
Scaling Database Languages to
Higher-Order Distributed Programming

Bernd Mathiske Florian Matthes Joachim W. Schmidt
Universität Hamburg, Vogt-Kölln-Straße 30

D-22527 Hamburg, Germany

July 2, 1996

Abstract

We describe the Tycoon
�

approach to scale the successful notion of a uniform, type-safe persistent object store
to communication-intensive applications and applications where long-term activities are allowed to span multiple
autonomous network sites. Exploiting stream-based data, code and thread exchange primitives we present several
distributed programming idioms in Tycoon. These programming patterns range from client-server communication
based on polymorphic higher-order remote procedure calls to migrating autonomous agents that are bound dynamically
to network resources present at individual network nodes. Following Tycoon’s add-on approach, these idioms are not
cast into built-in syntactic forms, but are expressed by characteristic programming patterns exploiting communication
primitives encapsulated by library functions. Moreover, we present a novel form of binding support for ubiquitous
resources which drastically reduces communication traffic for modular distributed applications.

1 Introduction and Motivation

Database programming languages have improved significantly the quality of data-intensive applications by contribu-
tions on two levels. At the language level, they provide flexible naming, typing and binding mechanisms between
all computational entities relevant for a data-intensive application based on an integrated model for persistent (bulk)
data, code and threads [AB87, MS94]. At the system level, they provide a matching integrated system technology
(like tagged object representations, iteration abstractions over multiple bulk types, garbage collection, persistent ab-
stract machines, portable code representations) that overcomes several severe mismatches of non-integrated database
environments.

In this paper we argue that these two contributions to the persistence of data, code and threads over time are also
highly relevant to the distribution of these entities across space, in particular, across multiple autonomous sites in
heterogeneous networks. More specifically, we report on our ongoing work in scaling the Tycoon

�
system [MS93] to

use Tycoon’s persistent higher-order language [MS92] as a powerful scripting language for distributed applications.
We believe that it is crucial for the DBPL community to address the difficult problem how to scale the highly

successful notion of a uniform, type-safe persistent object store to communication-intensive applications and applica-
tions where long-term activities are allowed to span multiple autonomous sites (possibly distributed in a world-wide
network [MMS95, Whi94]).

We therefore propose to enrich the mostly reference and sharing-oriented object models of database languages with
appropriate binding support for copy and replication-oriented applications that perform data, code and thread exchange
via linear, portable, stream-based representations. Moreover, it is necessary to develop distributed programming idioms
exploiting the higher-order concepts of modern DBPLs that help application system builders to handle replication,
recovery and security issues based on application- or domain-specific knowledge.

This paper is organized as follows: After a brief Tycoon introduction (section 2) we describe stream-baseddata, code
and thread exchange as the basis for communication between autonomous sites (section 3). Section 4 presents typical
programming patterns used in distributed Tycoon applications which rely heavily on Tycoon’s higher-order language
�
Tycoon: Typed communicating objects in open environments.

This work was supported in part by ESPRIT III Basic Research Action 6309 (FIDE� ).

Fifth International Workshop on Database Programming Languages, 1995 1



Scaling Database Languages to Higher-Order Distributed Programming

model where functions, threads and types are true first-class citizens. These programming idioms range from client-
server communication based on polymorphic higher-order remote procedure calls to migrating autonomous agents that
are bound dynamically to network resources present at individual network nodes. Following Tycoon’s add-on approach
[MS91], these idioms are not cast into built-in syntactic forms, but are expressed by characteristic programming patterns
exploiting communication primitives encapsulated by library functions. Using Tycoon’s extensible syntax [CMA94],
it is possible for library designers to add syntax at a later stage to abstract from stereotypical programming patterns.

2 The Tycoon Language Model

The Tycoon language (TL) is an algorithmically-complete, strongly-typed, higher-order polymorphic programming
language [MS92] with add-on bulk types and rich declarative query constructs. This section gives a short overview of
the core TL syntax and semantics to aid the understanding of the examples in subsequent sections.

The following (recursive) type A denotes the type of all tuples that aggregate a floating point number named r, a
character string variable named s, and a function named foo which takes a parameter b of type A and returns a string.

