Chapter 3.3
Interoperability:
Introduction and State of the Art

Florian Matthes

Technical University Hamburg-Harburg
Harburger Schlofistrafie 20
D-21071 Hamburg, Germany

Today, successful application development is rarely carried out by coding
application programs from scratch, instead there is a strong tendency to
exploit services provided through open and modular environments already
populated with prefabricated and packaged functionality and information.

In this scenario, fully integrated persistent programming environments
excel through their persistence abstraction, their elaborate data modelling
support and their well-organized component libraries all described in earlier
chapters. However, for the construction of large-scale industrial applications,
application programmers still have to utilise commerically-available system
services and tools outside of the persistent programming environment, for
example, to access legacy data and code. Furthermore, programmers have
to be able to make persistent data and code maintained by a persistent pro-
gramming environment accessible to other systems, for example, for data and
system integration purposes.

The work described in this chapter applies the database and program-
ming language technology developed in the FIDE project to improve the
interoperability between independently developed, generic system servers. At
present, each of these servers comes with its own naming, typing, binding and
persistence concepts so that application developers who wish to exploit mul-
tiple services within a single application find themselves working in a quite
complex and fairly unfriendly and unsafe environment. Examples for these
difficulties can be found at the interfaces to file systems, SQL databases,
window systems or RPC packages.

Distributed object management is viewed as a promising approach to
build scalable distributed systems that are also capable of integrating legacy
(database) systems by means of a unified object paradigm [6]. There are
numerous proposals for specific object models like DSOM of IBM [4], DOM of
GTE [6], Network Objects of Modula-3 [2] and future versions of Microsoft’s
OLE [7] and there are several related standardization efforts like CORBA of
the OMG [3] and the OSF DCE/DME [9]. For a detailed feature analysis of
these models see [8, 5].

Similar to object models, the high-level type systems of the persistent
languages presented in Chapters 1.1.1 to 1.1.3 provide mechanisms like type
abstraction, type quantification and subtyping to write detailed specifications



Florian Matthes

of external service interfaces and to classify services based on their signatures.
Persistent languages go beyond object models since they also define a rich
(higher-order) computational model to describe behaviour, as it is required
to “glue together” services from several providers.

By re-interpreting schemas as type definitions and databases as typed
variables and by treating lifetime as a type-independent property, a uniform
linguistic interface for data modelling, computation and communication can
be developed (see also Chapter 3.3.3). As a consequence of such an integrated
view, formerly disjoint concepts such as databases, program and module li-
braries, files or repositories can now be treated uniformly as POSs differ-
entiated essentially by the types of objects they contain and by the opera-
tional abstractions they provide [10]. Therefore, distributed databases, multi-
databases and federated databases can be understood as restricted (particu-
larly interesting) cases of interoperating persistent application systems.

Instead of using persistent languages to glue together services developed
with incompatible technologies, one could also envision a scalable persistent
architecture based on a core “low level persistent language” (LLPL) that
provides a stable, secure and platform-independent basis for the construction
of multi-paradigmal systems. As discussed in more detail in [1] (see Chapter
2.1.1), a major concern of this approach is to achieve high levels of longevity
(data and programs have to be accessible for several 102 upto 10 years)
without compromising data integrity and security through uncontrolled (non-
typed) data access.

Chapters 3.3.1 and 3.3.2 show how database technology can be applied
to semi-structured data stored in files and how database languages can be
utilised to query and update files at a high level of abstraction. The map-
ping between structured database objects and linear file representations is
defined by means of grammars. The results of this work in the direction of
heterogeneity and data integration are applied in the Os Views system.

Chapter 3.3.3 introduces a canonical model of persistent object systems
based on generalised notions of values, types, bindings and signatures to de-
scribe the issues that have to be solved to achieve a type-safe interoperation
between persistent objects supported by independently-developed generic
servers. The model utilised in tgar Chapter underlies the Tycoon program-
ming language TL and the scalabe and interoperable Tycoon programming
environment, both described in Chapters 1.1.1 and 2.1.4.

References

1. M.P. Atkinson. Persistent foundations for scalable multi-paradigmal systems.
FIDE Technical Report Series FIDE/92/51, FIDE Project Coordinator, Depart-
ment of Computing Sciences, University of Glasgow, Glasgow G128QQ, 1992.

2. A. Birell, G. Nelson, S. Owicki, and E. Wobber. Network objects. In 14th ACM
Symposium on Operating System Principles, pages 217-230, June 1993.



10.

Chapter 3.3 Interoperability: Introduction and State of the Art

Object Management Group. The common object request broker: Architecture
and specification. Document 91.12.1, Rev. 1.1, OMG, December 1991.

. IBM Corporation, Publication No. SR28-5570. Object-Oriented Programming

using SOM and DSOM, August 1994.

. F. Manola and S. Heiler. A "RISC” object model for object system interoper-

ation: Concepts and applications. Technical Report TR-0231-08-93-165, GTE
laboratories Inc., Waltham, MA (USA), August 1993.

. F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick, and M. Brodie. Dis-

tributed object management. International Journal of Intelligent and Cooper-
ative Information Systems, 1(1), March 1992.

Microsoft Corporation. Microsoft Office Developer’s Kit, 1994.

J. Nicol, T. Wilkes, and F. Manola. Object orientation in heterogeneous dis-
tributed computing systems. Special Issue on Heterogeneous Processing, June
1993.

. OSF. OSF DCFE Administration Guide — Core Components. Prentice Hall,

Englewood Cliffs, New Jersey, 1993.

J.W. Schmidt, F. Matthes, and P. Valduriez. Building persistent applica-
tion systems in fully integrated data environments: Modularization, abstraction
and interoperability. In Proceedings of Euro-Arch’93 Congress, pages 270-287.
Springer-Verlag, October 1993.



