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Abstract. Our vision of digital libraries is influenced by our
experience with systems for persistent and networked object man-
agement and with polymorphic programming languages for their
implementation. When viewed from this perspective, the essence of
digital libraries can be captured by the following three essentials:

> the content of a digital library is represented by two kinds of
information entities: on the basic level there are information
tokens as supplied by information providers on the net; value
is added to such tokens by individually constructing informa-
tion artifacts over them with the goal of information consumer
satisfaction;

> the services required for artifact construction and use — on the
informationlevel as well as on the level of the software artifacts
required for these processes — rely heavily on powerful bind-
ing environments for multi-medial, persistent and networked
information;

> the processes of artifact construction and use are in them-
selves valuable sources of information about artifacts; for the
exploitation of such process information, digital libraries em-
ploy advanced tracing environments.

We derive linguistic and architectural requirements for digital
libraries from these above essentials. On the language level we con-
centrate on generalized requirements for the typing, binding and
scoping of library entities and services. On the system level we dis-
cuss architectural requirements in terms of orthogonal persistence,
open extensibility, platform independence, mobility and reflection.

We present Tycoon [Matthes and Schmidt 1992; Matthes et
al. 1995), a polymorphic, higher-order language and its system,
and demonstrate its potential for digital libraries. We evaluate Ty-
coon’s rich conceptual basis (data, functions and threads), library-
based extensibility, powerful binding mechanisms, its orthogonal
persistence and its capability of network-wide data, code and
thread migration.

We conclude by referring to an interdisciplinary digital library
project in Art History Research based on icons, texts and data.
Here, Tycoon effectively supports the process of individually cus-
tomizing and scaling library services thus generalizing the notion
of a query language into that of a persistent personal reference
library.

1 Introduction

Digital libraries are coming into their own at a time when
computer and network technology is improving rapidly
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resulting in increased global acceptance of digital infor-
mation and communication services.

As a first consequence, an enormous quantity of in-
formation on virtually any medium is now being ex-
changed between a world-wide community of information
providers and consumers. This potential will virtually
revolutionalize all information processing activities. Dig-
ital libraries are intended to provide the software which
helps to structure this global information space and to
improve its use.

World-wide dissemination of digital contents is, how-
ever, not the only achievement of the rapidly improv-
ing information and communication technology. Liber-
ating computer scientists from too narrow technological
restrictions also gives rise to the development of highly
advanced models for computation and communication
which aim at pushing computers towards the perfect in-
formation handling devices — and rapid absorption of the
new enabling technologies.

Our vision of digital libraries is founded on both
of the above achievements. We firmly believe that the
great potential of the global information space can be
exploited only if digital libraries make best use of highly
advanced models, languages and systems. If not, we are
filling new wine into old barrels thereby creating another
Pandora’s box of legacy problems for the upcoming in-
formation age.

Based on our vision of digital libraries outlined in
Section 2 we will present in Section 3 the essential lin-
guistic and architectural requirements which we consider
necessary for the construction and use of such systems. In
Section 4 we will evaluate Tycoon [Matthes and Schmidt
1992; Matthes et al. 1995, the language and its system
platform, and demonstrate its potential for digital li-
braries. Section 5 presents our initial experience with the
Warburg Electronic Library, a cooperation project with
the Art History community which involves data, texts
and large amounts of iconic images.



In our view, the final purpose of a digital library is to
improve the exploitation of the globally networked in-
formation universe with a clear focus on the particular
information needs of an individual user and his task at
hand [Van House 1995]. In other words, a digital library
is the software needed to bridge the gap between the vir-
tually infinite amount of information out there on the net
and the very specific information needs of a particular
person and task.

With this goal in mind, we distinguish on the level of
library content two kinds of library entities:

Information tokens represent the information content
which is collectively provided by the net; informa-
tion tokens are multi-medial and may represent texts,
data, images, sound, videos etc. [McNab et al. 1996;
Li et al. 1996]. In addition to information tokens dig-
ital libraries also contain software tokens, like ap-
plets or generic functions (such as filters, construc-
tors, evaluators, presentors, binders or wrappers).

Information artifacts are (recursively) created views over
information tokens. Selecting, structuring, combin-
ing, and annotating are typical steps in this process.
Artifact construction aims at adding value to infor-
mation and thereby increasing the satisfaction of in-
formation consumers. Information artifacts may be
image tokens associated with texts on their content
as well as entire multi-medialibraries including sound
and videos.

Two main library processes can be identified: value-
adding artifact construction and personalized exploita-
tion. Although this paper concentrates on information
artifacts it should be emphasized that the software re-
quired for personalized library processes puts heavy de-
mands on software customization. Indeed, there is a
striking similarity between processes which personalize
the library’s information content and those which cus-
tomize its software required for doing so. Such software
is also represented by software tokens out of which cus-
tomized software artifacts can be constructed which are
finally bound and applied to information artifacts. In our
closing remarks we will come back briefly to this simi-
larity between information and software libraries.

These library processes are supported — on the infor-
mation as well as on the software level — by two kinds of
library environments:

Binding environments enable artifact construction and
exploitation on the two intertwined levels of infor-
mation artifacts and information handling software
artifacts. Binding environments provide a wide range
of binding capabilities and support their safe and dis-
ciplined use in heterogeneous, open, networked and
multi-medial settings.

Tracing environments are highly desirable because li-
brary processes themselves are sources of valuable in-
formation on artifacts. Tracing such processes and ex-
tracting context information (on the who and when,
the what and where, the why?, but also on software
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2.1 Information Tokens

Information tokens represent the basic multi-media con-
tent of digital libraries and are provided by a digital and
networked information universe. Their main purpose is
to conceptualize information on an elementary level com-
pletely independent of any specific contexts in which in-
formation is referenced, aggregated and consumed.

Examples of information tokens are

> pictures in digital formats such as JPEG or GIF;

> texts in formats such as ASCII, Postscript or Word;

> time dependent tokens such as audio and video se-
quences in QuickTime or MPEG formats;

> software tokens such as JAVA applets or generic sort-
ing functions in source or compiled bytecode or even
native (machine-dependent) code.

To best serve their role as basic building blocks in
value-adding digital libraries, tokens should be unbiased
in their representation. Furthermore they should be self-
describing, equipped at least with basic methods for pre-
sentation, copying, migration, storage etc. Note that the
information tokens may inherently provide further more
specific methods. A Word document, for example, may
come with methods for reformatting or generating a ta-
ble of content. For software tokens the basic methods
may be compilation, execution or interpretation.

Independent of their content and the platform on
which they reside, tokens have to share the following
basic properties:

> digital representation
> atomic view, i.e., context-independent interpretation

> unconstrained content described by automorphic typ-
ing.