Let Rec A = Tuple r:Real var s:String foo(b:A):String end

A value a of type A can be defined through the following value binding.

let a:A = tuple let r = 3.14 let var s = "world"
let foo(b:A):String = string.concat("Hello " b.s)

end

The definition of the function foo uses the function concat exported from the string module in the Tycoon library to
concatenate the string constant "Hello " with the field s of the tuple b passed as its argument. The following recursive
value binding makes is possible to define a value self of type A that contains a function named foo that refers to the
field s of its enclosing tuple.

let rec self:A = tuple let r = 0.0 let var s = "world"
let foo(b:A):String = string.concat(self.s b.s)

end

These examples illustrate virtually all binding concepts of the Tycoon language TL which have to be scaled to a
distributed environment:
� Tuples aggregate static bindings and functions permit dynamic bindings through parameterization.
� Recursive bindings can be performed uniformly at the type and the value level to capture cyclic dependencies.
� TL supports both, bindings to values (r, foo, R-values) as found in functional languages and bindings to locations

(s, L-values) as found in imperative languages [MABD90]. Locations are marked with the keyword var and can
be updated by destructive assignments (e.g., self.s:="new string").

� Functions (foo) and modules (string) are first-class TL values, i.e. they can be embedded freely into data
structures, passed as parameters or returned by functions. Functions and modules may refer to free variables
(self in the example above). The set of all free variable bindings in the static scope of a function or a module is
called its closure.

The TL bindings above are restricted to entities (data, code, threads) that reside in a common object store which
includes all volatile and persistent TL entities at a network site. It is important to note that TL entities are also allowed to
contain additional bindings to external resources like C library functions, or file and window handles. These resources
are typically non-persistent and immobile and therefore require special attention in distributed programming.

In general, a Tycoon language binding from an entity a to an entity b leads to a persistent store reference from a
store object representing a to a store object representing b. Reachability-based persistence ensuring referential integrity
at a network site is then enforced easily by means of a local garbage collector. For example, figure 1 shows the cyclic
object store graph resulting from the binding of the recursive value self. The store representation of the function foo
consists of references to the literals of foo (constant bindings to the code of foo and to constants values used in the
source text) as well as references that constitute the closure of foo (the module string and the value self).

The signature of a polymorphic TL function is written as follows:

Fifth International Workshop on Database Programming Languages, 1995 2



Scaling Database Languages to Higher-Order Distributed Programming

self 3.14 "world" "Hello "foo literals code string more objects

Tycoon
Persistent

Object
Store

object store reference

value stream index

more objects

self foo string

3.14 "world"

literals

"Hello "

code

dynamic.extern

Figure 1: Linearization of a cyclic object graph

let sort(A � :Ok a:Array(A) greaterEqual(:A :A):Bool) :Ok = …

The function sort takes a type, a value and a function argument. For each type argument A which can be an arbitrary
subtype of the top type Ok in the TL subtype hierarchy, the value a has to be an array with elements of type A
and the function greaterEqual has to be a comparison function between pairs of A values. A discussion of TL’s
higher-order type system [MS92] is beyond the scope of this paper, however, it should be noted that many of the data-
independent operations typical for distributed applications (shipping, aggregation, copying, …) are captured naturally
by a polymorphic typing discipline.

3 Stream-based Data, Code and Thread Exchange

Similar to other modern languages like Amber [Car86], Quest [Car89], Standard ML [MTH90] and Napier88
[MBC

�
94], Tycoon provides a mechanism to write a deep copy of an arbitrarily complex value to a file. In Ty-

coon, this mechanism is generalized further since it is possible

� to linearize data, code as well as threads (partially evaluated code),

� to write to arbitrary byte streams (byte sequences in the object store, operating system files, network communi-
cation channels, …),

� to exchange byte streams between heterogeneous hardware architectures with automatic and efficient conversion
of data, code and thread representations,

� to attach dynamic type information to the linear value representation to avoid type-unsafe access (this also works
correctly for values of abstract data types [OTCP90]),

� to install user-defined methods which handle external (volatile or immobile) resources like windows, files or
SQL tables referenced by Tycoon language values.

For example, the following TL code writes a representation of the value self defined in the previous section together
with a dynamic type representation of its type A to a newly created operating system file:

let w = writer.file("TestFile.tyc")
dynamic.extern(w dynamic.new(:A self))
writer.close(w)

Fifth International Workshop on Database Programming Languages, 1995 3



Scaling Database Languages to Higher-Order Distributed Programming

As depicted in figure 1 the full transitive closure of self is linearized by representing object store references through
indices in the value stream. Section 5.1 describes refinements of this basic copy-based exchange mechanism to reduce
significantly the amount of information that needs to be linearized (30kB in this simple example) by exploiting the
semantics of certain values in the transitive closure.

