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Abstract

In the DBPL project we tackled the problem of supporting data-intensive
applications in a single framework, clean and simple in its conceptual
foundation and free of technical mismatches. Conceptually, we based the
DBPL language on Modula-2 with three built-in extensions which, at
that time, were considered necessary (and sufficient) for data-intensive
applications:

e a parametric bulk type constructor for “keyed sets” or relations;

e a module concept which supports sharing across programs and im-
plies persistence;

e a procedure concept with transactional semantics, i.e., serializabil-
ity and recovery.

In implementing the DBPL system we adopted a rather strict approach
by aiming for

e full orthogonality in our relationally extended type space;

e type-complete persistence, i.e. longevity of data from Booleans to
relations;

e functional abstraction for relational expressions including recursion.

As a consequence, the DBPL project covers in a quite natural way ap-
proaches otherwise considered disjoint as, for example, complex objects,
multibases and data deduction.

In this paper, besides reporting on project achievements and spin-
offs, we also present our insight in good-quality project design and its
dependency on conceptual simplicity and implementational strictness.
This also includes early recognition of the essential project “terminator”
which, in our project, was Modula-2’s monomorphic type system and its
intrinsic restrictions on systems extensibility.

!This research has been supported in part by ESPRIT Basic Research, Project #892
(DAIDA), #3070 (FIDE), #6309 (FIDE,).



The DBPL project results in a mature product? for modular database
application programming and a follow-up project based on polymorphic
types and other higher-order concepts®.

1 Introduction

Our research in database programming languages started in the mid 70ies
when we first suggested some high-level language constructs for data of type
relation [1]. The prime goal of the related R&D projects was to understand
better and relate the data modeling requirements of programs and databases
and to support data-intensive application development by systems free of con-
ceptual and technical mismatches.

This research can be divided clearly into two series of projects, reflecting
both the increasing demands on database programming but also our better
understanding of the field. The first run of projects, which is evaluated in this
paper, started with Pascal/R [1, 2, 3] and culminated recently in the delivery
of a mature implementation of the DBPL system [4, 5, 6, 7, 8]. Here database
programming support is based on monomorphic lype systems resulting in a
fixed selection of type constructors which is hard-wired into DBPL and laid
out to span a wide type space which also includes bulk data types. Around
1990 we started transferring our DBPL experience into a new set of projects
based on polymorphic type systems which enable add-on bulk type definitions
[9] and a more open approach to system construction. This ongoing experience
is referred to briefly at the end of the paper.

For DBPL we chose Modula-2 [10], a modular system programming lan-
guage, as its algorithmic core. Our development of specific language exten-
sions required by data-intensive applications (such as bulk types, iteration
abstractions, transactions and persistence abstractions) was guided by a strict
adherence to the widely accepted language design principles of simplicity, or-
thogonality and abstraction [11]. This is to be seen in direct contrast to some
DB-language developments — notably SQL — which appear to be driven by
ad-hoc definitions and series of local extensions.

The paper is structured as follows: in section 2 we review the rationale
behind our design of DBPL that sets DBPL apart from extended database
query languages, persistent programming languages and conceptual modeling
languages. We then present the essential DBPL language concepts that sup-
port bulk data structuring, persistence abstraction and declarative bulk data
manipulation (Sec. 3). In section 4 we shed some light on the extensions to
relational database and procedural programming language technology that we
had to develop to support DBPL’s orthogonal and fully integrated language
model.

Due to the longevity of the DBPL project (the first language report ap-
peared in 1985 [12], the most recent version of the system was released at

2The DBPL System is distributed through Hamburg University.
*Tycoon: Typed Communicating Objects in Open Environments.



the end of 1992 [13]), it is interesting to review briefly the evolution of DBPL
(Sec. 5.1) and to highlight spin-off research projects (Sec. 5.2) that relied heav-
ily on the availability of DBPL as a stable, algorithmically complete database
programming language. These spin-offs expanded into the area of distributed
systems, interoperability and database design environments. We conclude in
section 6 by justifying our DBPL project decision to “declare success and quit”
— keeping in mind DBPL’s goals and means.

2 The Rationale behind DBPL

Data-intensive applications are characterized by their needs to model and ma-
nipulate heavily constrained data that are long-lived and shared by a user com-
munity. These requirements result directly from the fact that databases serve
as (partial) representations of some organizational unit or physical structure
that exist in their own constraining context and on their own time-scale in-
dependent of any computer system. Due to the size of the target system and
the level of detail by which it is represented, such representational data may
become extremely voluminous. In strong contrast to the need for global man-
agement of large amounts of representational data, data-intensive applications
are also required to process small amounts of local computational data that
implement individual states or state transitions.

