The Tycoon Machine Language TML

An Optimizable
Persistent
Program Representation

Andreas Gawecki Florian Matthes

Universitat Hamburg
Vogt-Kolln-Strafie 30
D-22527 Hamburg

{gawecki,matthes}@dbisl.informatik.uni-hamburg.de

July 29, 1994

Abstract

This document provides a brief overview of the Tycoon Machine Language TML which
is used as a persistent intermediate program representation within the Tycoon system.
TML representations of Tycoon programs provide the basis for extensive tree analysis and
rewriting aiming at various optimizations which are independent of source languages and
target machines.

TML representations are used for both static (compile-time) and dynamic (runtime)
optimizations. Dynamic optimizations are of particular importance for performance im-
provement of large and modular programs.

TML is based on Continuation Passing Style (CPS), a powerful yet simple program
representation technique developed as a framework for optimizing compilers. The advan-
tage of CPS lies in the significant reduction in number of program constructs to be handled
by the Tycoon static and dynamic (reflective) optimizer.

We propose that in modern persistent data-intensive applications traditional database
query optimization be integrated into a more generalized framework for extensive program
analysis and transformation.

Contents
1 Introduction

2 The Tycoon Machine Language TML

2.1 TML Abstract Syntax oo o e e
2.2 Primitive Procedures Lo
2.3 Exceptions
2.4 Compilation Phases

3 Translating TL Source Programs into TML

3.1 Comstants L e e
3.2 Bindings
3.3 EXpressionso e
3.4 Functions e
3.5 Aggregates e
3.6 Recursive Bindings L
3.7 Conditionals L
3.8 Loops e e
3.9 Case Statements e
3.10 Exception Handling L
3.11 C Language Function Calls
3.12 Builtin Functionality
3.13 L-Value Bindings
4 Optimization
4.1 TML Rewrite Rules
4.2 Extensions for Reflective Runtime Optimization

5 Target Machine Code Generation

5.1 Exception Conversion e
5.2 Environment Analysis and Closure Conversion
5.3 Generating ANSIC Code

6 Concluding Remarks

A TML Data Structures

-~ O Ut NN

o O © ®

11
11
11
12
12
13
14
14

15
16
19

20
21
22
24

25

28

Tycoon Applications

Tycoon Libraries
intemal/external

L

Compiler Iet+f(x, y :Int) :Int =
Front End Xty

™L

Compiler proc(xyec)
Back End (+xyec)

VM

052 1di 2 iy
. 152 Idl 2 i
Tycoon Runtime External 272 g2+
Virtual Machine System Libraries 3c2 call2
430 adipo
5 fo ret

TSP

Object Store
(Persistence, Recovery, Multi-User Access)

Figure 1: Tycoon System Layers

1 Introduction

The Tycoon project aims at substantially improving the productivity of database program-
mers by providing an integrated linguistic and architectural framewor k for the flexible inte-
gration of external services into an open database programming environment [Matthes and
Schmidt 1993]. Tycoon applications are written in a strongly typed, higher-order polymorphic
programming language (TL, Tycoon Language) that off ers a minimal and orthogonal set of
naming, binding and typing concepts to the application and system programmer [Matthes
and Schmidt 1992].

The Tycoon system is organized as a layered architecture as outlined in figure 1. Tycoon pro-

grams are parsed by the compiler front end and an abstract syntax tree representation with
annotated type information is built. Subsequently, the program is passed to the compiler back
end in the form of a tree-structured, untyped intermediate program representation (TML, Ty-
coon Machine Language). This intermediate representation is used to perform various source
language- and target machine-independent optimizations by extensive tree rewriting. The
TML tree is further translated into a byte-coded sequence of abstract m achine instructions
(TVM, Tycoon Virtual Machine) that permits efficient code execution at runtime. The Tycoon
virtual machine and the runtime system communicate with the underlying object store via
a data-model independent software protocol (TSP, Tycoon Store Protocol) that encapsulates

different object store implementations and their components for access optimization, storage

reclamation, persistence, concurrency control and distribution.

This document is intended to provide an overview over the intermediate program representa-
tion TML and the translation process from typed TL source code into untyped TML trees.
The abstract syntax of TML and the set of available primitive operations are presented in

2 2 THE TYCOON MACHINE LANGUAGE TML

sections 2.1 and 2.2. Two alternatives in handling runtime exceptions in the intermediate pro-
gram representation are discussed in section 2.3. Section 2.4 gives an overview of the different
passes of the Tycoon compiler back end which works on the TML intermediate representation.
The rest of the paper describes the various passes of the compiler back end in more detail.
The TL data structures used to represent TML trees within the Tycoon system are given in
the appendix.

2 The Tycoon Machine Language TML

Building on the experience gained with the first TML version that was designed to be executed
directly [Matthes 1993; Mathiske 1992], we have developed a new intermediate representation
that emphasizes easy program compilation, transformation and analysis. These goals are
achieved by representing programs in Continuation Passing Style (CPS) which has been used
successfully in several optimizing compilers for functional languages [Appel 1992; Kranz et al.
1986; Kelsey 1989; Teodosiu 1991] as well as for object-oriented languages [Gawecki 1992].

CPS is a powerful yet simple program representation technique. The advantage of CPS lies
in the great reduction of the number of program constructs that have to be handled by the
Tycoon compile-time and runtime (reflective) optimizer.

CPS is particularly well-suited for data flow analysis by making the flow of control explicit
through the uniform use of one language construct: the procedure call. Since CPS does not
have implicit procedure returns, this language construct can be viewed as a generalized goto
with parameter passing [Steele 1978].

CPS has a simple and clean semantics based on the A-calculus. TML is effectively a call-by-
value A-calculus with store semantics. A number of predefined primitive procedures (section
2.2) operate on an implicit, hidden store.

By representing programs in CPS, many well-known optimization techniques become special
cases of a few simple and general A-calculus transformations. Due to certain syntactical re-
strictions on the CPS tree, these transformations can be applied freely even in the presence
of side-effecting calls to primitive procedures.

Six different node types are sufficient to represent the data structures for a TML tree (cf.
appendix A). This simplicity makes it possible to build compact language processors like
compiler front ends, back ends and optimizers.

2.1 TML Abstract Syntax

The abstract syntax of TML is given in figure 2. The set of literal constants (Lit) includes
simple values such as integers, characters and boolean values, as well as references (object
identifiers, OIDs) to complex objects in the store. These values can be bound to variables
(identifiers) by means of an application. In the following example, an integer literal, a character
constant and an object identifier are bound to variables i, ch and oid, respectively. These
variables might be used as values within the body app of the A-abstraction (which in turn
must be an application):

2.1 TML Abstract Syntax 3

lit € Lit Literal Constants (object identifiers)
t € Temp Temporary Variables

c € Cont Continuation Variables

v € Var Variables (Identifiers)

prim € Prim Primitive Procedures (procedure constants)

val € Val Values
abs € Abs Abstractions
app € App Applications

v n= t|e

val = lit | v | abs

abs = Mvy..v,) app n>0

app == (valyval;.val,) n>0
| (primwvaly..val,) n >0

Figure 2: Abstract Syntax for TML

(A(i ch oid) app
13
o

< oid 0200564780 >)

Abstractions are also values in TML. This means that they may be bound to variables and
that these variables may be used in the functional position (valy on the right hand side of
the production for app in figure 2) of an application. In the following example, an abstraction
with a single formal parameter ¢ is bound to the variable fn, and fn is used immediately within
an application of the abstraction, whereby ¢ is bound to an integer value:

(A(fn) (fn 13)
A(t) app)

Although the semantics of TML is based on the general A-calculus, well-formed TML programs
must satisfy a number of additional constraints':

1. A value used in the functional position of an application must, at runtime, evaluate to an
abstraction. Furthermore, this abstraction must expect the same number of value and
continuation arguments as the given application, and it must expect them in the same
order?. This property is statically enforced by the compiler front end that performs the
necessary type checking on the input to the TML code generator, rejecting any program
that contains an application which might violate this rule.

