Linguistic and Architectural Requirements for
Personalized Digital Libraries

Joachim W. Schmidt Gerald Schroder Claudia Niederée
Florian Matthes

Universitat Hamburg, Fachbereich Informatik
Datenbanken und Informationssysteme
Vogt-Kolln-Strafle 30, D-22527 Hamburg, Germany
{schmidt,gschroed,niederee, matthes}@informatik.uni-hamburg.de

October 1, 1996

Abstract

Our vision of digital libraries is influenced by our experience with systems for persistent
and networked object management and with polymorphic programming languages for
their implementation. When viewed from this perspective, the essence of digital libraries
can be captured by the following three essentials:

> the content of a digital library is represented by two kinds of information entities:
on the basic level there are information tokens as supplied by information providers
on the net; value is added to such tokens by individually constructing information
artifacts over them with the goal of information consumer satisfaction;

> the services required for artifact construction and use — on the information level
as well as on the level of the software artifacts required for these processes — rely
heavily on powerful binding environments for multi-medial, persistent and networked
information;

> the processes of artifact construction and use are in themselves valuable sources of
information about artifacts; for the exploitation of such process information, digital
libraries employ advanced tracing environments.

We derive linguistic and architectural requirements for digital libraries from these
above essentials. On the language level we concentrate on generalized requirements for
the typing, binding and scoping of library entities and services. On the system level we
discuss architectural requirements in terms of orthogonal persistence, open extensibility,
platform independence, mobility and reflection.

We present Tycoon [Matthes and Schmidt 1992; Matthes et al. 1995], a polymorphic,
persistent, higher-order language and its system, and demonstrate its potential for dig-
ital libraries. We evaluate Tycoon’s rich conceptual basis (data, functions and threads),
library-based extensibility, powerful binding mechanisms, its orthogonal persistence and
its capability of network-wide data, code and thread migration.

We conclude by referring to an interdisciplinary digital library project in Art History
Research based on icons, texts and data. Here, Tycoon effectively supports the process
of individually customizing and scaling library services thus generalizing the notion of a
query language into that of a persistent personal reference library.

Zusammenfassung

Unsere Vision von digitalen Bibliotheken ist bestimmt durch langjahrige Erfahrungen
mit persistenten Objekten in Rechnernetzen und mit polymorphen Programmiersprachen
hoherer Ordnung. Fir den Aufbau und die Nutzung digitaler Bibliotheken ergibt sich
daraus die folgende Sicht:

> Die Ausgangsinformation fur digitale Bibliotheken wird im Netz in Form unin-
terpretierter Tokens angeboten. Durch bibliothekseigene Mehrwertdienste werden
dariber schrittweise Informationsartifakte konstruiert mit dem Ziel, die Informa-
tionswunsche von Benutzern individuell zu erfullen.

> Die Bibliotheksdienste fur den Aufbau und die Nutzung derartiger Artifakte stellen
erhebliche Anforderungen an die Bindemechanismen fur multi-mediale, persistente
Informationen im Netz; dies gilt auch fiir die Konstruktion der individuellen Soft-
wareartifakte, die diese Bibliotheksdienste implementieren.

> Der Prozel des Aufbaus und der Nutzung individueller Informationsartifakte ist
selbst wieder eine Quelle wertvoller Information uber Artifakte; zur Auswertung
derartiger Information benotigen digitale Bibliotheken leistungsfahige Tracingmech-
anismen uber den Prozefverlauf.

Diese Sicht digitaler Bibliotheken fithrt einerseits zu sprachlichen Anforderungen in
Form leistungsfahiger Typisierungs- und Bindemechanismen sowie verallgemeinerter Kon-
zepte fur Benennung und fur die Gultigkeit von Namen. Weiterhin diskutieren wir An-
forderungen an Systemarchitekturen wie orthogonale Persistenz, offene Erweiterbarkeit,
Plattformunabhangigkeit und Mobilitat.

Wir evaluieren Tycoon [Matthes and Schmidt 1992; Matthes et al. 1995], eine poly-
morphe, persistente Programmiersprache mit ihrer portablen, erweiterbaren Implemen-
tierung, und bewerten seine Eignung fur digitale Bibliotheken. Im Mittelpunkt steht die
reiche sprachliche Basis von Tycoon mit Daten, Funktionen, Threads als Objekte erster
Klasse, auf welche die Systemleistungen Persistenz und Migration uneingeschrankt an-
wendbar sind.

Schliefllich berichten wir tiber erste Erfahrungen in einem Projekt mit Kunsthistori-
kern, in dem eine digitale Bibliothek neben strukturierten Daten vor allem ikonographische
und textliche Information verwaltet und insbesondere den Aufbau personalisierter und
skalierbarer Handbibliotheken unterstutzt.

Contents

1 Introduction 3
2 Vision of Digital Libraries 4
2.1 Information Tokens 4
2.2 Information Artifacts 5
2.3 Binding Environmentso 0oL 6
2.4 Tracing Environments oL oo o 7
3 Software Requirements for Digital Libraries 8
3.1 Linguistic Requirements o oL 8
3.2 Architectural Requirements 10
4 Tycoon as a Framework for Digital Libraries 12
4.1 Achievements of the Tycoon Language 12
4.2 The Tycoon System Architecture 15
5 The Warburg Electronic Library Project 20
5.1 The Application Domain 20
5.2 Tokens and Artifacts in the Warburg Electronic Library 21
5.3 Personal Reference Libraries, ... 22
6 Conclusions and Future Research 23

1 Introduction

Digital libraries are coming into their own at a time when computer and network tech-
nology is improving rapidly resulting in increased global acceptance of digital information
and communication services.

As a first consequence, an enormous quantity of information on virtually any medium
is now being exchanged between a world-wide community of information providers and
consumers. This potential will virtually revolutionalize all information processing activ-
ities. Digital libraries are intended to provide the software which helps to structure this
global information space and to improve its use.

World-wide dissemination of digital contents is, however, not the only achievement
of the fastly improving information and communication technology. Liberating computer
scientists from too narrow technological restrictions also gives rise to the development
of highly advanced models for computation and communication which aim at pushing
computers towards the perfect information handling devices — and rapid absorption of
the new enabling technologies.

Our vision of digital libraries is founded on both of the above achievements. We firmly
believe that the great potential of the global information space can be exploited only if
digital libraries make best use of highly advanced models, languages and systems. If not,
we are filling new wine into old barrels thereby creating another Pandora’s box of legacy
problems for the upcoming information age.

Based on our vision of digital libraries outlined in section 2 we will present in section 3
the essential linguistic and architectural requirements which we consider necessary for the
construction and use of such systems. In section 4 we will evaluate Tycoon [Matthes and
Schmidt 1992; Matthes et al. 1995], the language and its system platform, and demonstrate
its potential for digital libraries. Section 5 presents our initial experience with the Warburg
Electronic Library, a cooperation project with the Art History community which involves
data, texts and large amounts of iconic images.

2 Vision of Digital Libraries

In our view, the final purpose of a digital library is to improve the exploitation of the
globally networked information universe with a clear focus on the particular information
needs of an individual user and his task at hand [Van House 1995]. In other words, a digital
library is the software needed to bridge the gap between the virtually infinite amount of
information out there on the net and the very specific information needs of a particular
person and task.

With this goal in mind, we distinguish on the level of library content two kinds of
library entities:

Information tokens represent the information content which is collectively provided by
the net; information tokens are multi-medial and may represent texts, data, images,
sound, videos etc. [McNab et al. 1996; Li et al. 1996). In addition to information
tokens digital libraries also contain software tokens, like applets or generic functions
(such as filters, constructors, evaluators, presentors, binders or wrappers).

Information artifacts are (recursively) created views over information tokens. Select-
ing, structuring, combining, and annotating are typical steps in this process. Artifact
construction aims at adding value to information and thereby increasing the satisfac-
tion of information consumers. Information artifacts may be image tokens associated
with texts on their content as well as entire multi-media libraries including sound
and videos.

Two main library processes can be identified: value-adding artifact construction and
personalized exploitation. Although this paper concentrates on information artifacts it
should be emphasized that the software required for personalized library processes puts
heavy demands on software customization. Indeed, there is a striking similarity between
processes which personalize the library’s information content and those which customize
its software required for doing so. Such software is also represented by software tokens out
of which customized software artifacts can be constructed which are finally bound and
applied to information artifacts. In our closing remarks we will come back briefly to this
similarity between information and software libraries.