Automorphic typing allows the basic classification of
information tokens, stresses their self-contained charac-
ter of the information tokens and avoids restriction to
predefined formats.

Information tokens have to be handled uniformly, in-
dependent of their content, lifetime or location in the
network space. Therefore, the following additional prop-
erties are requested uniformly over all kinds of informa-
tion tokens:

> network-wide, stable identity
> universal referentiability via the net.

Any specific demands on information which are de-
rived from the needs of individual users or user groups
are captured by the concept of information artifacts.



Information artifacts are constructed (recursively) from
tokens with the intent to add, step by step, value to the
information on its way from the network of information
providers to the individual information consumer.

The structure of artifact constructing processes is
shown in Figure 1. Information tokens provided by a
networked information universe are composed into in-
formation artifacts, a process guided by the two related
principles that value be added by information composi-
tion, but also by personalization [Réscheisen et al. 1995;
Roscheisen et al. 1994]. Conceptually, a digital library
has manifold artifacts visible to information consumers
with high emphasis on personalized artifacts customized
for the consumers preferences and tasks.

Typical examples of personalized information arti-
facts are individual collections of text and image tokens
(references or copies) augmented by hyper-text artifacts
and personal annotations. Artifacts may be attached to
agents which search autonomously for further material
on the net by employing text retrieval systems or SQL
engines. Other examples are video sequences augmented
by data on title, producer, costs, list of actors, comments
and ratings etc.

Examples of software artifacts are application pack-
ages such as Oracle’s graphical query tools with GUI
and SQL components or Microsoft’s application package
Office composed of basic modules such as Word, Excel,
and Powerpoint.

After all, effective exploitation of information arti-
facts relies on additional and more traditional library ser-
vices [Graham 1995; Cousins et al. 1995; Paepcke 1996]

such as

> information filtering capabilities (static and dynamic
views)

> mobility in heterogeneous environments (platform in-
dependence)

> exchange between libraries (external gateways)

> persistent storability, multiple user support and re-
covery (database system support)

> security and accounting services (authorization and
authentication).

However, it is the binding technology which, in our
view, provides the core capabilities for artifact construc-
tion and use — on the information as well as on the
software level. Therefore, binding requires particularly
strong support in any modern digital library system.

2.3 Binding Environments

On the technical level, extended binding capabilities are
most crucial for our approach to digital libraries. It is
through binding that selected information entities can be
organized into artifacts and that information consumers
can access the artifacts of their choice. It is also bindings
which connect information artifacts to software artifacts
when value-adding software services are requested for
artifact exploitation.
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shared, short-lived or persistent, mutable or not, etc.
Consequently, our demands on binding capabilities are
multiple [Morrison et al. 1990]: Bindings

e YseiLy MER AL L

> have to be possible between all kinds of entities on
an open set of media;

> must also be complete in the sense that all computa-
tional entities, data, code and threads can be freely
combined by bindings;

> may be fized over time or mutable on demand;

may refer to transient or persistent entities;

> may involve local entities or reach out to remote sites
of the net.

v

Bindings to entities internal to a system have to be
defined and managed as well as ezternal bindings to en-
tities spread over heterogeneous systems. Artifact con-
struction may require both kinds of semantics — copy
semantics and reference semantics — via bindings; the
transition between both has to be supported.

2.4 Tracing Environments

People, when working with libraries, usually follow cer-
tain patterns of use. Frequently they work top down,
from vague ideas via keywords and catalogues to vol-
umes and individual texts. Library users work continu-
ously in the sense that they often resume sessions at the
point of interrupt some time earlier. There also exist dis-
tinguished modes of operation which people apply when
using a library:

> quick look-up of references to dictionaries or texts, or

> evaluation and memorizing of a concrete text per-
formed in a series of sessions, or

> construction, maintenance and use of topic-oriented
personal reference libraries over years.

The individual context in which such patterns are
applied varies, of course, with the user and his task (the
who and when, the what and where etc.). With digital
libraries we are in a position to trace library processes
on an individual level. We can discover individual pat-
terns behind processes and provide environments to sup-
port them. Individual process execution contexts can be
recorded and the information gained can be used for im-
proving the library content as well as its usability [Bohm
and Rakow 1994; Kashyap et al. 1996].

Typical information gained from process traces an-
swers questions such as

> who is involved in artifact construction? when is it
constructed?

> which digital libraries are consulted to find informa-
tion? where do they reside?

> which queries are posted and what are the results of
these queries?

> what alternatives or versions exist for artifact con-
struction?
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Fig. 1. Constructing Personalized, Value-Added Information Artifacts

> which design decisions lead to the artifact?

Some of this information (see Figure 2) can only be
given explicitly by the person who constructs the artifact
(e.g. information on the why?). Other information can be
deduced automatically by the tracing process attributes
(e.g. owner, time), statement sequences (e.g. retrieval op-
erations) or process bindings (retrieval results).

We conclude our vision of digital libraries by con-

trasting them with traditional database systems: databases

contain homogeneous data (e.g. relations) and database
architectures provide a centralized view on data and soft-
ware (global schema; distribution transparency). Fur-
thermore, databases are accessed by isolated transac-
tions (ACID principle). Digital libraries differ substan-
tially from databases in all three dimensions just men-
tioned: they access heterogeneous information repre-
sented by multiple models on multiple media; their ar-
chitecture is a dynamic and highly personalized con-
struction of information and services, and their users
work with contexted processes which are traced and eval-
uated by the library environment. Some of these ex-
tended requirements of digital libraries are addressed in
the research area of information integration and hetero-
geneous databases (see e.g. [Garcia-Molina et al. 1995;
Hammer and McLeod 1993]).

In the following section we discuss some of the lin-
guistic and architectural demands on software platforms
on which digital libraries are best developed, maintained
and used.

3 Software Requirements for Digital Libraries

Our view of digital libraries imposes several requirements
on software platforms on which such libraries are devel-
oped, used and maintained. Major demands result from
the following properties in digital library systems:

> safe extensibility to an open set of new media types,
novel library services, extended user requirements
ete. [Niirnberg et al. 1995)

> scalability from private stand-alone libraries to shared
group libraries or globally networked libraries

> global connectivity with free data exchange, open
systems communication, unrestricted software migra-
tion etc.

> customizability for personalized, value-added infor-
mation and software artifacts.

Some of these demands involve language require-
ments, others imply architectural requirements for the
digital library system itself. Both sets of requirements
are clearly not completely independent of each other as
we will see with requirements such as binding or reflec-
tion.