1t is important to note that these contraints are never violated by any of the TML rewrite rules introduced
in chapter 4.

2We currently investigate techniques for compiling and type-checking variable-length argument lists. These
techniques would merely weaken the given well-formedness rule.

4 2 THE TYCOON MACHINE LANGUAGE TML

2. Similarly, an application of a primitive procedure must obey the calling conventions of
the primitive. Again, the compiler front end (that generates calls to primitive proce-
dures) has to enforce this constraint on any input program.

3. Continuations may not escape (by binding them to value identifiers), therefore, contin-
uations are no first class values in TML. It is not possible to store continuations in data
structures where they might subsequently be retrieved and applied. This restriction al-
lows TML procedure calls to be compiled into efficient (stack based) procedure calls
and returns on stock hardware, so the main motivation lies in the target code generator
techniques we use. If we built a somewhat more complex code generator that is able to
deal with first-class continuations, we could simply drop this restriction. The rest of the
compiler (e.g. the optimizer) would not be affected.

Several CPS-based compilers support continuations as first class values [Appel 1992;
Kranz et al. 1986; Kelsey 1989; Teodosiu 1991]. However, these compilers have to trans-
late source language constructs that capture the current continuation, for example, the
call/cc of SCHEME [Steele 1986], or the built-in polymorphic function callcc of ML
[Reppy 1990]).

4. Identifiers (value and continuation variables) may not be bound more than once (unique
binding rule), i.e. an identifier may occur only once in at most one formal parameter
list. For example, the following two TML code fragments are not allowed:

A(x x)app
MO (xJapp val)

This means that the TML code generator has to use fresh identifiers for the parameter
list of every new A-abstraction. The TML optimizer (section 4) and the target code
generator (section 5.3) rely heavily on this property.

5. Abstractions that are used as values (that is, not as continuations and not in functional
position of applications) may take an arbitrary number of value parameters, but they
must take exactly two continuation parameters: one for the normal continuation (that
receives the computed value) and one for the ezception continuation (that is invoked iff
a runtime exception occurs, cf. section 5.1).

Abstractions that are used as values correspond to first-class, user level procedures. In order to
make the printed TML representation used in this document more readable, these procedures
(proc abstractions) are differentiated from continuations (cont abstractions) even though
both have the same internal representation (cf. appendix A) and the same semantics (-
abstractions). The differentiation is based on a purely syntactic property of abstractions: a
continuation does not take any other continuation as a parameter. Thus, the parameter lists
of continuation abstractions do not contain any continuation variables. The following two
syntactic equivalences reflect these considerations (n > 0):

A(ty..ty)app = cont(y..t,)app
Aty tyc.c.)app = proc(ty..t, c.c.)app

2.2 Primitive Procedures 5

(pryc.c.) integer arithmetic, p € {+,—,*,/, %}

(prycycs) integer comparison, p € {<,>,<=,>=}

(pzye) bit operations on integers, p € {<<,>>,&,[,",”}

(char2int z ¢) convert a character to an integer value

(int2char z ¢) convert an integer to a character value

(array val, .. .val, c) create a mutable array holding n object references

(vector val, . ..val, c) create an immutable array

(new n init) create a mutable array holding n object
references, initialized with init

($new n init c) create a mutable byte array holding n simple
byte values, initialized with in:t
([lzie) array access: indirect indexed load
([I=zive) array update: indirect indexed store
($[]zic) byte array access
($[];=aive) byte array update
(==1z case analysis based on object identity with. ..
V1...0, values and. ..
€1 Cy [Cnyr]) branches (optional else branch)

(Y Moy ...v, ¢)app) the Y combinator

(size v ¢) array or byte array size (in slots)

(move n src srcOffset dst dstOffset ¢) move array contents

($move n src srcOffset dst dstOffset ¢) move bytearray contents

(ccall fmt cfn ¢ ¢q) C language function call

(pushHandler ¢, ¢,) Install continuation ¢; as a new
exception handler, continue with ¢,

(popHandler ¢) Remove the topmost exception handler,
continue with ¢

(raise z) Raise exception x

Figure 3: TML Primitives supporting TL source program compilation

2.2 Primitive Procedures

In TML, most of the ‘real work* needed to implement source language semantics (e.g. integer
arithmetik) is factored out into primitive procedures which are not considered part of the
intermediate language itself.

The set of primitive procedures handled by the current back end is listed in figure 3. Some
examples of their usage will be given in sections 3 and 5. By definition, each primitive calls ex-
actly one of its continuation arguments tail-recursively, passing the result of its computation,
if any. For example, some arithmetic primitives take two continuations: the normal continu-
ation which receives the calculated result, and an exception continuation which is invoked if
the primitive failes due to overflow.

Although this set of predefined primitive procedures is rather small, the set is not minimal
due to efficiency tradeoffs. Moreover, it is possible to define new primitive procedures in order

6 2 THE TYCOON MACHINE LANGUAGE TML

to meet the specific needs of more specialized source languages, for example languages with a
rich built-in object-oriented data model like Fibonacci [Albano et al. 1993]. These languages
are often built on top of abstract machines with complex instruction sets. The easiest way
to support such complex instructions in TML is to define new primitives that are mapped
directly to the corresponding abstract machine instructions during target code generation.

New primitive procedures can be defined at back end compile-time by providing the following
information to the generic TML rewriting tools:

1. A function to generate target machine code for a given call. This function is used by the
code generator to map TML primitive procedure calls into sequences of target machine
instructions.

2. A meta-evaluation function to perform optimizations on TML nodes representing calls
to this primitive procedure. This function is used by the optimizer to perform constant
folding. To give an example, the primitive procedure ’+’ has an associated function that
is able to reduce the TML application node

(+12c c.)

into an application of the continuation which represents normal (i.e. non-exceptional)
execution with the result:

(cc 3)

3. A function to estimate the runtime cost of a given call (represented by a TML node) to
the primitive procedure, measured in the number of instructions necessary to implement
the primitive on an idealized abstract machine. This function is used by the optimizer to
estimate the possible savings resulting from the inlining of a TML procedure containing
calls to the primitive.

4. A collection of attributes useful for the optimizer, for example commutativity, side effect
classes [Gifford and Lucassen 1986], and flags to enable or disable certain optimization
rules. There is a default value for any of these attributes, representing the worst possible
case (i.e no further information available) for the optimizer.

2.3 Exceptions

The following two approaches to handle exceptions in CPS have been described by [Appel
1992]:

1. A distinguished location that holds the current exception handler is kept in the store.
This handler is simply a continuation taking one argument, the exception object. Two
primitive procedures manipulate that location:

sethandler installs a new handler (a continuation function), and

gethandler retrieves it and passes it to its continuation argument, where it can sub-
sequently be invoked.