These library processes are supported — on the information as well as on the software
level — by two kinds of library environments:

Binding environments enable artifact construction and exploitation on the two inter-
twined levels of information artifacts and information handling software artifacts.
Binding environments provide a wide range of binding capabilities and support their
safe and disciplined use in heterogeneous, open, networked and multi-medial settings.

Tracing environments are highly desirable because library processes themselves are
sources of valuable information on artifacts. Tracing such processes and extracting
context information (on the who and when, the what and where, the why?, but
also on software versions, hardware platforms etc.) may substantially augment the
artifact’s value.

2.1 Information Tokens

Information tokens represent the basic multi-media content of digital libraries and are pro-
vided by a digital and networked information universe. Their main purpose is to concep-
tualize information on an elementary level completely independent of any specific contexts
in which information is referenced, aggregated and consumed.

Examples of information tokens are

> pictures in digital formats such as JPEG or GIF;

> texts in formats such as ASCII, Postscript or Word;

> time dependent tokens such as audio and video sequences in QuickTime or MPEG
formats;

> software tokens such as JAVA applets or generic sorting functions in source or com-
piled bytecode or even native (machine-dependent) code.

To best serve their role as basic building blocks of value-adding digital libraries, tokens
should be unbiased in their representation, equipped only with basic methods for presen-
tation, copying, migration, storage etc. For software tokens such basic methods may be
compilation, execution or interpretation.

Independent of their content and of the platform on which they reside, tokens have to
share the following basic properties:

> digital representation
> atomic view, i.e., no interpretation

> unconstrained data, i.e., no typing.

Information tokens have to be handled uniformly, independent of their content, life-
time or location in the network space. Therefore, the following additional properties are
requested uniformly over all kinds of information tokens:

> network-wide, stable identity

> universal referentiability via the net.

Any specific demands on information which are derived from the needs of individual
users or user groups are captured by the concept of information artifacts.

2.2 Information Artifacts

Information artifacts are constructed (recursively) from tokens with the intent to add, step
by step, value to the information on its way from the network of information providers to
the individual information consumer.

The structure of artifact constructing processes is shown in figure 1. Information to-
kens provided by a networked information universe are composed into information arti-
facts, a process guided by the two related principles that value be added by information
composition, but also by personalization [Roscheisen et al. 1995; Roscheisen et al. 1994].
Conceptually, a digital library has manifold artifacts visible to information consumers
with high emphasis on personalized artifacts customized for the consumers preferences
and tasks.

Typical examples of personalized information artifacts are individual collections of text
and image tokens (references or copies) augmented by hyper-text documents and personal
annotations. Artifacts may be attached to agents which search autonomously for further
material on the net by employing text retrieval systems or SQL engines. Other examples
are video sequences augmented by data on title, producer, costs, list of actors, comments
and ratings etc.

Examples of software artifacts are application packages such as Oracle’s graphical
query tools with GUI and SQL components or Microsoft’s application package Office
composed of basic modules such as Word, Excel, and Powerpoint.

After all, effective exploitation of information artifacts relies on additional and more
traditional library services [Graham 1995; Cousins et al. 1995; Paepcke 1996] such as

> information filtering capabilities (static and dynamic views)

> mobility in heterogeneous environments (platform independence)

Information Providers Value-Adding Process

VaVavaws \Jf\\Jf\\Jf\\Jr\\Jr\\Jr‘

- Information Consumers
Tokens
O Artifact Artifact Artifact Information T 1=
_— — — — ‘ <
Construction Construction Construction Consumption l
Artifacts Digital Libraries Personal Reference Library
N N\ Y\ MY N Y M N\ M
UAUAUVAVAWAWAWAWAW, N
Networked
Information Personalization Process
Universe

Figure 1: Constructing Personalized, Value-Added Information Artifacts

> exchange between libraries (external gateways)
> persistent storability, multiple user support and recovery (database system support)

> security and accounting services (authorization and authentification).

However, it is the binding technology which, in our view, provides the core capabilities
for artifact construction and use — on the information as well as on the software level.
Therefore, binding requires particularly strong support in any modern digital library
system.

2.3 Binding Environments

It does not come as a surprise that, on the technical level, extended binding capabilities
are most crucial for our approach to digital libraries. It is through binding that selected
information entities can be organized into artifacts and that information consumers can
access the artifacts of their choice. It is also bindings which connect information arti-
facts to software artifacts when value-adding software services are requested for artifact
exploitation.

As outlined above, library entities may be found on any medium, anywhere in the net,
privately owned or shared, short-lived or persistent, mutable or not, etc. Consequently,
our demands on binding capabilities are multiple [Morrison et al. 1990]: Bindings

> have to be possible between all kinds of entities on an open set of media;

> must also be complete in the sense that all computational entities, data, code and
threads can be freely combined by bindings;

> may be fized over time or mutable on demand;

> may refer to transient or persistent entities;

> may involve local entities or reach out to remote sites of the net.

Bindings to entities internal to a system have to be defined and managed as well as
ezternal bindings to entities spread over heterogeneous systems. Artifact construction may

require both kinds of semantics - copy semantics and reference semantics via bindings;
the transition between both has to be supported.

User-supplied
Context Information

Context
Information

Artifac:lt3 zzzzguction - -\ f-\ f ’

System-generated
Context Information

Artifact

Figure 2: Context Information for Information Artifacts

2.4 Tracing Environments

People, when working with libraries, usually follow certain patterns of use. Frequently they
work top down, from vague ideas via keywords and catalogues to volumes and individual
texts. Library users work continuously in the sense that they often resume sessions at the
point of interrupt some time earlier. There also exist distinguished modes of operation
which people apply when using a library:

> quick look-up of references to dictionaries or texts, or
> evaluation and memorizing of a concrete text performed in a series of sessions, or
> construction, maintenance and use of topic-oriented personal reference libraries over

years.

The individual context in which such patterns are applied varies, of course, with the
user and his task (the who and when, the what and where etc.). With digital libraries
we are in a position to trace library processes on an individual level. We can discover
individual patterns behind processes and provide environments to support them. Indi-
vidual process execution contexts can be recorded and the information gained can be
used for improving the library content as well as its usability [Bohm and Rakow 1994;
Kashyap et al. 1996).

Typical information gained from process traces answers questions such as

who is involved in artifact construction? when is it constructed?
which digital libraries are consulted to find information? where do they reside?
which queries are posted and what are the results of these queries?

what alternatives or versions exist for artifact construction?

vV v Vv Vv ¥V

which design decisions lead to the artifact?

Some of this information (see figure 2) can only be given explicitly by the person who
constructs the artifact (e.g. information on the why?). Other information can be deduced
automatically by the tracing process attributes (e.g. owner, time), statement sequences
(e.g. retrieval operations) or process bindings (retrieval results).

We conclude our vision of digital libraries by contrasting them with traditional database
systems: databases contain homogeneous data (e.g. relations) and database architec-
tures provide a centralized view on data and software (global schema; distribution trans-
parency). Furthermore, databases are accessed by isolated transactions (ACID principle).
Digital libraries differ substantially from databases in all three dimensions just mentioned:

they access heterogeneous information represented by multiple models on multiple media;
their architecture is a dynamic and highly personalized construction of information and
services, and their users work with contexted processes which are traced and evaluated
by the library environment.

In the following section we discuss some of the linguistic and architectural demands
on software platforms on which digital libraries are best developed, maintained and used.

3 Software Requirements for Digital Libraries

Our view of digital libraries imposes several requirements on software platforms on which
such libraries are developed, used and maintained. Major demands result from the follow-
ing properties in digital library systems:

> safe extensibility to an open set of new media types, novel library services, extended
user requirements etc. [Niirnberg et al. 1995]

> scalability from private stand-alone libraries to shared group libraries or globally
networked libraries

> global connectivity with free data exchange, open systems communication, unre-
stricted software migration etc.

> customizability for personalized, value-added information and software artifacts.

Some of these demands involve language requirements, others imply architectural re-
quirements for the digital library system itself. Both sets of requirements are clearly not
completely independent of each other as we will see with requirements such as binding or
reflection.