3.1 Linguistic Requirements

Our vision of digital libraries raises specific demands on
the naming, typing, binding and scoping capabilities of
the language of our choice. We argue here for some fairly
novel language concepts by which data, code and threads
become first-class citizens, i.e., players with equal lin-
guistic rights.

3.1.1 Typing

Digital libraries essentially impose three important de-
mands on the underlying typing system:

> type expressiveness for extensive model definition,
> type control for safe model execution, and
> type inspection for generic programming.

Types for modeling: The information modeling needs of
a digital library are abundant and may vary over its
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lifetime. Consequently, languages with a fixed, built-
in set of models do not suffice. Instead, an add-on
approach to model definition is requested, a demand
which can best be met if such models can be ex-
pressed by the language itself. Such a demand leads
directly to languages with rich polymorphic type sys-
tems, (recursive, parametric) type constructors, sub-
typing and higher-order functions.

Tasks to be addressed by model extensions are bulk
data management [Schmidt 1977; Ackerman and Field-
ing 1995], multi-media modeling, safe service integra-
tion, etc. There is a particular need for a wide range
of bulk or collection types such as lists, sets, keyed
sets and bags. The framework should provide an add-
on bulk type library which satisfies different require-
ments for search, insert, order or store. Bulk types
dynamically added on should, at the same time, be
safe, disallowing, for example, the insertion of image
tokens into book collections.

In our approach expressive typing schemes come into
effect on the artifact level; tokens are automorphi-
cally typed (i.e. self describing) bit vectors, a rep-
resentation which simplifies generic low-level opera-
tions such as copying, storage, migration or garbage
collection. Furthermore, the automorphic typing en-
ables more specific methods, e.g., for token presenta-
tion and basic manipulations.

Types for control. Types capture constraints on compu-

tations. Good type systems allow a rich set of con-
straints to be expressed and to be checked as early as
possible. Type checking is usually done statically, i.e.,
at compile-time: at that time the price for type check-
ing is cheapest and type violations can most easily be
fixed. However, long-lived and distributed systems,
such as digital libraries, are frequently faced with
constraints which arise at different sites or change
during their lifetime. This requires more dynamic ap-
proaches to typing. If, for example, values are trans-
mitted (via files or communication channels) between
independently developed digital libraries, there is no
common scope in which a static type check could be
performed to guarantee compatibility between data
and programs. For tasks like these, (value, type)-pairs
have to be available at run-time, and a rich function-
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ality is required for run-time evaluation and excep-
tion handling.

Types for genericity: Another need for dynamic types
results from the desire to implement generic functions
with type-dependent behavior. Such functions take a
type representation, usually along with a value of this
type, inspect the type and exhibit different behavior
depending on the type. Type inspection allows, for
example, iteration over the attribute types and at-
tribute values of an aggregate or construction of an
aggregate from a list of typed bindings. Such possi-
bilities are required, for example, for generic library
browsers capable of displaying and manipulating ar-
tifacts of any type.

3.1.2 Binding capabilities

Different kinds of bindings between information artifacts
and tokens as well as between information and software
artifacts are required. It should be possible to combine
them orthogonally:

static and dynamic: In traditional applications bindings
to entities are stable over time. For digital libraries
such static bindings are, however, not sufficient since
artifacts are created dynamically and may be up-
dated. Dynamic bindings are functions (queries or
other computations) that are dynamically evaluated
and establish bindings on demand.

internal and external: Internal bindings refer to entities
which are under the control of the active system while
external bindings refer to entities outside. External
bindings frequently require special treatment because
essential properties of the active system may not ap-
ply to external entities. Typical examples of such
properties are orthogonal persistence or transactional
access.

local and remote: Local bindings refer to entities on the
site where the process is currently executing. Digital
libraries also require remote bindings which can refer
to entities that reside on a different site in the net-
work. Remote bindings imply automatic transfer to
the local site if the bound entity is referenced, e.g.
for display.
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1.e., the context of the artifact that contains the ref-
erence. This facilitates the access to the referenced
entity and increases the autonomy of artifacts. In-
creased autonomy is required for the construction of
a stand-alone artifact collection that may be used off-
line, e.g. on a CD-ROM. Further aspects of copying
in digital libraries are discussed in [Cameron 1994;
Shivakumar and Garcia-Molina 1996].

3.1.3 Scoping

The space of library entities reachable from a given in-
formation artifact has to be individually structured and
organized. Therefore, in addition to static binding en-
vironments (scopes) there is a need for dynamic envi-
ronments [Dearle 1989] in the sense that new bindings
may be added or existing bindings may be hidden or re-
moved. Scopes may be public or protected for private
use. Libraries may require that scopes be named or even
possess first-class status.

3.1.4 First-class status for data, code, and threads

Besides passive information (data), artifacts may also
include entities which can be activated (code) or even
activities themselves (threads). Instead of constructing
artifacts ‘in advance’, code entities are frequently used
to dynamically construct artifacts ‘just in time’. Thread
entities are required to realize artifacts with autonomous
search agents attached to them. Threads may be in the
state of running, frozen, waiting for some event, etc. Re-
questing code having first-class status implies that our
language of choice be algorithmically complete.

3.1.5 Exception handling

In dynamically changing and heterogeneous environ-
ments not all services are available always and every-
where. This results in exceptional behavior that has to
to be handled flexibly and safely.

3.2 Architectural Requirements

A great number of software services have to cooperate
smoothly and steadily to collectively provide the services
to be expected from an advanced digital library. To do
so, software has to show a certain degree of ‘social be-
havior’ which cannot yet be taken for granted on current
platforms. In addition, functionality which is crucial for
libraries, such as persistence and mobility, has to be sub-
stantially supported for all kinds of library entities.

Generally speaking there is no argument supporting why
the lifetime of any digital token or artifact should de-
pend on its type or on the fact as to whether it is com-
posed of data, code or threads. Only if persistence is
provided orthogonally to such dimensions, general infor-
mation (data), the knowledge of how to use it (code),
and the actual use made of it (threads) can be preserved
and made available any time.

Having a system with orthogonal persistence means,
in technical terms, that arbitrary bindings (i.e., arbi-
trary data structures, function closures, activation en-
vironments) can be converted between execution envi-
ronments and stable storage environments. For elaborate
typing and binding models as discussed in the previous
subsection this is obviously not a trivial task. However,
once this problem is solved other requirements such as
free data, code and thread migration or powerful tracing
environments are almost free for the asking.

Since persistent storage systems have to deal with
all kinds of information tokens and artifacts they do so
according to the lowest common denominator as given
by bit vectors and references. Further requirements for
persistent stores are

> scalability to different implementations
> transactional semantics

> standardized import and export formats
> garbage collection based on reachability.