2.4 Compilation Phases 7

2. Every function accepts an additional argument, the exception continuation, which is
normally passed through to other functions called. To install a new handler, however, a
new continuation function is passed which handles exceptions in the callee’s body. The
‘old’ handler is remembered automatically within the lexical environment.

Obviously, the second scheme is more in the spirit of continuation passing style since it makes
control flow explicit even in the presence of exceptions. This approach has the advantage
that exception handling can be optimized immediately with ordinary optimization rules. This
becomes important when the optimizer is inlining functions that do extensive exception han-

dling.

In [Appel 1992] it is claimed that the second scheme has an important drawback which forced
him to use the first variant in his compiler for ML: the runtime system might not be able to
locate the current exception handler to raise a built-in exception like arithmetic overflow.

However, we think this drawback can easily be avoided by treating the exception argument
in a special way during target code generation. In our compiler, this is done anyway with
the continuation argument, which is passed as a return address on the stack at runtime with
ordinary procedure calls and returns. Thus, the implementation has the same freedom as in
the first scheme. Moreover, built-in exceptions like arithmetic overflow are handled in TML
simply by using primitive procedures that accept an additional exception continuation.

Another drawback of the second scheme is that it does not handle asynchronous exceptions
like interupts, but we think that this kind of exceptions should be handled somewhat different
anyway, since a thread’s stack can be unwound only when the evaluator is in a consistent state
[Reppy 1990]. The same problem arises (and must be solved) by a special asynchronous excep-
tion: memory overflow, signaled by the underlying object store. When the garbage collector
is invoked, every thread must be in a well-defined state.

We will transform the second scheme into a variant of first prior to target code generation
(see section 5.1 about exception conversion).

2.4 Compilation Phases

The Tycoon compiler front end performs syntactic analysis, TL abstract syntax tree genera-
tion and semantic analysis (scoping and type checking). The remaining compilation tasks are
performed by the comiler back end and are organized into the following phases:

1. TML code generation: translation of typed TL abstract syntax trees into untyped TML
trees, including cell conversion for mutable variable bindings (see section 3.13).

2. a-conversion: renaming of variables to avoid name clashes in later passes, in particular
for the extensive tree rewriting performed by the optimizer in the next phase.

3. TML code optimization (optional): this includes various optimizations like constant
folding, dead code elimination and procedure inlining.

4. Exception conversion: removing exception continuation arguments from procedures and
procedure calls.

8 3 TRANSLATING TL SOURCE PROGRAMS INTO TML

5. Environment analysis: gathering information on the use of each variable, i.e. whether it
is referenced by closures.

6. Closure conversion: eliminating non-local variable references.

7. Target machine code generation.

Note that these are only conceptually different phases. For efficiency reasons, several of them
may be combined into a single pass of the compiler. Phases 1 to 2 as well as Phases 5 to 6
are currently merged into a single pass, respectively.

The translation of TL into TML (step 1) is the topic of the next section. During this pass,
the a-conversion (step 2) of variable names is done as a side-effect of the TML tree con-
struction. Since a new TML variable node is created for each bound variable, variables with
the same name are distinguished by their different object identities (object identifiers) of the
corresponding TML tree nodes.

After the TML tree is built, the (optional) optimization pass (step 3) performs various source
language and target machine independent optimizations by extensive TML tree rewriting. We
describe the generic re-write rules for TML in section 4.

The phases 4 through 6 rewrite the TML tree into a somewhat simpler form that is easier
to handle by the code generator (step 7). The exception conversion pass (step 4) is described
in section 5.1, whereas environment analysis (step 5) and closure conversion (step 6) are
summarized in section 5.2. Finally, the generation of executable target machine instructions
(step 7) is discussed in section 5.3.

3 Translating TL Source Programs into TML

In this section, we discuss some TL source code examples and their corresponding TML
equivalents in order to give an idea of the overall translation process. For an introduction to
TL see [Matthes and MiiBig 1993]. When a given TL expression is translated, there is always
a current continuation that denotes the continuation after evaluation of the expression. This
normal continuation will eventually receive the computed value of the expression. Similarly,
there is always a current exception continuation that denotes the continuation if a runtime
exception is raised. Both continuations are initially given by the top level loop of the Tycoon
system that interactively reads a TL expression, executes it and prints the result.

We will introduce the normal (current) continuation and the exception continuation as formal
parameters cc and ce, respectively, to the translation function from TL to TML. We denote
the translation function with

<L E, ce cc> T

in the following examples. It takes a TL expression F in addition to the two continuations
ce and cc, and produces a TML tree T'. This tree might in turn contain embedded recursive
calls of the translation function itself.

3.1 Constants 9

3.1 Constants

Simple constants like numbers and string literals evaluate to themselves. This is expressed in
CPS by an application of the current continuation, passing the constant as a parameter:

<1,ce.cc> (cc 1)

3.2 Bindings

Sequential and parallel bindings are translated into nested abstractions. Each value obtained
by a recursive application of the translation function (passing a new continuation) is bound
to a TML value identifier with the same name as the original TL identifier. We indicate
the sequential evaluation of the two subexpressions A and B by printing them at the same
indentation level, even though they are properly nested within the TML data structure:

<leta= Aletb = B,ce,cc> <K A ce, cont(a) : ais bound to the value of A
<K B,ce, cont(b) b is bound to the value of B
(ce b)>> - return the value of b

The translation of reecursive bindings is somewhat more comlicated and will be discussed in
section 3.6. Mutable bindings will be discussed in section 3.13.

3.3 Expressions

Expressions that may contain embedded function calls are translated into CPS by flattening
out nested subexpressions. Recall that, in CPS, arguments to procedure calls are restricted
to be literal constants, temporary variables, procedures or continuations (cf. figure 2 on page
3). No nested procedure calls (function applications) are allowed:

K F(A,B),ce,cc> &K Fce, cont(f)
<K A,ce, cont(a)
&K B,ce, cont(b)
(fabce)>>>

In the following example, the result of the whole expression is bound to the temporary variable
t3:

<1+ {2*3}-4.cecc> (* 2 3 cont(tl)
(+ 1 t1 cont(t2)
(- t2 4 cont(t3)

(ce 13))))

3.4 Functions

Each TL function is translated into a TML proc abstraction by adding two additional formal
arguments to hold the two possible continuations of a function call: the continuation that

10 3 TRANSLATING TL SOURCE PROGRAMS INTO TML

does exception handling, and the continuation that accepts the return value of the function.
For example:

<fun(x,y :Int) S ce,cc> (cc
proc(x y e ¢)
<Sec>)

Mutually recursive function bindings are translated into calls to the primitive procedure Y.
This is the (multiple-value-return) CPS version of the A-calculus fixed point operator. The
abstraction given to the Y-primitive (cf. figure 2.2 on page 5) takes n abstraction arguments
v1..v, and a continuation abstraction ¢, and returns n+1 abstractions. As usual in CPS, this
multiple-value-return is expressed by calling the continuation ¢ with the desired return values:

(Y A(vi..vp ©)
(c

abs;

;bsn
cont()app))

The Y-primitive computes the least fixed point of its abstraction argument. This fixed point is
a vector of mutually recursive procedures and/or continuations. In other words, the neat effect
of the Y-primitive is that the n+1 abstractions abs;..abs, and cont()app are bound to the
variables v;..v,, and ¢, respectively, and that these bindings are visible within the abstractions
themselves. Moreover, the continuation cont()app that is bound to ¢ is invoked tail-recursively
after all the recursive bindings have been established.