3.1 Linguistic Requirements

Our vision of digital libraries raises specific demands on the naming, typing, binding
and scoping capabilities of the language of our choice. We argue here for some fairly novel
language concepts by which data, code and threads become first-class citizens, i.e., players
with equal linguistic rights.

Typing: Digital libraries essentially impose three important demands on the underlying
typing system:
> type expressiveness for extensive model definition,

> type control for safe model execution, and

> type inspection for generic programming.

Types for modeling: The information modeling needs of a digital library are

abundant and may vary over its lifetime. Consequently, languages with a fixed,
built-in set of models do not suffice. Instead, an add-on approach to model
definition is requested, a demand which can best be met if such models can
be expressed by the language itself. Such a demand leads directly to languages
with rich polymorphic type systems, (recursive, parametric) type constructors,
subtyping and higher-order functions.
Tasks to be addressed by model extensions are bulk data management [Schmidt
1977; Ackerman and Fielding 1995], multi-media modeling, safe service integra-
tion, etc. There is a particular need for a wide range of bulk or collection types
such as lists, sets, keyed sets and bags. The framework should provide an add-on
bulk type library which satisfies different requirements for search, insert, order
or store. Bulk types dynamically added on should, at the same time, be safe,
disallowing, for example, the insertion of image tokens into book collections.

In our approach, typing comes into effect on the artifact level; tokens are un-
typed bit vectors, a representation which simplifies generic low-level operations
such as copying, storage, migration or garbage collection. More specific basic
methods on the token level, e.g., for token presentation, should be attached
manually, on a case by case basis.

Types for control: Types capture constraints on computations. Good type sys-
tems allow a rich set of constraints to be expressed and to be checked as early
as possible. Type checking is usually done statically, i.e., at compile-time: at
that time the price for type checking is cheapest and type violations can most
easily be fixed. However, long-lived and distributed systems, such as digital li-
braries, are frequently faced with constraints which arise at different sites or
change during their lifetime. This requires more dynamic approaches to typing.
If, for example, values are transmitted (via files or communication channels)
between independently developed digital libraries, there is no common scope in
which a static type check could be performed to guarantee compatibility be-
tween data and programs. For tasks like these, (value, type)-pairs have to be
available at run-time, and a rich functionality is required for run-time evaluation
and exception handling.

Types for genericity: Another need for dynamic types results from the desire
to implement generic functions with type-dependent behavior. Such functions
take a type representation, usually along with a value of this type, inspect the
type and exhibit different behavior depending on the type. Type inspection
allows, for example, iteration over the attribute types and attribute values of
an aggregate or construction of an aggregate from a list of typed bindings. Such
possibilities are required, for example, for generic library browsers capable of
displaying and manipulating artifacts of any type.

Binding capabilities: Different kinds of bindings between information artifacts and to-
kens as well as between information and software artifacts are required. It should be
possible to combine them orthogonally:

static and dynamic: In traditional applications bindings to entities are stable
over time. For digital libraries such static bindings are, however, not sufficient
since artifacts are created dynamically and may be updated. Dynamic bindings
are functions (queries or other computations) that are dynamically evaluated
and establish bindings on demand.

internal and external: Internal bindings refer to entities which are under the con-
trol of the active system while external bindings refer to entities outside. Exter-
nal bindings frequently require special treatment because essential properties of
the active system may not apply to external entities. Typical examples of such
properties are orthogonal persistence or transactional access.

local and remote: Local bindings refer to entities on the site where the process
is currently executing. Digital libraries also require remote bindings which can
refer to entities that reside on a different site in the network. Remote bindings
imply automatic transfer to the local site if the bound entity is referenced, e.g.
for display.

copy and reference: A reference to an entity may be replaced by copying the
entity into the local context, i.e., the context of the artifact that contains the
reference. This facilitates the access to the referenced entity and increases the
autonomy of artifacts. Increased autonomy is required for the construction of
a stand-alone artifact collection that may be used off-line, e.g. on a CD-ROM.
Further aspects of copying in digital libraries are discussed in [Cameron 1994;
Shivakumar and Garcia-Molina 1996].

Scoping: The space of library entities reachable from a given information artifact has
to be individually structured and organized. Therefore, in addition to static binding
environments (scopes) there is a need for dynamic environments [Dearle 1989] in
the sense that new bindings may be added or existing bindings may be hidden or
removed. Scopes may be public or protected for private use. Libraries may require
that scopes be named or even possess first-class status.

First-class status for data, code, and threads: Besides passive information (data),
artifacts may also include entities which can be activated (code) or even activities
themselves (threads). Instead of constructing artifacts ‘in advance’, code entities
are frequently used to dynamically construct artifacts just in time’. Thread en-
tities are required to realize artifacts with autonomous search agents attached to
them. Threads may be in the state of running, frozen, waiting for some event, etc.
Requesting code having first-class status implies that our language of choice be
algorithmically complete.

Exception handling: In dynamically changing and heterogeneous environments not all
services are available always and everywhere. This results in exceptional behavior
that has to to be handled flexibly and safely.

3.2 Architectural Requirements

A great number of software services have to cooperate smoothly and steadily to collectively
provide the services to be expected from an advanced digital library. To do so, software
has to show a certain degree of ‘social behavior’ which cannot yet be taken for granted
on current platforms. In addition, functionality which is crucial for libraries, such as
persistence and mobility, has to be substantially supported for all kinds of library entities.

Orthogonal Persistence: Generally speaking there is no argument supporting why the
lifetime of any digital token or artifact should depend on its type or on the fact as
to whether it is composed of data, code or threads. Only if persistence is provided
orthogonally to such dimensions, general information (data), the knowledge of how
to use it (code), and the actual use made of it (threads) can be preserved and made
available any time.

Having a system with orthogonal persistence means, in technical terms, that ar-
bitrary bindings (i.e., arbitrary data structures, function closures, activation en-
vironments) can be converted between execution environments and stable storage
environments. For elaborate typing and binding models as discussed in the previous
subsection this is obviously not a trivial task. However, once this problem is solved
other requirements such as free data, code and thread migration or powerful tracing
environments are almost free for the asking.

Since persistent storage systems have to deal with all kinds of information tokens
and artifacts they do so according to the lowest common denominator as given by
bit vectors and references. Further requirements for persistent stores are

scalability to different implementations
transactional semantics

standardized import and export formats

v v Vv V¥V

garbage collection based on reachability.

Open Service Integration: Digital libraries have to be prepared to accept services from
‘alien’ systems. The diversity of services required by a digital library could never be
provided without external support. The demand for novel services is driven by both
sides, providers and consumers, and is expected to grow rapidly with the number of
libraries on the net. External services may be required, for example, in the following
situations:

10

Information Prowder Information Provider
e.g. SQL Engine e.g. Java Engine

\Qéery Re;@ls/
Query Paranet ers¥\ ery Code

Information Consumer

Query Thread % Qlery Thread with Result

Information Provider
e.g. Tycoon Engine

Figure 3: Data, Code and Thread Mobility

> external tokens — images, sounds, but also native code — can frequently only
be interpreted by software which is only available on the site on which the token
resides;

> some sites specialize in services not available at the home site; examples are
expensive printing or scanning facilities;

> many standard services, e.g., for presentation, compression, encryption, com-
munication, etc., are factored out to generic subsystems; it is often the case that
the complexity of a service demands a specialized service provider; examples
are information retrieval and SQL engines;

> finally, legacy awareness requires that external service integration is approached
on a general level.

On the modeling level safe service integration can be achieved by expressive typing
(see previous subsection); on the system level it requires gateways and call/callback
interfaces to the external service’s languages (C, C++, ...). In combination, both
requirements support the definition and implementation of new software libraries
which integrate external services safely into our language of choice. In addition to
what is required for service integration in general, standards for export interfaces and
for exported references to library entities are necessary. Finally, each digital library
also should be prepared to export its services to others and to act as information
provider in the net.

Platform Independence: Digital libraries require that information and services must
be made available network-wide on heterogeneous platforms (see figure 3). Library
exploitation can be improved considerably if a library’s core functionality for search-
ing, querying and storage is provided platform-independently. This means that data,
code and thread representations abstract from all platform-dependent details. Tech-
nically speaking, this leads to simplified abstract machine architectures based on
bytecode representation and interpretation as well as to run-time systems with im-
proved portabiliy, minimal in size and composed of standardized components.