3.2.2 Open Service Integration

Digital libraries have to be prepared to accept services
from ‘alien’ systems. The diversity of services required by
a digital library could never be provided without external
support. The demand for novel services is driven by both
sides, providers and consumers, and is expected to grow
rapidly with the number of libraries on the net. External
services may be required, for example, in the following
situations:

> external tokens — images, sounds, but also native
code — can frequently only be interpreted by soft-
ware which is only available on the site on which the
token resides;

> some sites specialize in services not available at the
home site; examples are expensive printing or scan-
ning facilities;

> many standard services, e.g., for presentation, com-
pression, encryption, communication, etc., are fac-
tored out to generic subsystems; it is often the case
that the complexity of a service demands a special-
ized service provider; examples are information re-
trieval and SQL engines;

> finally, legacy awareness requires that external ser-
vice integration is approached on a general level.

On the modeling level safe service integration can be
achieved by expressive typing (see previous subsection);
on the system level it requires gateways and call/callback
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interfaces to the external service’s languages (C, C++,

..). In combination, both requirements support the
definition and implementation of new software libraries
which integrate external services safely into our language
of choice. In addition to what is required for service in-
tegration in general, standards for export interfaces and
for exported references to library entities are necessary.
Finally, each digital library also should be prepared to
export its services to others and to act as information
provider in the net.

3.2.3 Platform Independence

Digital libraries require that information and services
must be made available network-wide on heterogeneous
platforms (see Figure 3). Library exploitation can be im-
proved considerably if a library’s core functionality for
searching, querying and storage is provided platform-
independently. This means that data, code and thread
representations abstract from all platform-dependent de-
tails. Technically speaking, this leads to simplified ab-
stract machine architectures based on bytecode represen-
tation and interpretation as well as to run-time systems
with improved portability, minimal in size and composed
of standardized components.

3.2.4 Migration Technology

The usability and autonomy of digital libraries is sub-
stantially improved by agents [Birmingham 1995] capa-
ble of migrating freely in open networks to visit data sets
and collect information [Balabanovic and Shoham 1995].
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technology which can dynamically dissolve and estab-
lish bindings, replace local bindings by remote ones and
implement the notion of ubiquitous resources to which
bindings can be established at any site.

The flexibility gained by migration technology should
be contrasted with the traditional client-server paradigm
which heavily depends on assumptions on the client’s
home site and on the servers available in the net.
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3.2.5 Reflection

There are numerous reasons why digital artifacts may
have to be occasionally rearranged when used in net-
worked and long-lived environments. Software migration,
integration, (re-)binding, tracing are some such reasons,
but also wrapping, persistent storage or optimization.
Frequently, such tasks are highly regular and can be sys-
tematically performed by algorithms.

Reflection is a powerful yet (relatively) safe technol-
ogy for the algorithmic inspection and readjustment of
digital representation. Reflective program analysis and
transformation has to rely on detailed knowledge about
the programming language model and its implementa-
tion. Reflection may not only be used for generating or
altering data or code (at compile-time or run-time) but
also for transferring compile-time information (e.g. on
types) to run-time. Tasks for which reflection is required
in our setting are

> binding environments: reflective manipulation of bind-
ings may, for example, transform local references to
remote ones or replace remote references with copies;

> tracing environments: reflection can exploit informa-
tion in the environment in which threads are executed
(e.g. date, user-id, software version numbers, etc.)
and attach such meta-information to the executing
thread. Such information is collected automatically
as a side-effect of user actions. This information col-
lection process can be parameterized by user-defined
filters according to user preferences.

4 Tycoon as a Framework for Digital Libraries

The goal of the Tycoon project® [Tycoon 1992] is to pro-
vide modeling flexibility as well as system stability for
multi-functional, long-lived application systems operat-
ing in heterogeneous, open and networked environments.

Tycoon contributes to this goal on two levels [Matthes

et al. 1995].

> The Tycoon language is a persistent polymorphic
programming language with an elaborate higher-order
type system [Matthes and Schmidt 1991; Schmidt et
al. 1993; Schmidt and Matthes 1993; Matthes and
Schmidt 1993].

1 Tycoon: Typed communicating objects in open environments.
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as required by applications in open heterogeneous
networks [Matthes et al. 1996; Mathiske et al. 1996;
Mathiske et al. 1995a; Mathiske et al. 1995b; Matthes
and Schmidt 1994].
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In comparison, standards activities such as CORBA,
DCOM, OLE, etc. focus on provider-independent and
distribution-transparent service interfaces. In the con-
text of digital libraries, these interfaces encapsulate to-
kens describing the methods applicable to the tokens.
Tycoon supplements these basic token services by sup-
porting the process of artifact construction and the trac-
ing of this process. Therefore, we concentrate on algo-
rithmic aspects, flexible binding capabilities and rich-
typed modeling of digital libraries. In this area Tycoon
is comparable to portable high-level languages such as
Java which, however, is lacking some properties essential
to digital libraries, e.g. orthogonal persistence or thread
mobility. In the long run we expect a separation of con-
cerns: approaches such as CORBA will concentrate on
industrial-strength basic object libraries on the token
level; languages like Tycoon, Java and its future ver-
sions will provide service integration and are intended
to support value-adding processes such as artifact con-
struction.

4.1 Achievements of the Tycoon Language

Tycoon typifies one of those recent language develop-
ments [Gosling and McGilton 1995; Morrison et al. 1994]
which fully exploit the increased capacity of modern
computing and storage facilities. Although, according to
conventional standards, Tycoon’s computational model
may be considered resource consuming, it is our firm
belief that such an investment is well justified by the
substantially improved quality of systems developed in
languages such as Tycoon.

4.1.1 Typing

The Tycoon Language (TL, [Matthes and Schmidt 1992;
Matthes 1993]) excels in its expressive type system based
on existential and universal type quantification, recursive
types and structural subtyping. With respect to typing,
TL follows the tradition of the experimental polymorphic
language Quest [Cardelli 1989].

TL is based on very few built-in types and a small set
of type constructors. Orthogonal combination along with
recursive type definition and (recursive) type operators
provide virtually all data structures of interest.

For a simple digital library, books composed of texts
and images may be modelled by:

Let BookComponent = Tuple

case text with content :String

case image with content ;jpeg.T end
Let Book = Tuple

authors :set. T(Author) title :String
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The Let construct introduces type bindings. In the ex-
ample above, the two variants (text and image) of the
tuple type Book contain a field labeled content which is
of type String in the case of text and of type jpeg.T in
the case of image.