A similar primitive is used in the ORBIT compiler [Kranz et al. 1986)]. The introduction of the
Y-primitive obviates the need to extend the intermediate language with a special recursive
binding operator similar to the letrec special form of SCHEME [Steele 1986].

In the following example, two mutually recursive functions are bound to the identifiers f and
g, and g is finally invoked:

< let rec f(a :Int):Int = F (Y Mfgo)

and g(b :Int) :Int = G (c

g(13), proc(a e c) <F.ec> : function f
ce, proc(b e ¢) <G.ec> ; function g
cc> cont() (g 13 ce cc))) ; invoke g

3.5 Aggregates

Aggregate value constructors are translated into appropriate calls to primitive procedures.
The following code fragment creates a mutable array with two slots and binds the result to
the temporary variable t:

<array A B end, ce, cc>> <K A, ce,cont(a)
<K B,ce,cont(b)
(array a b cont(t)
(cc t))>>

3.6 Recursive Bindings 11

3.6 Recursive Bindings

The translation of parallel recursive bindings is done in four consecutive steps:

1. Allocation of aggregates.

[\

. Initialization of variables for simple bindings.

wo

. Binding of variables for functions using the primitive procedure Y.

4. Initialization of aggregates.

Here is an example of a mutually recursive value binding:

<let rec t = tuple f end (new 2 nil cont(t) ; 1. Allocate aggregates
and f() = g(x f) (h 99 cont(x) ; 2. Inititalize simple bindings
and x = h(99) (Y Mfgo) : 3. Bind function variables
and g(a :Int b :Fun():Int) = t, (c
ce, proc(e ¢) (g x f e ¢) ; function f
> proc(abec) (ct) ; function g

cont() ; 4. Initialize aggregates:

([]:=t0 1 cont() ; tuple variant
([l:=t1fcont() ; tuple field

(ccg)))) ; return the value of g

3.7 Conditionals

Conditionals are translated into calls to the primitive procedure ==’ which does simple case
analysis based on object identity similar to the C language switch statement (cf. figure 2.2
on page 5). Note how the current continuation is bound to the variable join in order to avoid
duplicating code:

<if A then K A, ce,cont(a)
B (A(join)
else (== a true
C cont() < B,ce join>
end, cont() <C'\ce join>)
ce, ce)>
cc>
3.8 Loops

Loops are translated into tail recursive procedure calls. This is another application of the Y
primitive. Note that, in TL, any form of loop statement (loop, while, for) yields the value
ok which is similar to nil in other languages:

12 3 TRANSLATING TL SOURCE PROGRAMS INTO TML

<loop (A(exit)
A (Y A(loop ¢)
if B then (c
exit cont() ; loop head (bound to Joop)
end <A ce,cont(ignore)
C <K B, ce,cont(b)
end, (== b true exit : exit test
ce, cont() < C,ce cont(ignore)
> (loop))>)>> ; continue loop
cont() (loop)) ; loop entry (bound to ¢)
cont() ; loop exit label (bound to exit)

(cc ok)) ; yield ok

Note that loop always denotes the same, statically determinable continuation, and that loop
is used in functional position only (i.e. it does not escape [Appel 1992]). This property is also
an invariant of the optimization rules. So this translation of loops into recursive continuations
does not imply the introduction of first-class continuations in TML with associated runtime
cost. There is no need to actually allocate a variable cell holding a reference to a “continuation
object” for loop, and, since there are no proc abstractions between the loop head and the exit
instructions (enforced by source level restrictions and optimization invariants), the loop exit
and loop continuation instructions will be translated into simple jumps (C language gotos)
without special tricks, even if the optimization phase is skipped.

3.9 Case Statements

Case statements are translated into calls to the primitive procedure ’=="applied to the tuple
variant code (an integer value). Note again that the current continuation as well as the case
branches are encapsulated using continuations to avoid duplicating code:

<Let T = Tuple (A(join)
case mon,tue,wed,thu,fri,sa,so < X ,cecont(t) ; evaluate tuple value
end ([Tt 0 cont(v) ; extract tuple variant
lett:T=2X (A(cl €2 ¢3)
case t (==v12345cleclc2c2c2cl)
when mon,tue then A cont() <A, cejoin>>
when wed, thu, fri then B cont() < B,ce join>
else C cont() < C'ce join>))>
end, cc)
ce,
cc>

3.10 Exception Handling

Exception handlers are translated into appropriate continuation passings: a function ‘installs’
a new handler by binding it to a continuation variable (denoted by ein the following example)
and passing it to subsequent function calls:

3.11 C Language Function Calls 13

Ltry (A(join)
S (A(ce2) «S,ce2 join>>
when E1 then V1 cont(exc) : handler, bound to ce2
when E2 then V2 <K F1,ce,cont(el)
else reraise K E2,ce,cont(e2)
end, ([] exc 0 cont(excld) ; extract the exception id
ce, == excld el e2
cc> cont() <V1,ce join>> cexcld == el
cont() <V'2,ce join>> ; excld == e2
cont() (ce exc))))>> - else reraise

cc) ; current continuation, bound to join

A raise statement is translated into an application of the current exception continuation,
passing an exception object as the argument:

<raise I/ with V end, &K F ,ce,cont(e)

ce, &KV ,ce,cont(v)

> (vector e v cont(exc) ; create exception object
(ce exc))>> : raise

3.11 C Language Function Calls

It is often necessary to be able to use existing external services written in other program-
ming languages. The ccall primitive provides a way to call C language functions from within
TL programs®. The inverse direction, i.e. calling TL functions from within C code, is imple-
mented in C within the Tycoon runtime system, accessible for the Tycoon programmer via
the ordinary ccall mechanism.

The ccall primitive takes a format string describing the parameter and result types (used for
data representation conversion), an array object describing the desired C language function
(essentially two strings describing the library and entry point where the compiled function
code can be found), and a continuation which receives the return value.

The predefined polymorphic TL function bind can be used to establish a binding to a C
language function. The following code fragment defines a TL function that calls the standard
C function strlen. The function raiseCCallError is called to raise an exception if the ccall
primitive fails. This may be the case when the given library does not exist, or it does not
contain a function with the given name:

<let strlen = (array " Jusr/local/lib/libc.so" "strlen” cont(cfn)
bind(:Fun(s :String):Int (A(strlen) (cc strlen)
" Jusr/local/lib/libc.so” proc(s e ¢)
"strlen” (A (fail) (ccall "si” cfn s fail ¢)
"si), cont()
ce, (raiseCCallError
cc> " Jusr/local/lib/libc.so”

"strlen” "si" e c))))

?These functions are typically bundled within a dynamic link library, even though it is possible to call C
language functions that are statically linked to the Tycoon runtime system.

14 3 TRANSLATING TL SOURCE PROGRAMS INTO TML

3.12 Builtin Functionality

Some TML primitives can be utilized explicitely from within TL source programs by means of
the predefined polymorphic function builtin. This is useful for some frequently-used low-level
operations like integer arithmetic for which an equivalent implementation using C calls would
be too inefficient. The function builtin is a mapping of strings and TL functions of a given
type to a function of the same type:

builtin :Fun(Dyn FctType <:Ok name :String ifFail :FctType) :FctType

This mapping is implemented within the Tycoon compiler. The name string tells the compiler
about the desired semantics of the result, whereas the function parameter ifFail provides a
convenient hook in the case the TML primitive fails. This leaves the relatively complex task
of exception handling to the higher language level, rather than beeing hard-wired into the
compiler.