In essence, it is that broad spectrum of demands — the difference in purpose,
size, lifetime, availability etc. of data — combined with the need to cope with
all these demands within a single conceptual framework that is decisive in the
design of a database programming language [14].

In DBPL [6, 7, 8], we address the above issues by incorporating a set-
and rule-based view of relational database modeling into the well-understood
system programming language Modula-2.

2.1 Conceptual DBPL Foundations

The leitmotiv behind the DBPL design was the exploitation and integration
of a solid, well-understood conceptual framework capable of capturing consis-
tently the wide range of data-intensive application requirements — and not
the desire to implement new theoretical concepts in isolation.

Classical type systems and the relational data model are the cornerstones
of the DBPL language design. Both contributions provide an enlightening
foundation from a technological as well as from a theoretical point of view.
However, the revealing new experiences are made at the border where types
(and expressions, selectors, functions . ..) and data models (and queries, views,
transactions . ..) meet and have to be understood, one in light of the other.

The DBPL language and system both rely heavily on conceptual and
theoretical input from the following research areas: programming language
foundations (typing, scoping, binding; [8, 15]), compilation technology (type
checking, local data flow analysis, intermediate languages, separate compila-
tion; [16, 17]), extended relational models (data constructors, bulk operations,



query languages and their expressive power), query optimization (transforma-
tions at compile- and run-time, cost models, search strategies; [18]), recursive
query evaluation (fixed point semantics, stratification, recursive rule defini-
tion; [19]), concurrency control (multi-level concurrency control and recovery
for complex objects; [16]), and distribution models (transaction procedures,
sagas, compensating transactions; [20, 21]).

As indicated in the preceding references, our DBPL research contributed
to the further development of some of these conceptual and technological foun-
dations. In general, however, one can say that the DBPL project stayed more
or less inside the boundaries drawn by conventional language technology and
concentrated on improving the linguistic support for state-of-the-art database
technology.

2.2 Language Design Considerations

Our design of DBPL can be characterized by the phrase “power through or-
thogonality”. Instead of designing a completely new language with its own
naming, binding and typing rules, we extended an existing language (Modula-
2 [10]) and placed particular emphasis on the interoperability of the new
database concepts with the given programming language concepts. At DBPL
design-time we considered the following extensions necessary (and sufficient)
to meet the specific requirements of data-intensive applications:

e bulk data structuring using an orthogonal type constructor RELATION
OF (see Sec. 3.2);

e abstraction from persistence, sharing, concurrency control and recovery
based on the concept of DATABASE MODULEs and parameterized TRANSACTIONs
(see Sec. 3.3);

e abstraction from bulk iteration through associative access expressions
(see Sec. 3.4);

In particular, we eliminated the traditional competence and impedance mis-
match [22] between programming languages and database management sys-
tems by providing for

¢ a uniform treatment of volatile and persistent data (“orthogonal persis-
tence” [23]),

e a uniform treatment of large quantities of objects with a simple struc-
ture and small quantities of objects with a complex structure (“type
completeness” [23]), as well as

¢ a uniform (static) compatibility check between the declaration and the
utilization of each name (“strong static typing” [24]).

Implementation details such as the storage layout of records, the clustering
of data, the existence of secondary index structures, query evaluation strate-
gies, concurrency and recovery mechanisms, are deliberately hidden from the



DBPL programmer. A key idea in the design and implementation of DBPL is
to let the system choose appropriate implementation strategies based on high-
level information extracted from the application program or its environment.
As it turns out, the widespread use of access expressions (i.e. first-order logic
abstractions of bulk data access) in typical DBPL programs facilitates such
an approach.

DBPL reflects Modula-2 by occasionally sacrificing “language orthogonal-
ity” based on engineering and efliciency considerations. For example, DBPL
does not support persistence of pointers and procedure variables, concepts,
which in some sense provide the technological basis for object identification
and procedural attachment. This was not only motivated by the predomi-
nance of associative identification mechanisms in the classical Relational Data
Model, but also by the far-reaching consequences of this identification mech-
anism on the concurrency control and distribution support [25, 21].

Modula-2 was chosen as the basis for DBPL because of its software engi-
neering qualities. It provides a clear module concept and a strict type system
and exceeds further through its balance between simplicity and expressive
power. Finally, our group has a long tradition in Modula-2 compiler construc-
tion [26, 27].