Migration Technology: The usability and autonomy of digital libraries is substantially
improved by agents [Birmingham 1995] capable of migrating freely in open networks
to visit data sets and collect information [Balabanovic and Shoham 1995]. Mobil-
ity, in particular that of threads, means portability at run-time. This requires an
extremely flexible binding technology which can dynamically dissolve and estab-
lish bindings, replace local bindings by remote ones and implement the notion of
ubiquitous resources to which bindings can be established at any site.

11

The flexibility gained by migration technology should be contrasted with the tradi-
tional client-server paradigm which heavily depends on assumptions on the client’s
home site and on the servers available in the net.

Reflection: There are numerous reasons why digital artifacts may have to be occasionally
rearranged when used in networked and long-lived environments. Software migra-
tion, integration, (re-)binding, tracing are some such reasons, but also wrapping,
persistent storage or optimization. Frequently, such tasks are highly regular and can
be systematically performed by algorithms.

Reflection is a powerful yet (relatively) safe technology for the algorithmic inspection
and readjustment of digital representation. Reflective program analysis and trans-
formation has to rely on detailed knowledge about the programming language model
and its implementation. Reflection may not only be used for generating or altering
data or code (at compile-time or run-time) but also for transferring compile-time
information (e.g. on types) to run-time. Tasks for which reflection is required in our
setting are

> binding environments: reflective manipulation of bindings may, for example,
transform local references to remote ones or replace remote references with
copies;

> tracing environments: reflection can exploit information in the environment in
which threads are executed (e.g. date, user-id, software version numbers, etc.)
and attach such meta-information to the executing thread. Such information
is collected automatically as a side-effect of user actions. This information col-
lection process can be parameterized by user-defined filters according to user
preferences.

4 Tycoon as a Framework for Digital Libraries

The goal of the Tycoon project! [Tycoon 1992] is to provide modeling flexibility as well
as system stability for multi-functional, long-lived application systems operating in het-
erogeneous, open and networked environments.

Tycoon contributes to this goal on two levels [Matthes et al. 1995].

> The Tycoon language is a persistent polymorphic programming language with an
elaborate higher-order type system [Matthes and Schmidt 1991; Schmidt et al. 1993;
Schmidt and Matthes 1993; Matthes and Schmidt 1993].

> The Tycoon system is architectured to substantially improve portability, scalability
and interoperability as required by applications in open heterogeneous networks
[Matthes et al. 1996; Mathiske et al. 1996; Mathiske et al. 1995a; Mathiske et al.
1995b; Matthes and Schmidt 1994].

4.1 Achievements of the Tycoon Language

Tycoon typifies one of those recent language developments [Gosling and McGilton 1995;
Morrison et al. 1994] which fully exploit the increased capacity of modern computing and
storage facilities. Although, according to conventional standards, Tycoon’s computational
model may be considered resource consuming, it is our firm belief that such an investment
is well justified by the substantially improved quality of systems developed in languages
such as Tycoon.

!Tycoon: Typed communicating objects in open environments.

12

Typing

The Tycoon Language (TL, [Matthes and Schmidt 1992; Matthes 1993]) excels in its
expressive type system based on existential and universal type quantification, recursive
types and structural subtyping. With respect to typing, TL follows the tradition of the
experimental polymorphic language Quest [Cardelli 1989].

TL is based on very few built-in types and a small set of type constructors. Orthogonal
combination along with recursive type definition and (recursive) type operators provide
virtually all data structures of interest.

For a simple digital library, books composed of texts and images may be modelled by:

Let BookComponent =

Tuple case text with content :String case image with content :jpeg.T end
Let Book =

Tuple authors :set. T(Author) title :String contents :list. T(BookComponent) end
Let Library = set.T(Book)

By structural subtyping a (recursive) type Publication becomes a subtype of Book so
that all operations on books, e.g. the displaying of the contents, are also applicable to
publications:

Let Rec Publication <:0k =
Tuple authors :set. T(String) title :String contents :list. T(BookComponent)
references :list. T(Publication) end
let displayBook(book :Book) :Ok = ...
let napoleonicWars :Publication = ...
display Book(napoleonicWars)

Generic structures such as sets or lists can be defined within TL through its higher-
order polymorphic type system [Schmidt and Matthes 1994; Matthes and Schmidt 1991].
In the following example the recursive type operator for lists depends on an element type
E so that lists of type T(E) accept only elements of type E:

Let Rec T(E <:0k) <:Ok =

Tuple case nil case cons with element :E tail :T(E) end
let new(E <:Ok) :T(E) = ...
let cons(E <:Ok element :E list :T(E)) :T(E) = ...

TL supports dynamic types and dynamically-typed values. A dynamic value is a pair
of a value v and a run-time representation t of its type. If a dynamic value component v
is extracted, its associated type representation t can be inspected. This enables a boolean
subtype test whether ¢ is a subtype of a given supertype T. Such functionality is required
to assure, for example, that an artifact transferred from an external site is a book:

let dynamicValue :dynamic. T = receive(channel) (* a dynamic value is transferred *)
let book :Book = dynamic.be(:Book dynamicValue) (* test if this value is a book *)
displayBook(book) (* book is now statically typed *)

Another application of dynamic types is, for example, a generic artifact browser that
is capable of working on arbitrarily structured artifacts:

let artifactBrowse(Dyn T <:Ok artifact :T) :Ok = ...
artifact Browse(:Library historyLibrary)

artifact Browse(: Book napoleonicWars)

artifact Browse(: BookComponent napoleonPicture)

13

Binding Capabilities

Tycoon supports a wide variety of binding concepts covering a substantial range of what is
requested in subsection 3.1. The more traditional binding alternatives include immutable,
mutable, static and dynamic bindings to types and values:

Let Book = Tuple ... end (* type binding *)

let napoleonicWars = tuple ... end (* value binding *)

let var actualBook = tuple ... end (* mutable binding *)

let bookMark = actualBook (* static binding *)

actualBook := tuple ... end (* bookMark and actualBook refer to different values *)
let displayBook(book :Book) :Ok = ...

displayBook(napoleonicWars) (* dynamic binding *)

In Tycoon it is completely transparent whether a binding refers to a local or a remote
entity [Mathiske et al. 1995a; Mathiske et al. 1995b]. If an entity leaves the local scope
in which it is bound, two alternatives exist: Either the entity (and its closure) is copied
or the binding is replaced by a remote reference. On request remote references may be
eliminated by copying.

Bindings to external functions are established by the predefined bind function. Calls
of external functions are indistinguishable from calls of internal functions. Tycoon takes
care of the machine-dependent part of the parameter conversion and call mechanisms.
The following example shows the binding to a machine-dependent function which displays
JPEG images:

let displayJPEG = bind(:Fun(:JPEG) :Ok ”imageLib” ”display_jpeg_image”)
display JPEG (image)

It should be noted that call and binding transparency is a language requirement with
heavy demands on the architecture of the system.

First-Class Data, Code and Thread Entities

Artifacts contain data but may also require code and thread components. Code entities are
used to construct artifacts dynamically just in time’. Each time the subsequent function
reutersNewsOnElection is evaluated the Reuters news service is asked for the latest news
on the election:

let reutersNewsOnElection() :set. T(News) = begin
let reuters = openConnectionTo(” Reuters News Service”)
searchFor(reuters ”Election”)

end

let actualNews = reutersNewsOnElection()

Even more value may be added to artifacts by higher-order functions expressing specific
personal preferences, such as an interest in news which mention both candidates:

let reutersNewsOnElection(preference(news :News) :Bool) :set. T(News) = ...
let bothCandidates(news :News) :Bool =

newsIncludes(news ”Clinton”) andif newsIncludes(news ”Dole”)
let actualNews = reutersNewsOnElection(bothCandidates)

With threads components artifacts can work off-line based on local state information.
To collect only the latest news from a news service a thread may be employed which
remembers the time it last collected the news:

14

let collectLatestNews() :Ok = begin
let var lastCollectionTime = never()
loop
let latestNews = reutersNewsOnElectionSince(lastCollectionTime)
lastCollection Time:= now()
deliverNews(news)
thread.sleep()
end
end
let newsThread = thread.start(collectLatestNews)

Our newsThread collects (in parallel to other activities) all news available since its
last wakeup; then it goes to sleep until reactivated by thread.wakeup(newsThread).