The following code opens the operating system file created above for reading, reconstructs the object graph from
the stream (preserving cycles and sharing), and performs a dynamic type check to ensure that the dynamically-typed
value dyn read from the stream has type A.

let r = reader.file("TestFile.tyc")
let dyn = dynamic.intern(r)
let aCopy = dynamic.narrow(:A dyn)
reader.close(r)

If the dynamic type check fails, dynamic.narrow raises an exception that can be handled by the application program.
Otherwise no further dynamic type checking is required to program with the value aCopy.

aCopy.foo(aCopy)

Even in a persistent language like Tycoon there are numerous applications for stream-based representations, like
the exchange of compiled interfaces, modules, library descriptions between separate Tycoon object stores, the backup
and logging of small databases, the switching between alternative database versions, the generation of stand-alone
Tycoon boot files consisting of a main program function, and the dynamic code shipping from a WWW server to
Tycoon clients.

4 Distributed Programming Idioms in Tycoon

This section presents typical programming patterns to build integrated Tycoon applications in distributed environments
exploiting the binding and linearization primitives introduced in the previous sections.

4.1 Higher-Order Remote Procedure Calls

Synchronous remote procedure calls (RPCs) are the preferred technique for building client-server applications [Cor91].
Based on the flexible stream-based exchange mechanisms described in the previous section, the Tycoon library contains
two generic TL modules rpcClient and rpcServer that support RPCs between separate Tycoon processes that typically
run on top of separate object stores.

The following features distinguish Tycoon’s RPCs from commercially standardized RPCs [Cor91, OSF93] and
RPCs implemented in other persistent languages [MdS95]:

� There are no restrictions on the permissible remote function parameter types. In particular, a remote function
can be higher-order and it can take values of abstract data types.

� It is possible to call and ship polymorphic functions, i.e. the type of arguments supplied to a remote function
may vary dynamically from call to call.

� The binding to modules exporting remote functions can be performed fully dynamically at runtime; it is not
necessary to invoke stub generators, to compile source texts or to relink the application code. Therefore, it is
possible to program higher-order services like directory services or object brokers fully type-safe within TL
itself.

Tycoon RPCs have “at most once” semantics and hide the details of the communication software which is used by
the Tycoon library to implement (portable byte stream) data transmission. Currently, Tycoon supports ONC RPC (also
known as Sun RPC) and BSD sockets; the use of DCE RPC is under preparation.

Communication failures are reported to TL clients by raising a dedicated exception (rpcClient.error) that gives
access to the name, dynamic type and network address of the respective service. Application-specific exceptions raised
by the remote function are propagated (including optional exception arguments) to the client site.

To illustrate the use of Tycoon’s generic RPC services, assume that a module dbOps with interface type DBOps (a
tuple aggretating a type, an exception value and several functions operating on an encapsulated collection of Person
tuples) is defined in a Tycoon object store at site � and is to be made accessible via RPCs to other Tycoon sites.

Fifth International Workshop on Database Programming Languages, 1995 4



Scaling Database Languages to Higher-Order Distributed Programming

Let DBOps = Tuple
Let Person = Tuple name:String age:Int … end
error :Exception
insert(p :Person) :Ok
any(predicate(:Person):Bool) :Person
getRiscCalculation()(:Person) :Real

end
let dbOps :DBOps = tuple

Let Person = …
let error = exception "database.error"
let insert(p :Person) :Ok = …
let any = …
let getRiscCalculation = …

end

In a first step, the function new of the module rpcServer is called at site � which returns a handle for an initially
empty set of modules to be dispatched synchronously (i.e. by a single Tycoon thread).

let server = rpcServer.new()

Next, the polymorphic register function is used to add modules to the set of registered services at site � and to specify
(optional) service names which can be used later by Tycoon clients for identification purposes.

let registeredService = rpcServer.register(server "dbOps" dbOps)

Note that this function depends crucially on the fact that modules (like dbOps) are first-class values in TL.
The simplest way to implement an RPC server is to start an infinite loop that blocks the current thread until a

request is received, reconstructs the arguments from their stream-based representation, invokes the local function and
returns the result (possibly an exception packet) as a linear stream to the requesting site. This loop is implemented by
the dispatch function which is to be called at site � .

rpcServer.dispatch(server)

Tycoon provides additional functions that give a finer control over the behavior of the RPC server (polling, time-outs,
conditions, remote control). Modules can be inserted and removed dynamically at a given server:

rpcServer.unregister(server registeredService)

Such a call can be made during the execution of a request, asynchronously by a concurrent thread, or after the server
stopped handling requests.