The compatibility between DBPL and Modula-2 is a design decision with
far-reaching consequences. DBPL is designed to be fully upward compatible
with Modula-2, i.e. every correct Modula-2 program has to be a correct DBPL
program. This decision not only limits the freedom in language extensions (for
example, the keyword SET is already used for bit sets in Modula-2 and is not
available for “true” sets, i.e., relations in DBPL), but also forces adherence
to language mechanisms (variant records, string handling, local modules, . ..)
for which nowadays “better” solutions are available. The main advantage of
our compatibility decision is to lower the conceptual and technological burden
for DBPL users since they do not have to learn yet another language. Fur-
thermore, this decision allows the smooth integration of DBPL into existing,
fully-fledged software development environments (debuggers, profilers, version
managers, ... ), and the benefit of software libraries and of interfaces to other
languages and systems.

In contrast to some persistent programming languages, the evolution of
database schemata and of application programs is left outside the scope of
DBPL. This was based on the insight that this is a complex issue in itself that
should be delegated to a specific design environment (see Sec. 5.2.3).

3 DBPL Language Concepts

The first step towards a better integration of database concepts into a lan-
guage environment is to identify the basic database concepts (like domains,
tuples, tables and schemata) and to rephrase them in terms of an appropriate
vocabulary of programming concepts (like types, type constructors and mod-
ules). In the following, we illustrate how DBPL captures the main principles



of set- and predicate-oriented database modeling using the well-understood
notions of naming, typing and binding in procedural programming languages.

3.1 Uniform Naming and Typing

Namesin DBPL are arbitrarily long sequences of upper- and lowercase letters
and digits starting with a letter. Names are case sensitive and are used to
identify semantic objects of the language (values, types, variables, procedures,
transactions, modules, . ..).

DBPLis a statically and strongly lyped monomorphic language: every name
is associated with a unique type that is determined at compile-time. The
compiler uses this information to assure that all names for values, expressions
or operations are only used in an appropriate context. The advantages of such
a typing scheme are well known: programs are less liable to contain errors and
there are no time-consuming dynamic type checks.

The type compatibility rules for composite types in DBPL are based on
name equivalence, i.e., two composite objects have the same type if and only
if they have been declared by using the same type name. This should be seen
in contrast to the rule of structural equivalence where two objects are type
compatible if their fully expanded definitions are isomorphic. Most relational
systems do not allow the introduction of names for relation types and schemata
and are therefore based on structural equivalence.

DBPL provides a rich set of built-in types like INTEGER, LONGINT, CARDINAL
(natural numbers), LONGCARD, BOOLEAN, CHAR, REAL, and LONGREAL that gives
programmers a fine control over the mapping from application-specific domains
to tailored machine representations:

TYPE Dollar = REAL;

Values of these built-in types are denoted by predefined names (e.g., TRUE)
or literals (e.g., 0, 3.2E-2, "A"). It is furthermore possible to introduce user-
defined names for constant values:

CONST DollarToDMRatio = 2.64;

DBPL supports application-specific extensions of the set of basic types. An
enumeration type is defined by a list of named values:

TYPE SupplierStatusType = (unimportant, important, veryImportant);
This declaration defines an order on the values of the enumeration type:
unimportant < important < veryImportant

Subrange types are derived from either basic or enumeration types. They
impose additional restrictions on the range of values described by their base

type:

TYPE PartNumType = [0..99999];
ImportantStatusType = [important..veryImportant];



Within expressions, values of a subrange type are compatible with values of
their base type. Assignments of base type values to variables of a compatible
subrange type are checked at run-time.

Strings are treated as composite objects consisting of a sequence of charac-
ters. Their typeis therefore ARRAY [0..maxlength] OF CHAR,where maxlength
can vary from one string type to another.

TYPE LongString = ARRAY [0..999] OF CHAR;
String = ARRAY [0..29] OF CHAR;

Arrays are composed of a fixed number of elements. These elements are posi-
tionally designated by indices, which are values of the index type. The latter
must be an enumeration type, a subrange type or the basic type BOOLEAN or
CHAR.

TYPE BonusTable = ARRAY SupplierStatusType OF Dollar;

A record type declaration defines a labeled cartesian product type. The scope of
the label names is the record definition itself. These names are also accessible
as field designators referring to components of variables of that record type
(e.g. supplier.Name).