Threads are first-class entities in Tycoon and can be observed (traced) reflectively. In
this way context data of artifact construction processes can be created and stored persis-
tently [Matthes and Schmidt 1994]. With Tycoon’s reflective capabilities such processes
can be parameterized by user-preferred filters for the information to be attached to the
artifact. This may not only add value to the constructed artifact but also help improving
the artifact construction process.

Exception Handling

Since unexpected events are frequent in open systems, Tycoon provides strong support
for the handling of exceptional situations. If an exception is raised, execution stops and
continues where the last exception handler was installed, possibly crossing function or
module boundaries.

The exception handling routine decides which action is sufficient to handle the excep-
tional situation. For example, when the display routine for a JPEG image is not available
on a particular workstation, a conversion from JPEG to GIF may help:

try displayJPEG(jpegPicture) when notAvailable then
try display GIF(convert JPEGtoGIF (jpegPicture)) when notAvailable with name :String then
message(” Cannot display picture ” <> name)
end
end

Scopes

Tycoon applications, frequently, are very large. As a result, they can be structured into
interfaces, modules and libraries which restrict the scope of bindings [Schmidt et al. 1993].
Tycoon libraries are nested high-level entities that declare a definition order for interfaces
and modules so that they can only use identifiers which were defined previously, preventing
cyclic dependencies. Interfaces export public identifiers while modules define the bindings
for these identifiers using also private bindings. Through nesting and hiding mechanisms
the scope of identifiers can be controlled.

Currently, an orthogonal suite of scoping primitives is under investigation which spe-
cializes in the requirements of personalized scopes in open networked environments. It
is provided by a generic Tycoon module that may be combined with modules for distri-
bution, versioning, access control [Rudloff et al. 1995, etc. thus enabling the flexibility
required by personalized digital libraries.

4.2 The Tycoon System Architecture

The architectural requirements for digital libraries can be seen from two perspectives.

15

Tycoon Applications
Internal Libraries External Libraries
Tycoon Workbench =————— Representation
Interactive Module Extensible
Toplevel Manager Syntax
TL Modeling
Value Type .
Translator Checker Refiection
TML Optimization
Code Static Reflective
Generator Optimizer Optimizer
TVM Manipulation
Interpreter Runtime External
Loop System Bindings
TSP Storage
Object Stores

Figure 4: Layered Architecture of the Tycoon System

> Since digital libraries hold a vast variety of information content and provide extended
information handling services there is an intrinsic complexity involved in libraries
seen as a performing software system.

> Complexity also results from the fact that library systems will never stay stable;
instead it has to be anticipated that libraries will develop during their virtually
infinite lifetime, even more so when connected to a virtually unlimited network
space.

Tycoon contributes to both complexity issues, first by enabling the construction of
sytems with a higher degree of regularity (through orthogonal persistence, platform inde-
pendence, migration technology etc.), second by investing in important cases of change and
in change management technology in general (open service integration, scalability, reflec-
tion). The layered architecture of the Tycoon System (see figure 4) scales from single-user
PC-based applications to distributed applications in open heterogeneous networks.

Persistence

Tycoon provides orthogonal persistence for data, code and threads. The Tycoon Store
Protocol, TSP [Matthes et al. 1996], defines a uniform, data model-independent call-
level interface to multiple (commercially distributed) persistent object stores abstracting
from implementation details of the underlying persistent stores. A typical TSP server is
implemented by a store adaptor which maps TSP data structures and functions to data
structures and operations of an existing object store.

TSP contributes significantly to Tycoon’s system scalability since TSP clients can
decide between different

16

garbage collection strategies
object faulting mechanisms
error recovery, logging and persistent savepoint mechanisms

commit protocols (for distributed systems)

vV v Vv Vv ¥

security and authentication support

or choose between a single- or multi-user environment.

A primary design goal of TSP is to provide efficient data storage independent of the
data and language model used by TSP store clients. TSP supports polymorphically typed
models where store objects may contain values of different types. TSP therefore uses an
untyped low-level store model which distinguishes only (uninterpreted) bit vectors, used
for information tokens, and arrays of references used for artifacts. The lifetime of TSP
store objects is defined by reachability and storage is reclaimed by garbage collection.

Open Service Integration

External services, e.g. visualisation systems or database systems, can be integrated into
the Tycoon system through bindings to external functions [Schmidt and Matthes 1993].
The binding mechanism allows the Tycoon system to call external functions as well as
it allows the external system to call back the Tycoon system via higher-order functions.
Examples are event-controlled windowing systems that call application-defined functions
when a button is pressed or a window closed etc.

Such services are wrapped by Tycoon in portable and type-safe functions exploiting
the full polymorphic power of the Tycoon type system even in cases in which external
functions are completely untyped. When calling external functions from Tycoon or, in
reverse, calling (back) Tycoon functions from external systems, parameter conversion is
handled by the Tycoon run-time system.

The following example shows an interface SQL that exports polymorphic functions to
access different SQL database systems:

interface SQL import ... export
error :Exception with sqlError:String end
Table(E, K <:Tuple end) <:Ok

;).p.enTable(Dyn E, K <:Ok tableName :String) :Table(E K)

i(;(.)kup(E, K <:Ok from :Table(E K) key :K) :E

:sgel.ectFromWhere(E, K, R <:Ok project(:E) :R from :Table(E K) where(:E) :Bool) :Iter. T(R)
end

Tycoon libraries hold, for example, two different modules ingresSQL and oracleSQL
which implement the above interface by bindings to the dynamic SQL call interfaces of the
Ingres and Oracle relational database management systems. The type operator Table(E
K) exported from the interface describes the type of SQL tables with element type E and
key K. For example, a value of type oracleSQL.Table(News Int) is an Oracle table with
rows that have attributes as defined by the Tycoon tuple type News where a running
number identifies a row.

The polymorphic function openTable opens a named table for further processing and
takes dynamic type variables E and K as its first arguments to ensure that the database
table structure matches the Tycoon type information. If a schema mismatch is detected,
the Tycoon exception error is raised at run-time. All other operations of the SQL interface
(queries, table updates) can be checked statically by the Tycoon compiler based on the

17

polymorphic signatures assigned to the SQL functions. For example, the signature of the
function lookup expresses the type constraint that from a table of type Table(E K) only
tuples of a matching type E can be retrieved.

The function select shows how polymorphic typing can be used to statically describe
a (unary) select statement. The selection on relation from is controlled by the predicate
where that works on relation elements. project builds the resulting tuples. Note that this
works only if the external database system is capable of including arbitrary function calls
dynamically in queries.

The Tycoon service integration technology sketched above is open to arbitrary ser-
vices of interest. Since, besides formatted data and SQL, texts are essential for digital
libraries, information retrieval technology has to be available based on fuzzy queries and
ranking lists . Therefore, Tycoon also maintains a text retrieval library which integrates
the services provided by the information retrieval system Inquery [Callan et al. 1991;
Broglio et al. 1994].

Besides the integration of external services, Tycoon is also open for being integrated
as a server into external systems. For this purpose, Tycoon provides a callback mechanism
which allows external systems to invoke Tycoon functions.

In the following example, Tycoon is set up as a server, e.g. as WWW server, that
accepts external communication requests. In our example, remote procedure calls are used
for communication and a RPC server is installed and started which stores and retrieves
JPEG images:

let jpegDB = tuple
let store(image :jpeg. T name :String) :Ok = ...
let retrieve(name :String) :jpeg.T = ...
end
let server = rpcServer.new()
rpcServer.register(server ”JPEG DB” jpegDB)
rpcServer.dispatch(server)

Platform Independence

The Tycoon Virtual Machine (TVM) is an abstract call interface above the TSP layer
that defines a bytecoded instruction set based on a higher-order, functional execution
model. TVM bytecode is either interpreted by a virtual machine or is compiled on the fly
into target machine code. The TVM interpreter and its associated run-time system are
written in ANSI-C.