To give an example, a TL function performing integer division can be defined using the ”int /”
builtin:

Klet / = (A7) (e /)
builtin(:Fun(:Int :Int) :Int proc(x y e ¢)
"Int /" (A(fail) (/ x y fail ¢)
fun(x,y :Int) raise intError), cont()
ce, (vector intError cont(exc)
cc> (e exc))))

In this code fragment, the (globally defined) exception intError will be raised in case of a
division-by-zero error.

3.13 L-Value Bindings

TML does not allow lambda variables to be modified once they are bound. This means
that mutable variable bindings must be translated into explicit manipulation of the store by
means of TML primitives. A store object (heap memory cell) is allocated for each mutable
TL variable that holds the variables value at runtime, introducing a level of indirection for
variable access (Cell Conversion [Kranz et al. 1986]):

<let var a = A ce,cc> <K A ce,cont(t) t is bound to the value of A
(array t cont(a) ; allocate memory cell for a
([Ta0ce))> ; return the value of a

In TL, it is also possible to pass a reference to a mutable variable binding (i.e. an L-value) to
a user-defined function. Such a call-by-reference parameter is translated into two call-by-value
parameters in the TML representation, passing base address and offset of the memory cell
(or, in Tycoon Store Protocol terminology [Matthes 1993], the object identifier (OID) and
the slot index):

15

<let inc(var x :Int) = x := x+1 (A(inc) (inc a 0) proc(xBase

inc(a), ce, cc> xOffset e ¢) ([] xBase xOffset cont(tl) ; retrieve value of
x (+ t1 1 cont(t2) ([]:= xBase xOffset t2 ¢)))) ; change
value of x

The offset of the mutable memory cell might become non-zero when mutable tuple components
or array slots are passed as L-values:

<let k = array 1 2 3 end (array 1 2 3 cont(k)
inc(k[2]). (inc k 2 ce cc))

ce,

cc>

The TL assignment operator is defined as a polymorphic function within the programming
environment. A call-by-reference parameter and the predefined function builtin is used in the
definition. Note that the exception handling code will be removed by the optimizer as dead
code:

<let := = builtin((A=) (ce =)

:Fun(A <: Ok var |hs: A rhs :A):0k proc(lhsBase |hsOffset rhs e c)

n=" (A(fail)

fun(A <: Ok var |hs: A rhs :A):0k ([]:= IhsBase IhsOffset rhs cont()

raise exception "none"), (c ok))
ce, cont()
> (vector "none" cont(exc)
(e exc)))

4 Optimization

The translation algorithm described in the previous section produces TML code that is far
from ’optimal’ in terms of code size and execution speed. A great deal of this inefficency
stems from the translation process itself. We have tried to keep the translation process as
simple as possible, so it generates a lot of unnecessary abstractions and A-bindings. It is much
simpler to run a separate optimization pass on the resulting TML tree rather than trying
hard to improve the translation algorithm itself. This has the additional advantage that
certain inefficiencies introduced by the TL programmer (in order to keep the TL program
more readable, for example) will be removed also. And, as we will see in section 4.2, a small
extension will enable us to optimize programs at runtime where a lot of valuable information
is available to the optimizer.

We have organized the optimization phase into two separate passes, namely the reduction
pass and the expansion pass. During the reduction pass, a number of generic rewrite rules are
applied to the TML tree until no more rule is applicable. Termination is guaranteed because
each of the rewrite rules reduces the size of the TML tree if it is applied (therefore the name
reduction for this pass).

The subsequent expansion pass tries to subsitute bound A-abstractions (procedures or con-
tinuations) at the places they are applied. Effectively, this CPS transformation performs
procedure inlining in terms of traditional compiler optimization. The decision whether a given
use of a bound abstracion is to be substituted is based on a heuristic cost model similar to

16 4 OPTIMIZATION

the one described by [Appel 1992].

When one or more abstractions are substituted during the expansion pass, there usually is the
opportunity to perform more reductions on the TML tree (this is indeed the main reason why
we perform procedure inlining at all), so each expansion pass is followed by a reduction pass.
Likewise, the reduction pass may reveal new opportunities to perform procedure inlining, so
the two passes are applied repeatedly until no more changes are made to the TML tree. To
guarantee the termination of this process even in obscure cases, a penalty is accumulated
at each round of the reduction/expansion phases. The optimization process stops when this
penalty reaches a certain limit.

4.1 TML Rewrite Rules

In this section, we give a formal definition of the generic TML rewrite rules. We will present
them using the notation

l i
A A g (precondition)

indicating that the TML expression A may be rewritten to the TML expression B if and only
if precondition evaluates to true. By convention, an empty precondition evaluates to true.

In the precondition, we denote the number of occurrences of a variable v in an TML expression
E with |E|,. This function is defined inductively on the abstract syntax of TML as follows:

|’U|v = 1
|l|v = 0
pl, = 0
[oile, = 0 (01 # v2)
[A(vi..0n) appl, = |appl,
|(valo valy..val,)|, = >i,|valil,

Similarly, on the right side of a TML rewrite rule, we use the notation E[val/v] that denotes
the expression F where every occurence of the variable v is replaced by the value val. Name
clashes cannot occur during substitution because each variable is bound only once in a TML
tree (unique binding rule). This property is achieved by the a-conversion performed during
TML code generation, and is never violated by any of the TML rewrite rules, except in one
case: if, in an application of the substitution rule, the value substituted is an abstraction, the
formal parameters of this abstraction occur temporarily at two different places within the
TML tree: 1. at the original place, namely as a parameter to the A-application, and 2. at the
place the abstraction was substituted for the variable. However, this does not do any harm
because the first occurence of the abstraction will be removed immediately (by an application
of the rewrite rule remove) since the substituted variable is not referenced any more.

Variable substitution is defined inductively on the abstract syntax of TML as follows:

4.1 TML Rewrite Rules 17

v[val [v] val
V[val/v] = v (v#7")
l[val/v] = 1
plval/v] = p
{A(v1..0,) app}val/v] = Awi..v,) {applval/v]}
(valy valy..val,)[val [v] (valg[val [v] val,[val /v]..val,[val /v])

Values bound to A-variables may be substituted freely within the TML tree since, due to
CPS, they are not allowed to contain nested primitive or function calls that may cause side
effects in the store.

The complete set of the TML rewrite rules that is currently implemented as a part of the
reduction pass is given below. The expansion pass uses a variant of the subst rewrite rule
in order to perform procedure inlining. Although each individual rule is fairly simple, the
combination of these rules is surprisingly powerful. Many of the well-known standard pro-
gram optimizations like constant and copy propagation, dead code elimination and procedure
inlining are just special cases of these general A-calculus transformations.