The second type defines a tuple with three fields (au-
thors, title, contents). The field authors is defined as a
set of authors, where set.T is a polymorphic type oper-
ator that takes the element type as actual parameter.

By structural subtyping a (recursive) type Publica-
tion becomes a subtype of Book so that all operations
on books, e.g. the displaying of the contents, are also
applicable to publications:

Let Rec Publication <:0Ok = Tuple
authors :set. T(String) title :String
contents :list. T(BookComponent)
references :list. T(Publication) end

let displayBook(book :Book) :Ok = ...

let napoleonicWars :Publication = . ..
displayBook(napoleonicWars)

The notation <:Ok in the type definition defines a super
type needed for type checking of recursive types, in this
case the super type of all unparametrized types, Ok. The
let construct introduces value bindings. displayBook is
a function taking one parameter of type Book and re-
turning nothing (represented by the type Ok). napoleon-
icWars is a value of type Publication.

Generic structures such as sets or lists can be de-
fined within TL through its higher-order polymorphic
type system [Schmidt and Matthes 1994; Matthes and
Schmidt 1991]. In the following example the recursive
type operator for lists depends on an element type E so
that lists of type T(E) accept only elements of type E:

Let Rec T(E <:0k) <:0Ok =

Tuple case nil case cons with head :E tail :T(E) end
let new(E <:0k) :T(E) = ...
let cons(E <:Ok element :E list :T(E)) :T(E) = ...

The functions new and cons take a type parameter E
constraining the types of the actual values passed to the
functions resp. that describes the result value returned
by the functions. This enables static type checking of
generic operators.

TL supports dynamic types and dynamically-typed
values. A dynamic value is a pair of a value v and a
run-time representation t of its type. If a dynamic value
component v is extracted, its associated type representa-
tion t can be inspected. This enables a boolean subtype
test whether t is a subtype of a given supertype T. Such
functionality is required to assure, for example, that an
artifact transferred from an external site is a book:

(* -- transfer a dynamic value: *)

let dynamicValue :dynamic.T = receive(channel)

(* -- test if this value is a book: *)

let book :Book = dynamic.be(:Book dynamicValue)
(* -- book is now statically typed *)
displayBook(book)
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like T in the following example.

Another application of dynamic types is, for example,
a generic artifact browser that is capable of working on
arbitrarily structured artifacts:

let artifactBrowse(Dyn T <:Ok artifact :T) :Ok = ...
artifact Browse(:Library historyLibrary)

artifact Browse(:Book napoleonicWars)

artifact Browse(:BookComponent napoleonPicture)

4.1.2 Binding Capabilities

Tycoon supports a wide variety of binding concepts cov-
ering a substantial range of what is requested in Sec-
tion 3.1. The more traditional binding alternatives in-
clude immutable, mutable, static and dynamic bindings
to types and values:

(* -- type binding: *)
Let Book = Tuple ... end
(* -- value binding: *)

let napoleonicWars = tuple ... end
(* -- mutable binding: *)
let var actualBook = tuple ... end

(* -- static binding: *)

let bookMark = actualBook

(* -- assignment: *)

actualBook := tuple ... end

(* -- dynamic binding: *)

let displayBook(book :Book) :Ok = ...
displayBook(napoleonicWars)

In Tycoon it is completely transparent whether a
binding refers to a local or a remote entity [Mathiske
et al. 1995a; Mathiske et al. 1995b]. If an entity leaves
the local scope in which it is bound, two alternatives ex-
ist: Either the entity (and its closure) is copied or the
binding is replaced by a remote reference. On request
remote references may be eliminated by copying.

Bindings to external functions are established by the
predefined bind function. Calls of external functions are
indistinguishable from calls of internal functions. Tycoon
takes care of the machine-dependent part of the parame-
ter conversion and call mechanisms. The following exam-
ple shows the binding to a machine-dependent function
which displays JPEG images:

let displayJPEG = bind(:Fun(:JPEG) :Ok
“imageLib” "display_jpeg_image”)
displayJPEG (image)

The type :Fun(:JPEG) :Ok describes the signature of
the external function. This is, again, a type parameter
that enables static type checking.

It should be noted that call and binding transparency
is a language requirement with heavy demands on the
architecture of the system.

Artifacts contain data but may also require code and
thread components. Code entities are used to construct
artifacts dynamically ‘just in time’. Each time the subse-
quent function newsOnElection is evaluated the Reuters
news service is asked for the latest news on the election:

let newsOnElection() :set. T(News) = begin
let reuters = openConnectionTo(” Reuters News Service” )
searchFor(reuters ”Election”)

end

let actualNews = newsOnElection()

Even more value may be added to artifacts by higher-
order functions expressing specific personal preferences,
such as an interest in news which mention both candi-
dates:

let newsOnElection(pref(:News) :Bool) :set. T(News) = . ..
let bothCandidates(news :News) :Bool =

news.includes(” Clinton”) andif news.includes(” Dole”)
let actualNews = newsOnElection(bothCandidates)

With threads components artifacts can work off-line
based on local state information. To collect only the lat-
est news from a news service a thread may be employed
which remembers the time it last collected the news:

let collectLatestNews() :Ok = begin
let var lastCollectionTime = never
let isActualNews(news :News) :Bool
news.time > lastCollectionTime
loop
let latestNews = newsOnElection(isActualNews)
lastCollectionTime:= now()
deliverNews(news)
thread.sleep()
end
end
let newsThread = thread.start(collectLatestNews)

Our newsThread collects (in parallel to other activ-
ities) all news available since its last wakeup; then it goes
to sleep until reactivated by thread. wakeup(newsThread).

Threads are first-class entities in Tycoon and can be
observed (traced) reflectively. In this way context data of
artifact construction processes can be created and stored
persistently [Matthes and Schmidt 1994]. With Tycoon’s
reflective capabilities such processes can be parameter-
ized by user-preferred filters for the information to be
attached to the artifact. This may not only add value
to the constructed artifact but also help improving the
artifact construction process.

4.1.4 Exception Handling

Since unexpected events are frequent in open systems,
Tycoon provides strong support for the handling of ex-
ceptional situations. If an exception is raised, execution
stops and continues where the last exception handler was



The exception handling routine decides which action
is sufficient to handle the exceptional situation. For ex-
ample, when the display routine for a JPEG image is not
available on a particular workstation, a conversion from

JPEG to GIF may help:

try displayJPEG(jpegPicture) when notAvailable then
try displayGIF(convertJPEGtoGIF (jpegPicture))
when notAvailable with name :String then
message(”Cannot display picture ” <> name)
end
end

4.1.5 Scopes

Tycoon applications, frequently, are very large. As a re-
sult, they can be structured into interfaces, modules and
libraries which restrict the scope of bindings [Schmidt et
al. 1993]. Tycoon libraries are nested high-level entities
that declare a definition order for interfaces and modules
so that they can only use identifiers which were defined
previously, preventing cyclic dependencies. Interfaces ex-
port public identifiers while modules define the bindings
for these identifiers using also private bindings. Through
nesting and hiding mechanisms the scope of identifiers
can be controlled.