At the client site � the services of the generic module rpcClient are used to establish an RPC connection to the
dbOps services exported from site � .

let remoteDBService = rpcClient.remoteService(:DBOps "dbOps" domain)

This function performs a broadcast in a network domain to locate a running Tycoon RPC server that dispatches
requests to a module with the name dbOps and a type M that is a subtype of the type DBOps specified as the
first argument � . If no such service can be found, an exception is raised. Otherwise an abstract value of type
rpcClient.RemoteService(DBOps) is returned that describes the remote service at site � (exact service type, service
name, communication protocol, network address). Again, this example illustrates nicely the use of polymorphic
typing in distributed programming since the explicit type argument DBOps makes it possible to completely statically
type-check any further use of remoteDBService at the client site.

Finally, a call to the polymorphic bind function at site � returns a newly created local “stub” module remoteOps of
type DBOps. Each function of this module ships its arguments to the RPC server at site � , invokes the corresponding
function remotely, and returns the remote result as a local object store value.

let remoteOps = rpcClient.bind(remoteDBService)
� Since this matching is based on structural type equivalence, it is not important that the same type identifier DBOps is used at the client and

server site [Nel91].

Fifth International Workshop on Database Programming Languages, 1995 5



Scaling Database Languages to Higher-Order Distributed Programming

The following examples demonstrate that remoteOps gives fully transparent access to the (higher-order) remote
functions.

let john = tuple "John Smith" 36 … end
try remoteOps.insert(john) when remoteOps.error then

… (* handle duplicate exception *)
end
let isAdult(p:Person):Bool = p.age 	�
 18
let a = remoteOps.any(isAdult) (* pass a function as an argument *)
let risc = remoteOps.getRiscCalculation() (* return a function as a result *)
if risc(a) 	 0.5 then … end

However, since there is no uniform object store that spans the local and remote site, programmers have to be aware of
the implicit copy operations performed on function arguments and results.

4.2 Remote Execution Engines

In higher-order languages, remote evaluation [SG90] and remote execution engines [Car94] provide an interesting
alternative to the traditional RPC approach described in the previous section. Instead of exporting a fixed set of remote
procedures operating on encapsulated state variables, a remote execution engine exports a single, generic higher-order
execute function that can be parameterized by arbitrary client-defined code which gains direct access to the remote
state through dynamic binding.

To illustrate the idea, assume the bulk collection persons be defined in a Tycoon object store at site � in the static
scope of an execute function which takes a function f and returns the result of applying f to persons. Since execute
works uniformly for all result types R, it is defined as a polymorphic function.

let persons :set.T(Person) = …
let dbEngine = tuple

let execute(R � :Ok f(:set.T(Person)):R) :R = f(persons)
end
rpcServer.register(server "dbEngine" dbEngine)

More generally, the signature of a remote execution engine that gives unrestricted access to a value of type Data is
defined by the following type operator:

Let Engine(Data � :Ok) = Tuple execute(R � :Ok f(:Data):R):R end

Using the generic rpcClient module described in the previous section, a client can now ship arbitrary (statically-typed)
queries and update operations to be performed on the remote set variable.

Let Persons = set.T(Person)
let remoteService = rpcClient.remoteService(:Engine(Persons)

"dbEngine" domain)
let remoteDBEngine = rpcClient.bind(remoteService)
let query(pers :Persons) = select p.name from p in pers where p.age 	 18
let update(pers :Persons) = delete p in pers where p.age 
�
 17
remoteDBEngine.execute(query) remoteDBEngine.execute(update)

As illustrated by the example above, remote execution engines are particularly relevant for data-intensive applications
where it is desirable to move the query (including its comparatively small closure) to the bulk data collection and not
vice versa. Note that an SQL server is essentially a weakly-typed remote execution engine.

4.3 Thread Migration

The programming idiom of remote execution engines described in the previous section still adheres to the standard
client-server communication paradigm. For the emerging class of workflow applications supporting multi-site business
processes [HL91, Mar90] and for network agents that operate on behalf of human users in world-wide distributed
networks [Whi94, Way94], this paradigm exhibits some limitations, for example:

Fifth International Workshop on Database Programming Languages, 1995 6



Scaling Database Languages to Higher-Order Distributed Programming

� With today’s technology it is difficult to maintain (or recover) client-server bindings for the duration of such
long-term activities which may take days or weeks to complete.

� For many of these activities it is not required to return control to the originating site after completion of a subtask.
Instead of this, control can be passed on directly to one (or possibly several) successor sites.