The subst rewrite rule replaces each occurence of a bound variable v; with the corresponding
value val;. Note that the precondition of this rule states that, if the value val; is an abstraction,
the variable v; must be referenced exactly once. This precondition prevents the TML code
from growing arbitrarily large:

(A(v1..95..0,) app &bs% (A(v1..95..0,) applval; /v (val; ¢ Abs V |appl,, = 1)

valy..val;..val,) valy..val;..val,)

The remove rewrite rule strikes out a bound variable v; that is not referenced any more.
The corresponding value wal; is also removed. Note that this is possible because, due to
syntactical restrictions (cf. figure 2 on page 3), val; cannot be an application, and, therfore,
cannot contain any calls to side-effecting primitive procedures:

remove
(Avrvi.vp)app —— (A(01..0i-1 Vig1..05) app (lapp
valy..val;..val,) valy..val;_y val; 4 ..valy,)

v, = 0)

The reduce rewrite rule simply removes applications of A-abstractions that do not bind any
variables:

The n-reduce rewrite rule removes unnecessary abstractions:

-red
A(vy..0,) (val vy..v,) IPTEAUee, val

The fold rewrite rule uses an evaluation function eval that knows details of the semantics of
primitive procedures:

18 4 OPTIMIZATION

(prim wvaly..val,) 2%, eval(prim, valy, .., val,)

Given an application of a certain primitive, it may be able to meta-evaluate the call, yielding
a somewhat simpler TML tree than the original call. For example, if the evaluation function
detects that a given call to a primitive will always compute the same value and invoke always
the same continuation, it reduces the primitive call to an application of the continuation to
the result. Typically, this is possible if some of the arguments are literal constants:

ld
(+ 12 Cq C2) fO—jLD (Cg 3)

To give another example, a call to the object identity primitive will fold if the value to be
compared is identical to one of the case tags:

fold ==

(==2123 ¢ ¢ ¢5) —— ()

If the eval function cannot perform any useful meta-evaluation, it simply returns the original
call to the primitive.

The case-subst rewrite rule substitutes variables in case statements with the tag value of the
corresponding branch:

case-subst
(== v wvaly..val, valj.vall)) ———— (== v val;..val, valf[val,/v]..vali[val,/v])
. e e case-subst . . .
(== v valy..val, vali.val} val;) ————> (== v val,..val, val[val,/v]..val}[val,/v]val;)
Finally, there are two rewrite rules that operate on calls to the primitive procedure Y. The
Y-remove rewrite rule strikes out any recursive procedure that is not referenced from within
the bodies of the other (mutually) recursive procedures, wheras the Y-reduce rewrite rule
removes empty Y applications:
Y-remove
(Y Avy..v;..0, €) —— (Y Mv1.0,_1 0i41..0, €) (lappl,, =0 A Vg |val],, = 0)
(¢ abs, (¢ abs,
abs; abs;_4
abs; 1
abs,, .
cont()app)) abs,
cont()app))
Y-reduce

(Y A(c)(c cont()app)) —— app (lappl. = 0)

4.2 Extensions for Reflective Runtime Optimization 19

4.2 Extensions for Reflective Runtime Optimization

In the Tycoon system, the compiler (and, therefore, the optimizer) is an integral part of the
persistent programming environment. This enables us to call the optimizer statically, during
normal program compilation, or dynamically at runtime.

For each TL function f, the target code generator emits code that is augmented with a
reference to a compact persistent representation of the TML tree for f. This persistent CPS
representation is called PTML (Persistent Tycoon Machine Language) and is isomorphic to
TML.

At runtime, it is possible to map PTML expressions back into TML expressions, re-invoke the
optimizer and code-generator. Since this compilation takes place during program evaluation,
we call our approach reflective optimization.

The mapping from PTML back to TML also returns the set of R-value bindings established at
runtime. These bindings correspond to free variables (module names, function names, constant
names) in the source text and they naturally give rise to context-dependent, inter-procedure
and inter-module optimizations (optimization across abstraction barriers).

To speed up repeated optimizations of (shared) functions, the optimizer attaches several
derived attributes (costs, savings, ...) to the generated code which also become part of the
persistent system state.

For example, this is a Tycoon interface complex that exports an abstract data type complex.T
and some functions complex.x, complex.y, .. on values of that type:

module complex export
Let T = Tuple x,y :Real end
let new(x,y :Real): T = tuple x y end
let x(complex :T) :Real = complex.x
let y(complex :T) :Real = complex.y

end
Here is a function abs that uses these exported functions:

let abs(c :complex.T) :Real =
sqrt(complex.x(c) * complex.x(c) + complex.y(c) * complex.y(c))

In the static context of this function, the implementation of the module (the binding to the
module value) is not availabe. Only after module linkage (Tycoon has first class modules),
the dynamic context of abs contains bindings to the exported function.

The programmer can obtain a (dynamically created) function optimizedAbs that is equivalent
to the original function abs but that (hopefully) executes faster than the original by explicitly
invoking the optimizer on abs:

let optimizedAbs = reflect.optimize(abs)

20 5 TARGET MACHINE CODE GENERATION

In our current implementation, the compiler would inline the bodies of complex.x and com-
plex.y, i.e., optimizedAbs is equivalent to:

let optimizedAbs(c :complex.T) :Real =
sqrt(c.x*c.x + c.y*cy)

Finally, the optimized function can be applied:
optimizedAbs(complex.new(3 4))

The main extension that is necessary to be able to carry out this kind of dynamic optimization
is to re-establish, in TML, the R-value bindings of global variables as they are stored in the

closure record (cf. section 5.2) of the runtime representation of a given procedure. For the

example above, this means that the values of the variables complex, *+’, "*” which are global

to the function abs globaland sqrt are fetched from the closure record of abs and are bound
to the corresponding identifiers before the (original) body of abs is executed*:

proc(c_10 c_11)

(A(complex_6 *_7 +_8 sqrt_9)
([] complex_6 2 cont(t_12) ; here begins the original body of abs
(t-12 c_10 cont(t-13)

([] complex_6 2 cont(t_14)
(t-14 c_10 cont(t_15)

(*_7 t-13 t_15 cont(t_16)
([] complex-6 3 cont(t_17)
(t-17 c_10 cont(t_18)
(+-8t-16 t_18 cont(t-19)
([] complex-6 3 cont(t_20)
(t-20 c_10 cont(t_21)

(*_7 t-19 t_21 cont(t_22)
(sqrt_9 t_22 cont(t-23)

(c 11 23PN ; here ends the original body of abs
< otd 0z005b4780 > ; value of module complex
< oid 0200164044 > : value of function '*’
< otd 0200164024 > . value of function '+’
< oid 0200993d28 >) ; value of function sqrt

Given these value bindings, the optimizer is able to perform subsitution, constant folding and
procedure inlining in the usual way, yielding a result that is equivalent to the above TL code
for optimizedAbs.

5 Target Machine Code Generation

The tree-structured intermediate TML code generated so far is easy to re-write (by the
optimizer), but cannot be executed efficiently. We need some linear program representation

*This is a TML listing similar to the output of our TML pretty-printer. Note that, during a-conversion,
each identifier name is appended with a unique number in order to distinguish it from any other identifier.

5.1 Exception Conversion 21

that is easy to process by some (real or abstract) target machine.

Currently, we have implemented a code generator for a stack-based abstract machine (TVM,
Tycoon Virtual Machine) using byte-coded instructions, and an experimental ANSI C code
generator. We will sketch the C code generator at the end of this section in order to discuss
the major topics. But before the code generator is called, three additional passes are made
through the TML tree: exception conversion, environment analysis and closure conversion.
These passes simplify the task of the code generator by rewriting the TML tree into a form
more biased towards stack-based target machines.