Currently, an orthogonal suite of scoping primitives is
under investigation which specializes in the requirements
of personalized scopes in open networked environments.
It is provided by a generic Tycoon module that may
be combined with modules for distribution, versioning,
access control [Rudloff et al. 1995, etc. thus enabling the
flexibility required by personalized digital libraries.

4.2 The Tycoon System Architecture

The architectural requirements for digital libraries can
be seen from two perspectives.

> Since digital libraries hold a vast variety of informa-
tion content and provide extended information han-
dling services there is an intrinsic complexity involved
in libraries seen as a performing software system.

> Complexity also results from the fact that library sys-
tems will never stay stable; instead it has to be antici-
pated that libraries will develop during their virtually
infinite lifetime, even more so when connected to a
virtually unlimited network space.

Tycoon reduces the complexity of both of the above
tasks, first by enabling the construction of systems with
a higher degree of regularity (through orthogonal per-
sistence, platform independence, migration technology
etc.), second by supporting system evolution and change
management (open service integration, scalability, reflec-
tion). The layered architecture of the Tycoon System
(see Figure 4) scales from single-user PC-based applica-
tions to distributed applications in open heterogeneous
networks.
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Translator Checker Reflection
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Generator Optimizer Optimizer
TVM Manipulation
Interpreter Runtime External
Loop System Bindings
TSP Storage

Object Stores

Fig. 4. Layered Architecture of the Tycoon System

4.2.1 Persistence

Tycoon provides orthogonal persistence for data, code
and threads. The Tycoon Store Protocol, TSP [Matthes
et al. 1996], defines a uniform, data model-independent
call-level interface to multiple (commercially distributed)
persistent object stores abstracting from implementation
details of the underlying persistent stores. A typical TSP
server is implemented by a store adaptor which maps
TSP data structures and functions to data structures
and operations of an existing object store.

TSP contributes significantly to Tycoon’s system
scalability since TSP clients can decide between different

> garbage collection strategies

> object faulting mechanisms

> error recovery, logging and persistent savepoint mech-
anisms

> commit protocols (for distributed systems)

> security and authentication support

or choose between a single- or multi-user environ-
ment.

A primary design goal of TSP is to provide effi-
cient data storage independent of the data and language
model used by TSP store clients. TSP supports polymor-
phically typed models where store objects may contain
values of different types. TSP therefore uses an untyped
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rays of references used for artifacts. The lifetime of TSP
store objects is defined by reachability and storage is
reclaimed by garbage collection.
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4.2.2 Open Service Integration

External services, e.g. visualization systems or database

systems, can be integrated into the Tycoon system through

bindings to external functions [Schmidt and Matthes
1993]. The binding mechanism allows the Tycoon system
to call external functions as well as it allows the external
system to call back the Tycoon system via higher-order
functions. Examples are event-controlled windowing sys-
tems that call application-defined functions when a but-
ton is pressed or a window closed etc.

Such services are wrapped by Tycoon in portable and
type-safe functions exploiting the full polymorphic power
of the Tycoon type system even in cases in which ex-
ternal functions are completely untyped. When calling
external functions from Tycoon or, in reverse, calling
(back) Tycoon functions from external systems, param-
eter conversion is handled by the Tycoon run-time sys-
tem.

The following example shows an interface SQL that
exports polymorphic functions to access different SQL
database systems:

interface SQL import ... export
error :Exception with sqlError:String end
Table(E, K <:Tuple end) <:Ok

openTable(Dyn E, K <:0k
tableName :String) :Table(E K)

j(.)(.)kup(E, K <:Ok from :Table(E K) key :K) :E

selectFromWhere(E, K, R <:Ok project(:E) :R

from :Table(E K) where(:E) :Bool) :Iter. T(R)
end

Tycoon libraries hold, for example, two different mod-
ules ingresSQL and oracleSQL which implement the
above interface by bindings to the dynamic SQL call
interfaces of the Ingres and Oracle relational database
management systems. The type operator Table(E K) ex-
ported from the interface describes the type of SQL ta-
bles with element type E and key K. For example, a
value of type oracleSQL.Table(News Int) is an Oracle
table with rows that have attributes as defined by the
Tycoon tuple type News where a running number iden-
tifies a row.

The polymorphic function openTable opens a named
table for further processing and takes dynamic type vari-
ables E and K as its first arguments to ensure that the
database table structure matches the Tycoon type infor-
mation. If a schema mismatch is detected, the Tycoon
exception error is raised at run-time. All other opera-
tions of the SQL interface (queries, table updates) can
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tions. For example, the signature of the function lookup
expresses the type constraint that from a table of type
Table(E K) only tuples of a matching type E can be
retrieved.

The function select shows how polymorphic typing
can be used to statically describe a (unary) select state-
ment. The selection on relation from is controlled by the
predicate where that works on relation elements. project
builds the resulting tuples. Note that this works only
if the external database system is capable of including
arbitrary function calls dynamically in queries.

The Tycoon service integration technology sketched
above is open to arbitrary services of interest. Since, be-
sides formatted data and SQL, texts are essential for
digital libraries, information retrieval technology has to
be available based on fuzzy queries and ranking lists
. Therefore, Tycoon also maintains a text retrieval li-
brary which integrates the services provided by the in-
formation retrieval system Inquery [Callan et al. 1991;
Broglio et al. 1994].

Besides the integration of external services, Tycoon
is also open for being integrated as a server into external
systems. For this purpose, Tycoon provides a callback
mechanism which allows external systems to invoke Ty-
coon functions.

In the following example, Tycoon is set up as a server,
e.g. as WWW server, that accepts external communica-
tion requests. In our example, remote procedure calls are
used for communication and a RPC server is installed
and started which stores and retrieves JPEG images:
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let jpegDB = tuple
let store(image ;jpeg. T name :String) :Ok = ...
let retrieve(name :String) ;jpeg. T = ...
end
let server = rpcServer.new()
rpcServer.register(server "JPEG DB” jpegDB)
rpcServer.dispatch(server)

4.2.3 Platform Independence

The Tycoon Virtual Machine (TVM) is an abstract call
interface above the TSP layer that defines a bytecoded
instruction set based on a higher-order, functional ex-
ecution model. TVM bytecode is either interpreted by
a virtual machine or is compiled on the fly into target
machine code. The TVM interpreter and its associated
run-time system are written in ANSI-C.