� It is difficult to split the state (context) of a complex workflow into disjoint client and server contexts. It is often
more natural to incrementally accumulate a single context during evaluation that has to be carried forward from
site to site.

As explained in more detail in [MMS95], we propose migrating persistent threads as a distributed programming
idiom for such applications. For illustration purposes, we use a rather trivial workflow “get the addresses of all
professors maintained by the CS department and add these to the address database of the administration”.

In TL, the autonomous sites and their resources are declared as statically or dynamically bound variables using the
type operator Site exported from the library module agent:

Let Site(Data � :Ok) = rpcClient.RemoteService(Engine(Data))
computingScience :Site(Tuple persons :Persons … end)
administration :Site(Tuple addresses :Addresses … end)

In TL, a workflow is activated by spawning an autonomous thread (thread.fork(collectAgent)) based on a script
defined by a TL function.

let collectAgent(self :thread.T(Ok)) :Ok = begin
let csDeptDB = agent.migrate(computingScience)
let profAddr =

select p.address from p in csDeptDB.persons where p?professor
let adminDB = agent.migrate(administration)
set.insert(adminDB.addresses profAddr)

end

The parameter self is a handle for the thread that executes the script (unused in this script). The script can use TL’s full
algorithmic power to express computations to be performed at the sites visited by the workflow. Thread migration is
accomplished by calls to the function migrate exported from the module agent. It (atomically) copies the current thread
to the site designated by its argument, kills the currently executing thread and resumes thread execution at the remote
site, returning a binding to local resources at the remote site, as defined by the type declared for that site [MMS95].

In higher-order languages, thread migration can be emulated by adopting a continuation-passing programming
style where evaluation states are encapsulated by function closures that are passed as explicit function arguments (for
more details see [MMS95]). However, this approach not only leads to “cryptic” program code but also does not scale
to multi-threaded agents.

As described in section 3, the shipping of a thread implies a shipping of all objects that are reachable through names
in the global and currently active local scope. For example, the first agent.migrate call ships the code of collectAgent,
as well as the actual objects bound to self, computingScience and administration. The second call additionally ships
the objects bound to profAddr and csDeptDB.

In order to avoid the shipping of the full csDeptDB in the second migration step, it suffices to delimit the scope of
this name to a nested begin end block and to return the result of the computation as a value from the nested block.

let profAddr = begin
let csDeptDB = agent.migrate(computingScience)
select p.address from csDeptDB.persons where p?professor

end
let adminDB = agent.migrate(administration)

Using Tycoon’s extensible syntax [CMA94] it is straightforward to provide syntactic sugar for this particular program-
ming idiom to make workflow scripts more readable:

Fifth International Workshop on Database Programming Languages, 1995 7



Scaling Database Languages to Higher-Order Distributed Programming

self 3.14 "world" "Hello "foo literals code

ss
 tt� rriinngg�

more objects

self foo string

3.14 "world"

literals

"Hello "

code

more objects

self foo string

3.14 "world"

literals

"Hello "

code

S

T

Figure 2: Dynamic rebinding to ubiquitous resources

workflow collectAgent do
let profAddr = migrate to computingScience with local csDeptDB do

select p.address from csDeptDB.persons where p?professor
end
migrate to administration with local adminDB do

set.insert(adminDB.addresses profAddr)
end

end

5 Binding Support for Ubiquitous Resources

Experience with communication models that involve deep copy operations shows that it is difficult to control the size
of the transitive closure of functions and modules in large modular applications (see, e.g., [Wai89]). Programmers
have to be careful to introduce dynamic R-value bindings or mutable L-value bindings at the right places to keep code
and data fragments self-contained.

In Tycoon, for example, applications make heavy use of library functionality which includes the windowing system,
the communication software, font tables, bulk data type implementations, and the reflective Tycoon compiler itself.
Many of these libraries can be regarded as ubiquitous resources since they are installed virtually in all Tycoon objects
stores at all sites. Furthermore, these libraries are practically state-less.

The characteristics of ubiquitous resources can be exploited to reduce communication traffic and to provide
automatic installation mechanisms.

5.1 Dynamic Rebinding to Ubiquitous Resources

The basic idea to reduce the volume of data that needs to be communicated between sites is to represent a binding to a
ubiquitous resource during object graph linearization at a source site � by a symbolic identifier which is used to rebind
the copy at a target site � to the corresponding local resource.