The platform-independence of the TVM model makes it possible to dynamically trans-
fer portable bytecode between heterogeneous nodes in distributed digital libraries without
recompilation. Utilizing TSP’s linear external data representation (TXR), it is also possi-
ble to migrate a thread across system boundaries [Mathiske et al. 1995a; Mathiske et al.
1995b; Matthes and Schmidt 1994].

For example, the higher-order query function reutersNewsOnElection can be rewritten
in the following way for a client-server approach where the function bothCandidates is
shipped to a server via RPC and evaluated at the server site:

let reutersNewsOnFElection =

rpe.bindTo(:Fun(preference(:News) :Bool) :set. T(News) serverSite “reutersNewsOnElection”)
let bothCandidates(news :News) : Bool = newsIncludes(news ”Clinton”) andif newsIncludes(news ”Dole”)
let actualNews = reutersNewsOnElection(bothCandidates)

Migration Technology

Even more flexibility is achieved in Tycoon because threads can migrate between the
nodes in a network [Mathiske et al. 1995a; Mathiske et al. 1996). This enables, among

18

others, the implementation of agents. An agent may include the trace of the search in its
search process, e.g. the items it has already found, the number of nodes visited or the
nodes it has been recommended to visit:

Let SiteData = Tuple news :set. T(News) recommendedSites :set.T(Site) end
let homeSite = agent.thisSite()
let sitesVisited = set.new(:Site)
let sitesToVisit = set.create(new York washington losAngeles)
let newsFound = set.new(:News)
while not(set.empty(sitesToVisit)) do
let nextSite = set.getAny(sitesToVisit)
let local :SiteData = agent.migrateTo(nextSite)
set.insert(sites Visited nextSite)
set.include(newsFound searchFor(local.news ”Election”))
set.include(sitesToVisit set.exclude(local.recommendedSites sitesVisited))
end
agent.migrate(homeSite)
deliver(newsFound)

Reflection

The Tycoon system supports different manners of reflection. By linguistic reflection [Stem-
ple et al. 1991; Stemple et al. 1992] the execution of the compiler (compile-time reflection)
or the application (run-time reflection) can be influenced.

Compile-time reflection is achieved by executing user-defined code during compilation.
Dynamic types, for example, are implemented by compile-time reflection. The compiler
collects type information and stores it persistently for run-time use. Similarly, operations
on compile-time information are performed as, for example, by the Repeat construct
which repeats a list of Tycoon signatures (for the definition of Book, see above):

let createBook(Repeat Book) :Book = ...
Here, Repeat Book is reflectively replaced by
authors :set. T(Author) title :String contents :list. T(BookComponent)

Run-time reflection is achieved by typed bindings to compiler subcomponents (parser,
type checker, code generator, evaluator, module manager, ...), thus made available to
applications at run-time. In this way code may be evaluated or even generated depending
on run-time (computed) information. In Tycoon full type safety is guaranteed, even in the
presence of run-time and compile-time reflection, by the consistent use of dynamic types
in the Tycoon compile-time and run-time environments. The following example shows the
binding of the subtype checking function of the compiler and its use for dynamic values
at run-time:

let isSubType = reflect(:Fun(:typeRep_T :typeRep_T) :Bool ”isSubType”)
let dynamicValue = receive(...) (* transmitted dynamic value *)

if isSubType(typeOf(dynamicValue) :Book) then ... end

Behavioral reflection [Kirby et al. 1996] is a second kind of reflection supported by
Tycoon. It is achieved by influencing Tycoon’s interpreter loop and the run-time system
of the Tycoon Machine. For example, the following code marks the image napoleon as im-
mobile. Consequently, if the book napoleonicWars which references the image napoleon is
transferred, the image is not copied; instead a remote reference to the image is introduced:

markAsImmobile(napoleon)
sendTo(new York napoleonic Wars)

19

In summary, Tycoon is a powerful framework which provides much of the function-
ality required to make multi-functional and multi-media application systems persist in
turbulent environments such as open, heterogeneous and networked information infras-
tructures.

5 The Warburg Electronic Library Project

The Warburg Electronic Library Project (WEL) began within the framework of an in-
terdisciplinary cooperation [Niederée et al. 1996] between our group and the Art History
department at the University of Hamburg. The goal of this cooperation is the examination,
development and application of digital libraries for art history research purposes.

The development of this particular digital library focusses on two topics:

> understanding the special requirements of the application domain and their adequate
realization;

> personalization of a working environment for art history research by tailoring per-
sonal digital reference libraries to the needs of individual information consumers and
specific tasks.

5.1 The Application Domain

The application domain of art history is dominated by image material augmented by texts
and multi-media artifacts such as films and audio documents. Art history research stresses
the examination of themes, the identification of represented icons (symbols), events and
persons and their classification according to these issues. In the handling of image material
automatic image processing plays only a subordinate role. Most of the information has to
be added by people in a value adding process.

This style of image handling is not restricted to art history. Other areas such as mar-
keting and press archives are also primarily interested in themes and messages transported
by their artifacts as well as the represented objects and persons.

The PI-Index

Political Iconography (PI) is the area of art history which examines political messages
conveyed in images showing regents, politicians, ceremonies, political acts, etc. The un-
derlying assumption of the PI is that the effects of political actions are not restricted
to contracts and political documents but are also depicted in paintings, monuments and
buildings.

The art history department has developed an elaborated ontology for the classifica-
tion of images according to their political messages called the PI-Index. This ontology
consists of a hierarchy of terms referring to politics, political acts, and social phenomena.
It includes terms as varying as science, marriage, democracy, shepherd, and revolution.

The classification of image material according to this ontology cannot be done auto-
matically. It is itself a result of scientific work in the area of art history. About 250,000
cards with photographs of paintings, etc. showing politicians, political acts and cere-
monies, battles and social events from all epochs and countries are already classified
according to this scheme. The classification is not disjoint, many cards are assigned to
several terms of the index.

20

5.2 Tokens and Artifacts in the Warburg Electronic Library

Photographs or prints of paintings showing regents or related matters, associated texts,
speeches of politicians, and documentary films about regents like Napoleon, form the
relevant information tokens in this digital library. The tokens are created and included
into the information universe through scanning or an equivalent digitalization process. A
further source of tokens is text editing. Scanned image tokens are stored as bit vectors
in formats like JPEG or GIF. In Tycoon types are associated to these bit vectors and
routines, preventing the erroneous use of bit vectors and routines. The following example
shows the association of a type T and the routines scan and display for JPEG images:

let jpeg =
tuple
Let T = ...
let scan = bind(:Fun() :T ”imageLib” ”scan_jpeg_image”)
let display = bind(:Fun(:T) :Ok ”imageLib” ”display_jpeg_image”)
end
let jpeglmage = jpeg.scan()
Jjpeg.display(jpeglmage)

As mentioned in section 4 the bind function in Tycoon is used to include external, machine-
dependent routines scan_jpeg_image and display_jpeg_image that work on JPEG files.

On this level the tracing environment may provide information about the date of
digitalization and the identification of the person creating this token.

The tokens are taken as starting points for the artifact construction. The image token
showing Napoleon crossing the Alps, for example, is taken as a basis for an artifact as
illustrated in figure 5. The artifact contains a reference to the scanned painting (image
token) and a thumbnail copy of it, as well as information about the artist, the title, and
the date of the the painting as well as the location where the original painting can be
found and the source of the scanned print of the painting.

In addition, the artifact is accompanied by content-descriptive metadata: It is classified
according to the ontology of the PI-Index and the regent pictured by the token, here
Napoleon, is specified. This additional information can be considered as information tokens
from a private information source.

The type representation of this artifact in Tycoon looks as follows:

Let PIArtifact =
Tuple
originallmage :Reference(jpeg.T)
thumbnaillmage :jpeg. T
title :String
date :Date

end

Reference is a data type which abstracts from the distinct kinds of possible bindings
like external/internal, local/remote etc.

The Warburg Electronic Library maintains a large collection of these artifacts together
with services for their persistent storage, transmission, retrieval, and presentation. On the
language level retrieved artifacts may be included into a list of type list. T(PIArtifact) and

the associated thumbnail images may be displayed by using iteration abstraction provided
as generic services by a Tycoon library.

list.forEach(artifactSelection fun(a :PIArtifact) jpeg.display(a.thumbnaillmage))

The library is augmented by an Oracle database containing historical data on regents
of all centuries. The Tycoon SQL-gateway to Oracle databases is described in section 4.