The platform-independence of the TVM model makes
it possible to dynamically transfer portable bytecode be-
tween heterogeneous nodes in distributed digital libraries
without recompilation. Utilizing TSP’s linear external
data representation (TXR), it is also possible to mi-
grate a thread across system boundaries [Mathiske et
al. 1995a; Mathiske et al. 1995b; Matthes and Schmidt
1994].

For example, the higher-order query function new-
sOnFElection can be rewritten in the following way for
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the server site:
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let newsOnFElection =
rpe.bindTo(:Fun (pref(:News) :Bool) :set. T(News)
serverSite ”"newsOnElection”)
let bothCandidates(news :News) :Bool =
news.includes(” Clinton”) andif news.includes(” Dole”)
let actualNews = newsOnElection(bothCandidates)

4.2.4 Migration Technology

Even more flexibility is achieved in Tycoon because
threads can migrate between the nodes in a network
[Mathiske et al. 1995a; Mathiske et al. 1996]. This en-
ables, among others, the implementation of agents. An
agent may include the trace of the search in its search
process, e.g. the items it has already found, the number
of nodes visited or the nodes it has been recommended
to visit:

Let SiteData = Tuple news :set. T(News)
sitesRecommended :set. T(Site) end

let homeSite = agent.thisSite()

let sitesVisited = set.new(:Site)

let sitesToVisit = set.create(newYork washington)

let newsFound = set.new(:News)

while not(set.empty(sitesToVisit)) do
let nextSite = set.getAny(sitesToVisit)
let local :SiteData = agent.migrateTo(nextSite)
set.insert(sites Visited nextSite)
set.include(newsFound local.news.search(”Election”))
let newSites =

set.exclude(local .sitesRecommended sitesVisited)

set.include(sitesToVisit newSites)

end

agent.migrate(homeSite)

show(newsFound)

4.2.5 Reflection

The Tycoon system supports different manners of reflec-
tion. By linguistic reflection [Stemple et al. 1991; Stem-
ple et al. 1992] the execution of the compiler (compile-
time reflection) or the application (run-time reflection)
can be influenced.

Compile-time reflection is achieved by executing user-
defined code during compilation. Dynamic types, for ex-
ample, are implemented by compile-time reflection. The
compiler collects type information and stores it persis-
tently for run-time use. Similarly, operations on compile-
time information are performed as, for example, by the
Repeat construct which repeats a list of Tycoon signa-
tures (for the definition of Book, see above):

let createBook(Repeat Book) :Book = ...
Here, Repeat Book is reflectively replaced by
authors :set. T(Author) title :String . ..
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generator, evaluator, module manager, ...), thus made
available to applications at run-time. In this way code
may be evaluated or even generated depending on run-
time (computed) information. In Tycoon full type safety
is guaranteed, even in the presence of run-time and
compile-time reflection, by the consistent use of dynamic
types in the Tycoon compile-time and run-time environ-
ments. The following example shows the binding of the
subtype checking function of the compiler and its use for
dynamic values at run-time:

let isSubType = reflect(:Fun(tl, t2 :typeRep_T) :Bool
7isSubType”)
(* -- transmit dynamic value, e.g. via network: *)

let dynamicValue = receive(...)
if isSubType(typeOf(dynamicValue) :Book) then ... end

Behavioral reflection [Kirby et al. 1996] is a second
kind of reflection supported by Tycoon. It is achieved by
influencing Tycoon’s interpreter loop and the run-time
system of the Tycoon Machine. For example, the follow-
ing code marks the image napoleon as immobile. Conse-
quently, if the book napoleonic Wars which references the
image napoleon is transferred, the image is not copied;
instead a remote reference to the image is introduced:

markAsImmobile(napoleon)
sendTo(newYork napoleonicWars)

In summary, Tycoon is a powerful framework which
provides much of the functionality required to make
multi-functional and multi-media application systems
persist in turbulent environments such as open, hetero-
geneous and networked information infrastructures.

5 The Warburg Electronic Library Project

The Warburg Electronic Library Project (WEL) began
within the framework of an interdisciplinary cooperation
[Niederée et al. 1996] between our group and the Art
History department at the University of Hamburg. The
goal of this cooperation is the examination, development
and application of digital libraries for art history research
purposes.

The development of this particular digital library fo-
cuses on two topics:

> understanding the special requirements of the appli-
cation domain and their adequate realization;

> personalization of a working environment for art his-
tory research by tailoring personal digital reference
libraries to the needs of individual information con-
sumers and specific tasks.

5.1 The Application Domain
The application domain of art history is dominated by

image material augmented by texts and multi-media ar-
tifacts such as films and audio documents. Art history
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and their classification according to these issues. In the
handling of image material automatic image processing
plays only a subordinate role. Most of the information
has to be added by people in a value adding process.

This style of image handling is not restricted to art
history. Other areas such as marketing and press archives
are also primarily interested in themes and messages
transported by their artifacts as well as the represented
objects and persons.
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The PI-Index

Political Iconography (PI) is the area of art history which
examines political messages conveyed in images show-
ing regents, politicians, ceremonies, political acts, etc.
The underlying assumption of the PI is that the effects
of political actions are not restricted to contracts and
political documents but are also depicted in paintings,
monuments and buildings.

The art history department has developed an elabo-
rated ontology for the classification of images according
to their political messages called the PI-Index. This on-
tology consists of a hierarchy of terms referring to pol-
itics, political acts, and social phenomena. It includes
terms as varying as science, marriage, democracy, shep-
herd, and revolution.

The classification of image material according to this
ontology cannot be done automatically. It is itself a re-
sult of scientific work in the area of art history. About
250,000 cards with photographs of paintings, etc. show-
ing politicians, political acts and ceremonies, battles and
social events from all epochs and countries are already
classified according to this scheme. The classification is
not disjoint, many cards are assigned to several terms of
the index.

5.2 Tokens and Artifacts in the Warburg Electronic
Library

Photographs or prints of paintings showing regents or
related matters, associated texts, speeches of politicians,
and documentary films about regents like Napoleon,
form the relevant information tokens in this digital li-
brary. The tokens are created and included into the in-
formation universe through scanning or an equivalent
digitalization process. A further source of tokens is text
editing. Scanned image tokens are stored as bit vectors
in formats like JPEG or GIF. In Tycoon types are asso-
ciated to these bit vectors and routines, preventing the
erroneous use of bit vectors and routines. The follow-
ing example shows the association of a type T and the
routines scan and display for JPEG images:

let jpeg = tuple
Let T=...
let scan = bind(:Fun() :T ”imageLib”
"scan_jpeg_image”)

Fig. 5. Napoleon crossing the Alpes at St. Bernhard

let display = bind(:Fun(:T) :Ok ”imageLib”
"display_jpeg-image”)
end
let jpegImage = jpeg.scan()
Jjpeg.display(jpegImage)

As mentioned in Section 4 the bind function in Tycoon
is used to include external, machine-dependent routines
scan_jpeg_image and display_jpeg_image that work on
JPEG files.