For example, the Tycoon standard module string can be registered as an ubiquitous resource both at site � and � :

relink.unsafeRegister(string "module:stdenv.string")

This reduces the size of the linear representation on exchange between site � and � for the value a defined in section 2
from 30kB to less than 100 Bytes (see fig. 2).

A main drawback of the unsafeRegister function is the fact that there is no guarantee that symbolic identifiers
(like “module:stdenv.string”) are used consistently across sites. On the other hand, it is not desirable to augment each
symbolic identifier with a full structural type information for the value to be identified since type descriptions for
complex modules may be as expensive to transfer as the module they describe.

A first contribution to the solution of this problem is a symbol generator function in the Tycoon libraries that
returns on each call a fresh (world-wide unique) universal identifier (UID, composed of platform identification,
machine identification and timestamp).

Fifth International Workshop on Database Programming Languages, 1995 8



Scaling Database Languages to Higher-Order Distributed Programming

3.

2.

1.

text2

thread1

editor

thread2

text1 thread1 text1

ee� dd� iitt� oo� rr
thread1

editor

text1

editor

S T

Figure 3: The three steps of automatic resource replication

text2

editor

thread2 thread2 text2

ee� dd� iitt� oo� rr

thread1

editor

text1

text2thread2

S T

Figure 4: Dynamic relinking to an automatically replicated resource

UID values can then be embedded into complex values shipped across the network to detect whether two such
values in different object stores are “semantically equivalent”. UIDs are used in the Tycoon system, for example, to
identify exception values and to implement the name-equivalence test required for the dynamic type check of abstract
data types.

Since the compiler assigns a UID to each Tycon module, this UID can be used as a type-safe identification
mechanism for module values in different stores which stem from the same compilation:

relink.registerModule(string)

For specific application domains, combinations of UID value checking and type checking can be utilized to define
more elaborate mechanisms to identify “equivalent” resources.

Dynamic relinking can be applied to arbitrary TL values (modules, functions, bulk collections, …) and it blends
well with all of the distributed programming idioms described in section 4.

5.2 Automatic Resource Replication

Dynamic rebinding as described in the previous section fails with an exception if an incoming symbolic identifier
generated at the source site � is not registered at the target site � . If there exists a bidirectional communication channel
between � and � , such a failure can be handled by requesting an explicit transmission of the missing resource from �
to � which is then registered dynamically.

Figure 3 illustrates such an automatic resource replication in a workflow-oriented scenario where there are two
Tycoon threads at site � using a shared editor to edit text documents that are local to the threads. Let editor be
registered for dynamic binding. The migration of thread1 involves shipping of the thread code, text1 and a symbolic
identifier generated for editor (step 1 in fig. 3). Since editor is not yet registered at � , the shipping of editor is requested
explicitly (step 2), and then editor is shipped including its closure (step 3).

A subsequent migration of thread2 from � to � is handled by dynamic rebinding as described in the previous
section (see figure 4).

Again, automatic resource replication is orthogonal to the distributed programming idioms described in section 4
and simplifies greatly the management of distributed modular applications.

Fifth International Workshop on Database Programming Languages, 1995 9



Scaling Database Languages to Higher-Order Distributed Programming

6 Related Work

Over the years there have been several studies to add distribution to persistent programming languages (see [DRV91]
for some earlier references).

While the early work on DPS-algol [Wai89] attempts to give the programmer the illusion of a non-distributed
persistent object store, later work in the context of Napier88 [DRV91] is based on explicit copy operations between
sites and introduces a concept similar to remote execution engines as described in section 4.2. However, the code to
be executed at a remote site has to perform explicit dynamic environment lookup operations to bind to resources only
available at the remote site. This should be seen in contrast to our approach where dynamic type checking is performed
only once, namely when a connection to a remote engine is established. To our knowledge, the concepts described in
[DRV91] have not been pursued any further in the Napier project.

Munro [Mun93] describes a store-to-store communication interface at a level of abstraction similar to Tycoon’s
stream-based data exchange (see section 3). Munro argues that this mechanism combined with a two-phase commit
protocol provides a foundation for higher-level programming abstractions.

The type-safe RPCs described in [MdS95] are generated dynamically using reflective techniques in Napier88, but
they are not data type complete. For example, functions, threads or recursive values are not supported.

The Octopus (Object Closure Transplantable to Other Persistent User Spaces) described in [FD94] is a reflective
language mechanism developed in Napier88 that can be used to isolate portions of closures and copy them between
persistent object stores. Partial closures can be rewired, possibly in a different context, using the meta level interface
supplied by Octopus. This model is more general than our binding support for ubiquitous resources, however, it is
unclear whether it is suitable for the efficient handling of large-scale module libraries.