5.1 Exception Conversion

The exception conversion pass removes the exception continuation argument from every proc
abstraction and application and inserts an appropriate sequence of calls to the primitive pro-
cedures pushHandler and popHandler. This isolates the target code generator from exception
handling details.

The primitives pushHandler and popHandler maintain a runtime stack of exception handlers
(cf. section 2.3). These exception handlers are represented in TML as continuations that
receive the exception object as an argument. At the target machine level, these continuations
will be represented as assembly language labels. A pushHandler call will push the value of this
label (i.e. a code pointer) onto the exception handler stack, and a corresponding popHandler
call will eventually remove it. If an exception is raised, control will be transferred immediately
to the continuation on top of the exception handler stack.

In the following example, an exception handler is bound to the continuation variable e. Sub-
sequently, the exception intError is raised by passing a newly created exception object to the
exception handler bound to e. This handler is also passed in a nested call to the procedure
p. The exception handler itself issues a reraise statement after processing the exception in
the statement D. After exception conversion, the exception continuation argument to the
procedure call is removed and passed implicitely on the exception handler stack:

proc(ce cc) proc(cc)
(\(e) (e)
A (pushHandler e cont()
(vector intError cont(err) A
(e err)) ‘ raise err (vector intError cont(err)
B (raise err))
(p e cc) ccall p B
C (p <) ; call p (no exception argument any more)
cont (exc) ; handler e C
D cont(t) . continuation ¢
(ce exc) ; reraise exc (popHandler cont()
)
cont (exc) ; handler e
D

(raise exc)) ; reraise exc

22 5 TARGET MACHINE CODE GENERATION

5.2 Environment Analysis and Closure Conversion

Similar to Scheme [Steele 1986] and ML [Milner et al. 1990], the Tycoon language TL and
its intermediate representation language TML are block structured languages with functions
(procedures) as first class values. In such a language, a function f may be lexically nested
within another function g. Function f may access its formal parameters and local variables,
but it may also reference a variable v defined in the lexically enclosing function g. We say
that vis a bound or local variable with respect to g, and a free or global variable with respect
to £

<let g(v :Int) = begin (A(g) (cc g)

let f() = v proc(v e ¢) ; function g

f (A(f) (c 1) . return the value of f
end, proc(e c) - function f
cc, (cv)) . return the value of v
ce>

The Tycoon compiler has to generate eflicient code for this kind of variable access. The task
of the compiler is further complicated by the fact that the lifetime of v bound in function
g may exceed the activation of g, since function f may be stored in data structures and be
applied later, after the enclosing function g has already returned. Therefore, the values of free
variables cannot be allocated on the stack, but must be allocated on the heap.

In the Tycoon system, the runtime representation of a function value is a heap data structure
called a closure record. A closure record is essentially an array containing a pointer to the
executable code of the function, and the value of each free variable referenced in the body of
the function. The executable code knows the position of each free variable within the closure
record. This is the flat closure approach to function representation [Appel 1992]. Flat closures
trade closure creation time for fast access of free variables. This is important in persistent
object systems where object slot access typically imposes some overhead [Mathiske 1992].

The flat closure approach requires that variable values may be copied freely and spread out
into multiple locations. This is possible in TML since variables are never modified once they
are bound. During TML code generation, any references to mutable TL variables have been
cell-converted into explicit operations on the store (see section 3.13).

The environment analysis pass of the Tycoon compiler determines the set of free variables
for each proc abstraction, and allocates a slot within the closure record for each. This pass
also identifies references to literal objects that cannot be represented directly within the byte
sequence of the executable code, but must be fetched from the heap at run time. A slot within
the literal vector of the function is allocated for such an object. To illustrate this, the above
example function fis slightly modified to return a pair consisting of the global variable v and
a literal string object:

< let g(v :Int) = begin (A(g) (cc g)
let f() = proc(v e c) ; function g
array v "string literal" end (A(f) (¢)
f proc(e c) ; function f
end, (array v "string literal” c)))
cc,

ce>

5.2 Environment Analysis and Closure Conversion 23

Following environment analysis, the closure conversion pass removes every reference to free
variables by explicit closure allocation, passing and access (Closure Passing Style [Appel
1989]). This isolates the later passes from closure format details.

At runtime, each function will receive it’s closure record as an additional parameter, making
the stored free variable values accessible to the executable code. Moreover, every reference
to a literal object is translated into an indexed access to the literal vector. The runtime
representation of fis depicted in figure 5.2. We say that the resulting TML code is closed
because it does not contain any free variables any more:

(A(g) (cc g) (array ; create closure record for g
proc(v e c) ; function g proc(env v e ¢) ; function g
(A(f) (c¢) (array . create closure record for f
proc (e ¢) ; function f proc(env e ¢) ; function f
(array v "string literal” ¢))) ([] env 1 cont (t1) ; fetch value of v into t1

([] env 0 cont (t2) ; fetch literal vector into t2
([1t2 1 cont (t3) ; fetch string literal into t3
(array t1 t3 ¢)))) . return array

v . free variable value

<)

cc)

Traditionally, the formal parameter for the closure record is given the name env because it
actually contains the lexical environment of the function at the time the closure was created,
i.e. at the time the TL source code of the function was evaluated. Note that function g
does also receive a closure record even though it does not contain any free variables. This is
necessary because g may be called from sites that do not know this property of g. Therefore,
the standard Tycoon calling sequence must be used, passing an explicit closure record.

A somewhat more complex translation scheme is necessary for the closure conversion of mu-
tually recursive function bindings in an application of the Y primitive. Essentially, additional
TML code is generated that, after all closure records have been created, patches each closure
record with the references to the closure records of all the other functions. This code gener-
ation actually implements the semantics of the Y primitive, i.e. it computes the least fixed
point, a vector of mutually recursive functions.

Closure Executable
Record Literal Target Machine
Vector Code
® |
P >
'
® T "string literal’

Figure 4: Closure Representation

24 5 TARGET MACHINE CODE GENERATION

5.3 Generating ANSI C Code

After all the processing described in the previous sections, C code generation is almost a trivial
task. Since there are no more free variable references, each proc abstraction can be translated
separately into an equivalent C language function, and continuations are flattened out’ by
translating them into a label followed by C code implementing the body of the continuation.
References to continuation variables are translated into C language gotos, optionally preceeded
by an assignment of the continuation argument to a temporary variable. Live variable analysis
as described in [Wulf et al. 1973; Gawecki 1992] helps reducing the number of temporary
variables actually needed?®.

Note that the last argument of a proc abstraction (user level procedure) is always the con-
tinuation argument:

proc (x y ¢) OID f(OID x, OID y)
(A(c2) {
...(c2 88)... OID t;
cont(t) e
(c 1)) t = MAKE_INT(88);
goto c2;
C2.:. .
return t;
}
Ordinary bindings are translated into local blocks:
(Axy) - {
88 OID x = MAKE_INT(88);
99) OID y = MAKE_INT(99);
}

Procedure calls are translated into C language function calls, storing the result in the tem-
porary variable allocated for the continuation, and passing control to the continuation:

(fxyec) OID t;

t = f(xy);
goto c;

The translation of calls to primitive procedures is fairly straightforward using equivalent C
language expressions and/or appropriate runtime system calls.

As an example, consider a call to the primitive procedure '==". If all the values of the different
branches are simple integer constants (or can be encoded as such, like character values), the
C language switch statement can be used. C compilers typically generate very efficient code
(jump tables) for this kind of statement:

®Since this optimization is usually done by optimizing C compilers anyway, we have not implemented it as
a part of the C code generator.