On this level the tracing environment may provide in-
formation about the date of digitalization and the iden-
tification of the person creating this token.

The tokens are taken as starting points for the ar-
tifact construction. The image token showing Napoleon
crossing the Alps, for example, is taken as a basis for an
artifact as illustrated in Figure 5. The artifact contains
a reference to the scanned painting (image token) and a
thumbnail copy of it, as well as information about the
artist, the title, and the date of the the painting as well
as the location where the original painting can be found
and the source of the scanned print of the painting.

In addition, the artifact is accompanied by content-
descriptive metadata: It is classified according to the on-
tology of the PI-Index and the regent pictured by the
token, here Napoleon, is specified. This additional infor-
mation can be considered as information tokens from a
private information source.

The type representation of this artifact in Tycoon
looks as follows:

Let PIArtifact = Tuple
originallmage :Reference(jpeg.T)
thumbnaillmage ;jpeg.T
title :String
date :Date

end
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local /remote etc.

The Warburg Electronic Library maintains a large
collection of these artifacts together with services for
their persistent storage, transmission, retrieval, and pre-
sentation. On the language level retrieved artifacts may
be included into a list of type list. T(PIArtifact) and the
associated thumbnail images may be displayed by using
iteration abstraction provided as generic services by a
Tycoon library.

list.forEach(artifactSelection fun(a :PIArtifact)
Jpeg.display(a.thumbnaillmage))

The library is augmented by an Oracle database con-
taining historical data on regents of all centuries. The
Tycoon SQL-gateway to Oracle databases is described
in Section 4. Looking up historical data about Napoleon
is accomplished by the following function of the SQL
interface.

oracleSQL.lookup(regents ”Napoleon”)

In addition to image artifacts and structured data
the Warburg Electronic Library also contains text col-
lections, e.g. about political iconography and political
events. These collections can be searched by an Inquery
information retrieval engine. Employing the Tycoon In-
query gateway the collection can be searched in the same
language framework as the Oracle database.

inquery.eval(political Events
” Anything about Napoleon and Waterloo”)

The query results thus can be easily combined, e.g.
in order to prepare a presentation about Napoleon at
Waterloo with historical dates from the database re-
gents and text information from the text collection po-
liticalEvents.

5.3 Personal Reference Libraries

Digital libraries provide multi-media material for groups
of information consumers. To secure the success of a com-
plex task a working environment tailored to the indi-
vidual requirements of the consumer and to the specific
task is necessary. The development of such personalized,
cooperative working environments called personal refer-
ence libraries is currently being examined in our group.
Personal digital reference libraries can be stored persis-
tently and exchanged with other persons who work on
the same or a similar topic.

An example of the construction of a personal refer-
ence library is the preparation of a publication and/or
demonstration on equestrian portraits of regents through-
out the centuries.

The ontology PI-Index includes the terms Reiterbild,
i.e. equestrian portrait, and Herrscher, i.e. regent. The
set of pictures and other material classified into both
categories can thus be easily accessed using the services
of the digital library.
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pictures and related text material from the different cen-
turies. The selected pictures can be annotated with com-
ments giving, for example, the reason for the choice, or
ideas for the publication. Further information such as
the date of inclusion, the creator of the artifact, and the
source of the information can be added automatically
from the tracing environment.

Since personal reference libraries are also artifacts
(compare Figure 1) the different supported binding mech-
anisms can be exploited to realize the separation between
the public scope of the digital library and the private tai-
lored scope of the personal reference library.
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> Remote bindings to relevant paintings in other art
collections and local bindings to paintings organized
in the PI-Index can be established and stored in local
object stores.

> Information on artists, available on CD-ROM, may
be included in the personal library by external ref-
erences in order to gain a better understanding of
individual paintings.

> Stored parameterized queries can be used to estab-
lish dynamic bindings to contemporary paintings of
horses and other animals, evaluating the query on
demand for different parameters specifying the time
frame of interest.

> Text information about the illustrated event, the re-
gent or equestrian portraits in general can be in-
cluded by remote references to entire publications
complemented by copies of text passages considered
important for the publication in work.

> Autonomous bindings (agent technology) can be ex-
ploited to search further art collections for represen-
tative equestrian portraits of regents. The respective
agent may be resent periodically in order to retrieve
the most actual publications and newly created to-
kens and artifacts.

Personal reference libraries are created stepwise, scan-
ning the available material in several sessions, including
new more adequate tokens and artifacts, possibly reject-
ing previous choices.

This requires a binding environment that can be up-
dated dynamically (inserting and deleting bindings). Dy-
namic environments as proposed in [Dearle 1989] are
considered a good starting point for the realization of
these dynamic artifacts. The combination of the various
binding mechanisms with the concept of a dynamic en-
vironment is a topic of current research.

6 Conclusions and Future Research

Central to our view of digital libraries over networked
information tokens is the value-added construction of
information artifacts and their use in personalized in-
formation environments. The library processes of arti-
fact construction and use are enabled and supported by
advanced binding and tracing environments which place
substantial demands on the linguistic and architectural
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ments requested, there remains the practical problem of
how to best organize and customize the concrete soft-
ware which implements such advanced environments for
library process support.

On various occasions in this paper we mentioned al-
ready the similarity between digital libraries with infor-
mation artifacts and software libraries (e.g. [Meyer 1990;
Meyer 1994]) with generic software tokens and cus-
tomized software artifacts constructed for specific use.
Based on our initial experience we expect that much
of the functionality of the binding and tracing environ-
ments for information artifacts can also be used for the
construction and use of the software artifacts required
by digital libraries. The first-class status of data, code
and threads in Tycoon provides a promising framework
for such an approach.

On the technology level, we have a vested interest in
the extension of our binding technology, e.g., by the con-
cept of versioned bindings and by extended operations
on structured collections of bindings.

The most relevant input, however, for the future de-
velopment of digital libraries we expect from our cooper-
ation with potential user communities which have both
the relevant library contents as well as the pragmatics
of how to use them. From their feedback we expect to
gain the domain knowledge which is required to design
and realize the adequate abstractions for future digital
libraries.
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