Network objects as found in Modula-3 [BNOW93], Obliq [Car94], Emerald [JLHB88, Jul88] and SOS [SGM89,
Sha93] are a particularly attractive programming paradigm for distributed applications. In this model (“transparent
object invocation“ or “distributed objects”), a (non-persistent) object store may contain network references to objects
in a remote store. All of these systems provide transparent remote method invocation, but differ substantially in other
distribution aspects (object migration, method delegation, object fragmentation, higher-order functions, …).

We plan to investigate further the implications of adding network objects in the spirit of Emerald and Obliq
to versions of the Tycoon system. The transparent conversion between local and remote object references clearly
simplifies the scaling of applications into a distributed environment. However, this is achieved at the expense of a
drastic reduction in site autonomy and an increase in system complexity (distributed garbage collection, recovery,
backup, …).

7 Concluding Remarks

All features of the Tycoon distributed programming facilities described in this paper have been implemented without
any change or enhancement of the generic language core of TL. By lifting C functions to TL almost all of the system
programming could be done in a strongly-typed, generic language environment. The generic client and server stub
modules contain only a few type-unsafe operations which avoid the need for reflective stub compilation.

Our initial experience using the distributed programming idioms presented in this paper for communication between
Tycoon systems on Unix (Sun, IBM), Macintosh and PC hardware platforms indicates that TL compares well with other
script languages for distributed programming due to the strictness and richness of its language model (polymorphic
typing, exception handling, bulk type support).

Security, recovery and synchronization aspects that arise if Tycoon applications involve multiple threads activated
on behalf of different human users are not treated in this paper (see, however, [RMS95]). These issues will become
crucial as soon as we will use TL for shipping data, code and threads through the Internet (as a standard add-on to
WWW clients and servers).

Acknowledgements

We would like to thank Miguel Mira da Silva for his helpful comments on a previous version of this paper.

Fifth International Workshop on Database Programming Languages, 1995 10



Scaling Database Languages to Higher-Order Distributed Programming

References

[AB87] M.P. Atkinson and P. Bunemann. Types and persistence in database programming languages. ACM
Computing Surveys, 19(2), June 1987.

[BNOW93] A. Birell, G. Nelson, S. Owicki, and E. Wobber. Network objects. In 14th ACM Symposium on Operating
System Principles, pages 217–230, June 1993.

[Car86] L. Cardelli. Amber. In Combinators and Functional Programming Languages, volume 242 of Lecture
Notes in Computer Science. Springer-Verlag, 1986.

[Car89] L. Cardelli. Typeful programming. Technical Report 45, Digital Equipment Corporation, Systems
Research Center, Palo Alto, California, May 1989.

[Car94] L. Cardelli. Obliq: A language with distributed scope. Technical report, Digital Equipment Corporation,
Systems Research Center, Palo Alto, California, June 1994.

[CMA94] L. Cardelli, F. Matthes, and M. Abadi. Extensible grammars for language specialization. In C. Beeri,
A. Ohori, and D.E. Shasha, editors, Proceedings of the Fourth International Workshop on Database
Programming Languages, Manhatten, New York, Workshops in Computing, pages 11–31. Springer-
Verlag, February 1994.

[Cor91] J.R. Corbin. The Art of Distributed Applications. Sun Technical Reference Library. Springer-Verlag,
1991.

[DRV91] A. Dearle, J. Rosenberg, and F. Vaughan. A remote execution mechanism for distributed homogeneous
stable stores. In Database Programming Languages: Bulk Types and Persistent Data. Morgan Kaufmann
Publishers, September 1991.

[FD94] A. Farkas and A. Dearle. Octopus: A reflective language mechanism for object manipulation. In
C. Beeri, A. Ohori, and D.E. Shasha, editors, Proceedings of the Fourth International Workshop on
Database Programming Languages, Manhatten, New York, Workshops in Computing, pages 50–64.
Springer-Verlag, February 1994.

[HL91] K. Hales and M. Lavery, editors. Workflow Management Software: The Business Opportunity. Ovum
Ltd., London, 1991.

[JLHB88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald system. ACM
Transactions of Computer Systems, 6(1):109–133, February 1988.

[Jul88] E. Jul. Object Mobility in a Distributed Object-Oriented System. PhD thesis, Department of Computer
Science, University of Washington, Seattle, Washington, 1988.