25

(== x switch (x)
12345
clclc2c2c2 case 1:
c3) case 2: goto cl;
case 3:
case 4:

case 5. goto c2;
default: goto c3;

}

If some of the branch values are object identifiers, a cascaded if statement must be used,
fetching the object identifiers form the literal vector of the current function. Note that object
identifiers are not constant values since they may be changed at any time by the underlying
object store. This might happen if the object store uses a compacting garbage collector.

6 Concluding Remarks

The concept of using the same intermediate program representation for both static and dy-
namic optimization has proven to be feasable. We have a running protoptye that performs all
the optimizations presented in this paper. Our compiler has successfully optimized itself, i.e.
the complete TL compiler and library management code spread out in 98 modules containing
more than 29,000 lines of TL source code. Initial performance measurements indicate that the
speed of such non-trivial modular programs as the TL compiler could (at least) be doubled
by dynamic, inter-module code optimization.

On the other hand, the space requirements of TL modules have nearly doubled. The main
reason for this space overhead is the additional persistent encoding of the TML tree (in a data
structure called PTML, Persistent TML) for each TL source code function. We are currently
investigating techniques to re-construct a TML prepresentation by examining the persistent
executable code representation of a procedure, effectively inverting the target machine code
generation process outlined in section 5. In general, the TML tree re-constructed this way
will not be isomorphic to the original TML tree that we currently encode in PTML. The
interesting question is whether this has an impact on the possible optimizations, especially in
the presence of nested recursive function bindings.

We will investigate further more global optimizations like code motion (hoisting), data flow
analysis and strength reduction in order to estimate the potential and the limitations of
general-purpose program optimization in open database programming environments. This
approach may be regarded as an alternative to the well-understood yet limited algebraic opti-
mization rules of the relational algebra. We conclude by emphasizing that in our framework a
main target for optimization is represented by libraries of higher-order functions that encap-
sulate iteration abstractions (SQL-like select-from-where, i.e. loops) and by operations over
bulk data structures (sets, lists, bags, ...).

26 REFERENCES

References

Albano et al. 1993: Albano, A., Bergamini, R., Ghelli, G., and Orsini, R. An introduction to
the database programming language Fibonacci. FIDE Technical Report Series FIDE/92/64,
FIDE Project Coordinator, Department of Computing Sciences, University of Glasgow, Glas-

gow G128QQ, 1993.

Appel 1989: Appel, A. W. Continuation-passing, closure-passing style. In Proceedings of
the Sizteenth ACM Symposium on Principles of Programming Languages, pages 293-302,
January 1989.

Appel 1992: Appel, A. W. Compiling with Continuations. Cambridge University Press, 1992.

Gawecki 1992: Gawecki, A. Ein optimierender Ubersetzer fiir Smalltalk. Bericht FBI-HH-
B-152/92, Fachbereich Informatik, Universitdit Hamburg, Germany, September 1992.

Gifford and Lucassen 1986: Gifford, David K. and Lucassen, John M. Integrating functional
and imperative programming. In Proceedings of the ACM Conference on Lisp and Functional
Programming, Cambridge, Massachuseltls, August 4-6, 1986, pages 28-38, 1986.

Kelsey 1989: Kelsey, R.A. Compilation by program transformation. Technical report, Yale
University, Department of Computer Science, May 1989.

Kranz et al. 1986: Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams, N.
ORBIT: an optimizing compiler for Scheme. ACM SIGPLAN Notices, 21(7):219-233, July
1986.

Mathiske 1992: Mathiske, B. Kodegenerierung fiir Programmiersprachen mit Persistenz,
Polymorphie und Funktionen héherer Ordnung. Diplomarbeit, Fachbereich Informatik, Uni-
versitit Hamburg, Germany, December 1992.

Matthes and Miffig 1993: Matthes, F. and Mii8lig, S. The Tycoon Language TL: An introduc-
tion. DBIS Tycoon Report 112-93, Fachbereich Informatik, Universitit Hamburg, Germany,
December 1993.

Matthes and Schmidt 1992: Matthes, F. and Schmidt, J.W. Definition of the Tycoon Lan-
guage TL — a preliminary report. Informatik Fachbericht FBI-HH-B-160/92, Fachbereich
Informatik, Universitdit Hamburg, Germany, November 1992.

Matthes and Schmidt 1993: Matthes, F. and Schmidt, J.W. System construction in the Ty-
coon environment: Architectures, interfaces and gateways. In Spies, P.P., editor, Proceedings
of Furo-Arch’93 Congress, pages 301-317. Springer-Verlag, October 1993.

Matthes 1993: Matthes, F. Persistente Objektsysteme: Integrierte Dalenbankentwicklung und
Programmerstellung. Springer-Verlag, 1993. (In German.).

Milner et al. 1990: Milner, R., Tofte, M., and Harper, R. The Definition of Standard ML.
MIT Press, Cambridge, Massachusetts, 1990.

Reppy 1990: Reppy, H. J. Asynchronous signals in Standard ML. TR 90-1144, Computer
Science Department, Cornell University, 1990.

REFERENCES 27

Steele 1978: Steele, Guy L. Rabbit: A compiler for SCHEME. Technical report, Mas-
sachusetts Institute of Technology, May 1978.

Steele 1986: Steele, Guy L. The revised® report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 21(12):37-79, December 1986.

Teodosiu 1991: Teodosiu, Dan. Hare: An optimizing portable compiler for Scheme. ACM
SIGPLAN Notices, 26(1):109-120, January 1991.

Wulf et al. 1973: Wulf, William A., Johnsson, Richard K., Weinstock, Charles B., and Hobbs,

Steven O. The design of an optimizing compiler. Technical Report AFOSR-TR-74-0096,
Carnegie Mellon University, Air Force Office of Scientific Research, 1973.

28 A TML DATA STRUCTURES

A TML Data Structures

(* TML Tree: *)

infiniteCost :Int (* Value representing infinite evaluation cost
for a TML tree *)
defaultInfo :Int (* Value representing usefule default information

for the optimizer *)

Let Rec EvalFn = A11(:T)T (* a meta-evaluation function *)
and CostFn = A11(:T)Int (* cost estimate for a call *)
and T = Tuple (* a TML node *)
case primitive with (* a primitive procedure *)
name :String (* user name, printing only *)
info :PrimitiveInfo (* attributes useful for the optimizer *)
eval :EvalFn (* a meta-evaluation function *)
cost :CostFn (* cost estimate *)
end

(* Note that the functional position of apply nodes (node'!apply.fn)
is the only place where primitive nodes may appear.
I.e., they cannot be passed around as values.

*)

case variable with

name :String

fCont :Bool (* true iff this variable names a continuation *)
end

case literal with
value :Literal
end

case readRef with (* variable reference *)
variable :T

end

case lambda with

variables :1list.T(T) (* linked list of formal paramaters *)
body :T (* must be an appliation *)
end

case apply with

fn :T (* primitive, readRef, literal or lambda node *)
args :1ist.T(T) (* linked list of actual parameters *)
end
end (* T *)

and Literal = Tuple
case nil with end
case literals with value :Array(Literal) end

case
case
case
case
case
case
case

end

tml with value :T end

bool with value :Bool end
char with value :Char end

int with value :Int end

real with value :Real end
string with value :String end
byteArray with value :0ID end

29