21

Netscape: Karte zu Bild img001§

o |y | @ | | 2 @ @
Back |Forward| Home Relosd | Images | Open | Print | Find Stop

do | o | By | @ | H | 22

Back |Forward| Home Reload | Images | Open | Prin

Lacation: [hitp:/ fidom-wwr informatik uni-hamburq.de /Frrojects /Regierung

hittp 1 didom-wrw informatik.uni-hamburg.de /Projects/Regierungsbank /Eilder fFeldherr findex: 5a 2[R

Figure 5: Napoleon crossing the Alpes at St. Bernhard

Looking up historical data about Napoleon is accomplished by the following function of
the SQL interface.

oracleSQL.lookup(regents ”Napoleon”)

In addition to image artifacts and structured data the Warburg Electronic Library
also contains text collections, e.g. about political iconography and political events. These
collections can be searched by an Inquery information retrieval engine. Employing the
Tycoon Inquery gateway the collection can be searched in the same language framework
as the Oracle database.

inquery.eval(political Events ” Anything about Napoleon and Waterloo”)

The query results thus can be easily combined, e.g. in order to prepare a presentation
about Napoleon at Waterloo with historical dates from the database regents and text
information from the text collection politicalEvents.

5.3 Personal Reference Libraries

Digital libraries provide multi-media material for groups of information consumers. To
secure the success of a complex task a working environment tailored to the individual
requirements of the consumer and to the specific task is necessary. The development of
such personalized, cooperative working environments called personal reference libraries is

22

currently being examined in our group. Personal digital reference libraries can be stored
persistently and exchanged with other persons who work on the same or a similar topic.

An example of the construction of a personal reference library is the preparation of
a publication and/or demonstration on equestrian portraits of regents throughout the
centuries.

The ontology Pl-Index includes the terms Reiterbild, i.e. equestrian portrait, and
Herrscher, i.e. regent. The set of pictures and other material classified into both categories
can thus be easily accessed using the services of the digital library.

In the next step a personal reference library can be created for the special task by
selecting representative pictures and related text material from the different centuries.
The selected pictures can be annotated with comments giving, for example, the reason for
the choice, or ideas for the publication. Further information such as the date of inclusion,
the creator of the artifact, and the source of the information can be added automatically
from the tracing environment.

Since personal reference libraries are also artifacts (compare figure 1) the different
supported binding mechanisms can be exploited to realize the separation between the
public scope of the digital library and the private tailored scope of the personal reference
library.

> Remote bindings to relevant paintings in other art collections and local bindings to
paintings organized in the PI-Index can be established and stored in local object
stores.

> Information on artists, available on CD-ROM, may be included in the personal
library by external references in order to gain a better understanding of individual
paintings.

> Stored parameterized queries can be used to establish dynamic bindings to contem-
porary paintings of horses and other animals, evaluating the query on demand for
different parameters specifying the time frame of interest.

> Text information about the illustrated event, the regent or equestrian portraits in
general can be included by remote references to entire publications complemented
by copies of text passages considered important for the publication in work.

> Autonomous bindings (agent technology) can be exploited to search further art
collections for representative equestrian portraits of regents. The respective agent
may be resent periodically in order to retrieve the most actual publications and
newly created tokens and artifacts.

Personal reference libraries are created stepwise, scanning the available material in
several sessions, including new more adequate tokens and artifacts, possibly rejecting
previous choices.

This requires a binding environment that can be updated dynamically (inserting and
deleting bindings). Dynamic environments as proposed in [Dearle 1989] are considered
a good starting point for the realization of these dynamic artifacts. The combination of
the various binding mechanisms with the concept of a dynamic environment is a topic of
current research.

6 Conclusions and Future Research

Central to our view of digital libraries over networked information tokens is the value-
added construction of information artifacts and their use in personalized information
environments. The library processes of artifact construction and use are enabled and
supported by advanced binding and tracing environments which place substantial demands
on the linguistic and architectural requirements for digital libraries. Although languages

23

and systems such as Tycoon meet many of the requirements requested, there remains
the practical problem of how to best organize and customize the concrete software which
implements such advanced environments for library process support.

On various occasions in this paper we mentioned already the similarity between digital
libraries with information artifacts and software libraries (e.g. [Meyer 1990; Meyer 1994])
with generic software tokens and customized software artifacts constructed for specific use.
Based on our initial experience we expect that much of the functionality of the binding
and tracing environments for information artifacts can also be used for the construction
and use of the software artifacts required by digital libraries. The first-class status of data,
code and threads in Tycoon provides a promising framework for such an approach.

On the technology level, we have a vested interest in the extension of our binding
technology, e.g., by the concept of versioned bindings and by extended operations on
structured collections of bindings.

The most relevant input, however, for the future development of digital libraries we
expect from our cooperation with potential user communities which have both the relevant
library contents as well as the pragmatics of how to use them. From their feedback we
expect to gain the domain knowledge which is required to design and realize the adequate
abstractions for future digital libraries.

Acknowledgement

A version of this paper has been submitted to the Journal of Digital Libraries, Special
Issue on Languages for Digital Libraries (in memory of Paris Kanellakis), Peter Buneman,
Stan Zdonik (editors).

The research reported in this paper was partially funded by the European Union, Basic
Research Project No. 6309 FIDE (Fully Integrated Data Environments) and Network of
Excellence No. 6606 IDOMENEUS (Information and Data on Open Media for Networks
of Users).

References

Ackerman and Fielding 1995: Ackerman, M.S. and Fielding, R.T. Collection mainte-
nance in the digital library. In Proceedings of the Second Annual Conference on the
Theory and Practice of Digital Libraries, June 1995.

Balabanovic and Shoham 1995: Balabanovic, M. and Shoham, Y. Learning inforamtion
retrieval agents: Experiments with automated web browsing. In Proceedings of the AAAI
Spring Symposium on Information Gathering from Heterogeneous, Distributed Resources,

March 1995.

Birmingham 1995: Birmingham, W.P. An agent-based architecture for digital libraries.
In Proceedings of the Second Annual Conference on the Theory and Practice of Digital
Libraries, June 1995.

Bohm and Rakow 1994: Bohm, K. and Rakow, T.C. Metadata for multimedia docu-
ments. Sigmod Record, 23(4):21-26, December 1994.

Broglio et al. 1994: Broglio, J., Callan, J.P., and Croft, W.B. Inquery system overview. In
Proceedings of the TIPSTER Text Programm (Phase 1), pages 47-67. Morgan Kaufmann
Publishers, 1994.

Callan et al. 1991: Callan, J.P., Croft, W.B., and Harding, S.M. The Inquery retrieval
system. In Proceedings of the Third International Conference on Database and Ezxpert
Systems, 1991.

24

Cameron 1994: Cameron, R.D. To link or to copy? Four principles for materials ac-
quisition in internet electronic libraries. Technical Report CMPT TR 94-08, School of
Computing Science, Simon Fraser University, December 1994.

Cardelli 1989: Cardelli, L. Typeful programming. Technical Report 45, Digital Equip-
ment Corporation, Systems Research Center, Palo Alto, California, May 1989.

Cousins et al. 1995: Cousins, S., Ketchpel, S., Paepcke, A., Garcia-Molina, H., Hassan,
S., and Roscheisen, M. Interpay: Managing multiple payment mechanisms in digital
libraries. In Proceedings of the Second Annual Conference on the Theory and Practice
of Dugital Libraries, 1995.

Dearle 1989: Dearle, A. Environments: a flexible binding mechanism to support system
evolution. In Proc. HICSS-22, Hawait, volume 11, pages 46-55, January 1989.

Gosling and McGilton 1995: Gosling, J. and McGilton, H. The Java language environ-
ment — A whitepaper. Technical report, Sun Microsystems, October 1995.

Graham 1995: Graham, P.S. The digital research library: Tasks and commitments. In
Proceedings of the Second Annual Conference on the Theory and Practice of Digital
Libraries, June 1995.

Kashyap et al. 1996: Kashyap, V., Shah, K. and Sheth, A. Metadata for building the mu-
timedia patchquilt. In Subrahmenian, V.S. and Jajodia, S., editors, Multimedia Database
Systems, pages 297-319. Springer, 1996.