[MABD90] R. Morison, M.P. Atkinson, A.L. Brown, and A. Dearle. On the classification of binding mechanisms.
Infomation Processing Letters, 34(2):51–55, 1990.

[Mar90] R.T. Marshak. Lotus notes: A platform for developing workgroup applications. Office Computing Report,
15(1):2, 1990.

[MBC
�

94] R. Morrison, A.L. Brown, R.C.H. Connor, Q.J. Cutts, A. Dearle, G.N.C. Kirby, and D.S. Munro. The
Napier88 reference manual (release 2.0). FIDE Technical Report Series FIDE/94/104, FIDE Project
Coordinator, Department of Computing Sciences, University of Glasgow, Glasgow G128QQ, 1994.

[MdS95] M. Mira da Silva. Automating type-safe RPC. In In Proceedings of The Fifth International Workshop on
Research Issues on Data Engineering: Distributed Object Management, Taipeh, Taiwan, IEEE Computer
Society Press, March 1995.

[MMS95] B. Mathiske, F. Matthes, and J.W. Schmidt. On migrating threads. In Proceedings of the Second
International Workshop on Next Generation Information Technologies and Systems, Naharia, Israel, June
1995. (Also appeared as TR FIDE/95/136).

Fifth International Workshop on Database Programming Languages, 1995 11



Scaling Database Languages to Higher-Order Distributed Programming

[MS91] F. Matthes and J.W. Schmidt. Bulk types: Built-in or add-on? In Database Programming Languages:
Bulk Types and Persistent Data. Morgan Kaufmann Publishers, September 1991.

[MS92] F. Matthes and J.W. Schmidt. Definition of the Tycoon language TL – a preliminary report. Infor-
matik Fachbericht FBI-HH-B-160/92, Fachbereich Informatik, Universität Hamburg, Germany, Novem-
ber 1992.

[MS93] F. Matthes and J.W. Schmidt. System construction in the Tycoon environment: Architectures, interfaces
and gateways. In P.P. Spies, editor, Proceedings of Euro-Arch’93 Congress, pages 301–317. Springer-
Verlag, October 1993.

[MS94] F. Matthes and J.W. Schmidt. Persistent threads. In Proceedings of the Twentieth International Conference
on Very Large Data Bases, VLDB, pages 403–414, Santiago, Chile, September 1994.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge, Massachusetts,
1990.

[Mun93] D.S. Munro. On the Integration of Concurrency, Distribution and Persistence. PhD thesis, Department
of Mathematical and Computational Sciences, University of St. Andrews, Scotland, 1993.

[Nel91] G. Nelson, editor. Systems programming with Modula-3. Series in innovative technology. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

[OSF93] OSF. OSF DCE Administration Guide – Core Components. Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[OTCP90] A. Ohori, I. Tabkha, R. Connor, and P. Philbrow. Persistence and type abstraction revisited. In A. Dearle,
G.M. Shaw, and S.B. Zdonik, editors, Implementing Persistent Object Bases, Principles and Practice,
pages 141–153, 1990.

[RMS95] A. Rudloff, F. Matthes, and J.W. Schmidt. Security as an add-on quality in persistent object systems.
In Second International East/West Database Workshop, Klagenfurt, Austria, Workshops in Computing,
pages 90–108. Springer-Verlag, 1995. (Also appeared as TR FIDE/95/138).

[SG90] J.W. Stamos and D.K. Gifford. Remote evaluation. ACM Transactions on Programming Languages and
Systems, 12(4):537–565, 1990.

[SGM89] M. Shapiro, P. Gautron, and L. Mosseri. Persistence and migration for C++ objects. In In Proceedings of
the European Conference on Object Oriented Programming, Nottingham, GB, July 1989.

[Sha93] M. Shapiro. Flexible bindings for fine-grain and fragmented objects in distributed systems. Rapport de
Recherche 2007, INRIA, Domaine de Voluceau, Rocquencourt 78153 Le Chesnay Cedex, France, August
1993.

[Wai89] F. Wai. Distributed PS-algol. In R. Rosenber and D. Koch, editors, In Proceedings of the 3rd International
Workshop on Persistent Object Store Systems, Newcastle, NSW, pages 126–140. Springer-Verlag, January
1989.

[Way94] P. Wayner. Agents away. BYTE, pages 113–118, May 1994.

[Whi94] J.E White. Telescript technology: The foundation for the electronic marketplace. White paper, General
Magic Inc., Mountain View, California, USA, 1994.

Fifth International Workshop on Database Programming Languages, 1995 12


