morrison, R., Atkinson, M.P., and Dearle, A. Flexible incremental
bindings in a persistent object store. Persistent Programming Research Report 38, Univ. of
St. Andrews, Dept. of Comp. Science, Juni 1987.

Ohori et al. 1989: Ohori, A., Buneman, P., and Breazu-Tannen, V. Database programming
in Machiavelli — a polymorphic language with static type inference. In Proceedings of the
ACM-SIGMOD International Conference on Management of Data, Portland, Oregon, pages
46-57, 1989.

Ohori 1989: Ohori, A. A Study of Semantics, Types and Languages for Databases and Object-
Oriented Programming. PhD thesis, University of Pennsylvania, 1989.

Pierce 1992: Pierce, B. C. Bounded quantification is undecidable. In Proceedings of the Nine-
teenth ACM Symposium on Principles of Programming Languages, pages 305-315, Januar
1992.

Rémy 1991: Rémy, D. Type inference for records in a natural extension of ml. Rapport de
Recherche 1431, INRIA, Domaine de Voluceau Rocquencourt 78153 Le Chesnay Cedex -
France, May 1991.

32 REFERENCES

Schmidt and Matthes 1991: Schmidt, J.W. and Matthes, F. Naming schemes and name space
management in the DBPL persistent storage system. In Proceedings of the Fourth Interna-
tional Workshop on Persistent Object Systems, Martha’s Vineyard, Massachusetts. Morgan
Kaufmann Publishers, Januar 1991.

Schroder and Matthes 1992: Schréder, G. and Matthes, F. Using the Tycoon compiler
toolkit. DBIS Tycoon Report 061-92, Fachbereich Informatik, Universitit Hamburg, Ger-
many, May 1992.

Solomon 1978: Solomon, M. Type definitions with parameters. In Proceedings of the Fifth
ACM Symposium on Principles of Programming Languages, Tucson, Arizona, pages 31-38,
Januar 1978.

Stansifer 1988: Stansifer, R. Type inference with subtypes. In Proc. 15th ACM Symposium
on Principles of Programming Languages, pages 88-97, 1988.

Wand 1987: Wand, M. Complete type inference for simple objects. In Proceedings of the
Second Annual Symposium on Logic in Computer Science, pages 37-44, Ithaca, New York,
Juni 1987.