Kirby et al. 1996: Kirby, G.N.C., Connor, R.C.H., Morrison, R., and Stemple, D. Us-

ing reflection to support type-safe evolution in persistent systems. Technical Report

CS/96/10, University of St. Andrews, 1996.

Liet al. 1996: 1i, W., Gauch, S., Gauch, J., and Pua, K.M. Vision: A digital video
library. In Digital Libraries ’96, 1st ACM International Conference on Digital Libraries,
1996.

Mathiske et al. 1995a: Mathiske, B., Matthes, F., and Schmidt, J.W. On migrating
threads. In Proceedings of the Second International Workshop on Next Generation In-
formation Technologies and Systems, Naharia, Israel, June 1995. (Also appeared as TR
FIDE/95/136).

Mathiske et al. 1995b: Mathiske, B., Matthes, F., and Schmidt, J.W. Scaling database
languages to higher-order distributed programming. In Proceedings of the Fifth Interna-

tional Workshop on Database Programming Languages, Gubbio, Italy. Springer-Verlag,
September 1995. (Also appeared as TR FIDE/95/137).

Mathiske et al. 1996: Mathiske, B., Matthes, F., and Schmidt, J.W. On migrating
threads. To appear in the Journal of Intelligent Information Systems, 1996.

Matthes and Schmidt 1991: Matthes, F. and Schmidt, J.W. Bulk types: Built-in or add-
on? In Database Programming Languages: Bulk Types and Persistent Data. Morgan
Kaufmann Publishers, September 1991.

Matthes and Schmidt 1992: Matthes, F. and Schmidt, J.W. Definition of the Tycoon lan-
guage TL — a preliminary report. Informatik Fachbericht FBI-HH-B-160/92, Fachbereich
Informatik, Universitat Hamburg, Germany, November 1992.

Matthes and Schmidt 1993: Matthes, F. and Schmidt, J.W. System construction in the
Tycoon environment: Architectures, interfaces and gateways. In Spies, P.P., editor,
Proceedings of Furo-Arch’93 Congress, pages 301-317. Springer-Verlag, October 1993.

Matthes and Schmidt 1994: Matthes, F. and Schmidt, J.W. Persistent threads. In Pro-
ceedings of the Twentieth International Conference on Very Large Data Bases, VLDB,
pages 403-414, Santiago, Chile, September 1994.

25

Matthes et al. 1995: Matthes, F., Schroder, G., and Schmidt, J.W. Tycoon: A scalable
and interoperable persistent system environment. In Atkinson, M.P., editor, Fully Inte-
grated Data Environments. Springer-Verlag (to appear), 1995.

Matthes et al. 1996: Matthes, F., Muller, R., and Schmidt, J.W. Towards a unified model
of untyped object stores: Experience with the Tycoon store protocol. In Advances in
Databases and Information Systems (ADBIS’96), Proceedings of the Third International
Workshop of the Moscow ACM SIGMOD Chapter, 1996.

Matthes 1993: Matthes, F. Persistente Objektsysteme: Integrierte Datenbankentwicklung
und Programmerstellung. Springer-Verlag, 1993. (In German).

McNab et al. 1996: McNab, R.J., Smith, L.A., Witten, [.LH., and Henderson, C.L. To-
wards the music library: Tune retrieval from acoustic input. In Digital Libraries '96,
1st ACM International Conference on Digital Libraries, 1996.

Meyer 1990: Meyer, B. Lessons from the design of the Eiffel libraries. Communications
of the ACM, 33(9):69-88, September 1990.

Meyer 1994: Meyer, B. The Base Object-oriented Component Libraries. Prentice Hall,
Englewood Cliffs, New Jersey, 1994.

Morrison et al. 1990: Morrison, R., Atkinson, M.P., Brown, A.L., and Dearle, A. On the
classification of binding mechanisms. Infomation Processing Letters, 34(2):51-55, 1990.

Morrison et al. 1994: Morrison, R., Brown, A.L., Connor, R.C.H., Cutts, Q.J., Dearle,
A., Kirby, G.N.C., and Munro, D.S. The Napier88 reference manual (release 2.0). FIDE
Technical Report Series FIDE/94/104, FIDE Project Coordinator, Department of Com-
puting Sciences, University of Glasgow, Glasgow G128QQ, 1994.

Niederée et al. 1996: Niederée, C., Hattendorf, C., Mufig, S., Warnke, M., and Schmidt,
J.W. Warburg electronic library: Eine digitale Bibliothek fiir die Politische Ikonographie.
unthh forschung, XXXI, 1996.

Nurnberg et al. 1995: Nurnberg, P.J., Furuta, R., Leggett, J.L., Marshall, C.C., and Ship-
man III, F.M. Digital libraries: Issues and architectures. In Proceedings of the Second
Annual Conference on the Theory and Practice of Digital Libraries, June 1995.

Paepcke 1996: Paepcke, A. Digital libraries: Searching is not enough. D-Lib Magazine,
May 1996. http://ukoln.bath.ac.uk/dlib/dlib/may96.

Roscheisen et al. 1994: Roscheisen, M., Mogensen, C., and Winograd, T. Shared web
annotations as a platform for third-party value-added information providers: Archi-
tecture, protocols, and usage examples. Technical Report CSDTR/DLTR, Computer
Science Department, Stanford University, Stanford, CA 94305, U.S.A., November 1994.
http://www-pcd.stanford.edu/ COMMENTOR.

Roscheisen et al. 1995: Roscheisen, M., Winograd, T., and Paepcke, A. Content ratings
and other third-party value-added information - defining an enabling platform. D-Lib
Magazine, August 1995. http://ukoln.bath.ac.uk/dlib/dlib/august95.

Rudloff et al. 1995: Rudloff, A., Matthes, F., and Schmidt, J.W. Security as an add-on
quality in persistent object systems. In Second International Fast/West Database Work-
shop, Klagenfurt, Austria, Workshops in Computing, pages 90-108. Springer-Verlag,
1995. (Also appeared as TR FIDE/95/138).

Schmidt and Maithes 1993: Schmidt, J.W. and Matthes, F. Lean languages and models:
Towards an interoperable kernel for persistent object systems. In Proceedings of the IEEE
International Workshop on Research Issues in Data Engineering, pages 2-16, April 1993.

Schmidt and Matthes 1994: Schmidt, J.W. and Matthes, F. The DBPL project: Ad-
vances in modular database programming. Information Systems, 19(2):121-140, 1994.

26

Schmidt et al. 1993: Schmidt, J.W., Matthes, F., and Valduriez, P. Building persistent
application systems in fully integrated data environments: Modularization, abstraction
and interoperability. In Proceedings of Euro-Arch’93 Congress, pages 270-287. Springer-
Verlag, October 1993.

Schmadt 1977: Schmidt, J.W. Some high level language constructs for data of type rela-
tion. In Proceedings of the ACM-SIGMOD International Conference on Management of
Data, Toronto, Canada, August 1977.

Shiwvakumar and Garcia-Molina 1996: Shivakumar, N. and Garcia-Molina, H. Building
a scalable and accurate copy detection mechanism. In Digital Libraries ’96, 1st ACM
International Conference on Digital Libraries, 1996.

Stemple et al. 1991: Stemple, D., Morrison, R., and M., Atkinson. Type-safe linguistic
reflection. In Database Programming Languages: Bulk Types and Persistent Data, pages
357-362. Morgan Kaufmann Publishers, 1991.

Stemple et al. 1992: Stemple, D., Sheard, T., and Fegaras, L. Linguistic reflection: A
bridge from programming to database languages. In Proceedings 25th Annual Hawaii
International Conference on System Sciences, pages 46-55, 1992,

Tycoon 1992: WWW home page for the Tycoon project. http://idom-www.informatik.-
uni-hamburg.de/Projects/Tycoon/entry.html, 1992.

Van House 1995: Van House, N.A. User needs assessment and evaluation for the uc
berkeley electronic environmental library project: a preliminary report. In Proceedings
of the Second Annual Conference on the Theory and Practice of Digital Libraries, School
of Library and Information Studies University of California Berkeley, CA 94720-4600,
USA, June 1995. Austin, Texas, USA.

27