TYPE SupplierRecType = RECORD

Num : SupplierNumType;

Name : String;

Status : SupplierStatusType;
END;

3.2 Orthogonal Relation Types

A relation lype specifies a structure consisting of elements of identical type,
called the relation element type. The number of elements, called the cardinal-
ity of the relation, is not fixed. The declaration of the relation type specifies
the relation element type (e.g., SupplierRecType) and an ordered list of key
components (e.g., the field Num of SupplierRecType):

TYPE SupplierRelType = RELATION Num OF SupplierRecType;

The classical relational data model constrains the relation element type to
records with attributes of the built-in types (“flat tuples”). By lifting this
rather ad-hoc restriction, we substantially enhanced the modeling power of
the language and obtained structuring capabilities beyond data models that
simply support complex objects and non-first-normal-form relations [28]. For
example, the following DBPL types are also well formed:

TYPE PartNumSetType RELATION OF PartNumType;

Point2DSetType = RELATION OF ARRAY [1..2] OF REAL;
GroupedSuppRelType = RELATION Num OF RECORD
Num : SupplierNumType;
SuppParts : PartNumSetType;
END



This type declaration introduces three type names to denote sets of natural
numbers, sets of points that are represented by their coordinates in the plane,
and nested relations that group supplier numbers with sets of part numbers.

The relation key in a relation type expression defines a list of components
within the relation element type such that the relation always defines a (par-
tial) function between its key and its element type. In other words, each
key value uniquely determines (at most) one relation element. For example,
the key constraint for a relation SupplierRel of type SupplierRelType can
be expressed by the following predicate stating that the equality of the key
component Num implies the equality of the relation elements:

ALL s1, s2 IN SupplierRel (s1.Num = s2.Num) => (s1 = s2)

An empty key component list as in Point2DSetType is a synonym for an
enumeration of all components of the element type; in this case a relation is
just a set of relation elements.

3.3 Generalized Scope and Lifetime Concepts

In a classical relational database system, a CREATE TABLE command implies
(1) the declaration of an (anonymous) relation type, (2) the declaration of
a named relation variable of this type, and (3) the specification that this
relation variable should persist, i.e., preserve its state until explicitly deleted.
In DBPL, we again exploit programming language principles and strive for a
greater modeling power by decoupling the concepts of type, scope, and lifetime.

In order to create “containers” for values of (relation) types in DBPL, it
is necessary to declare named variables explicitly:

VAR SupplierRel : SupplierRelType;
0ldSupplier : SupplierRelType;
MadeFromRel : MadeFromRelType;
GroupedSupp : GroupedSuppRelType;

The scope and lifetime of variables depend on the context of their declaration.
Variables declared within a procedure are visible within their enclosing pro-
cedure and are created and destroyed automatically on block entry and exit,
respectively. Successive or recursive procedure invocations create independent
variable instances.

Similarly, variables declared in the outermost block of a program are visi-
ble within the full program and they are created and destroyed automatically
on program entry and exit, respectively. Multiple program activations (se-
quentially or simultaneously) create independent variable instances.

The module concept makes it possible to declare named objects (types,
constants, variables, procedures, ...) that are in the scope of multiple pro-
grams. Typically, an application program consists of a multiplicity of mod-
ules. DBPL supports separate compilation, i.e. modules can be developed
independently and incrementally. A module can import names that are ex-
ported from other modules that include definitions for these names or that



DATABASE DEFINITION MODULE SupplierPartDB;

TYPE PartNumType = [0..99999];
SupplierNumType = [1000..9999];
SupplierStatusType = (unimportant, important, veryImportant);
String = ARRAY [0..29] OF CHAR;
Dollar = REAL;
Kilo = REAL;
PartStateType = (base, comp);
SupplierRecType = RECORD
Num SupplierNumType;
Name String;
Status SupplierStatusType;
END;
MadeFromSubRecType = RECORD
Num : PartNumType;
Quantity: CARDINAL;
END;
MadeFromSubRelType = RELATION Num OF MadeFromSubRecType;
PartRecType = RECORD
Num : PartNumType;
Name String;
CASE State : PartStateType OF
base
Cost : Dollar;
Mass : Kilo;
SuppliedBy : SupplierNumType;
| comp
MadeFrom : MadeFromSubRelType;
AssemblyCost: Dollar;
END;
END;
SupplierRelType = RELATION Num OF SupplierRecType;
PartRelType = RELATION Num OF PartRecType;
VAR SupplierRel : SupplierRelType;
PartRel : PartRelType;
HighestPartNoUsed : PartNumType;

END SupplierPartDB;

Figure 1: An extended relational database schema in DBPL



MODULE Application;
FROM SupplierPartDB IMPORT SupplierRelType, PartRel, SupplierRel;

TRANSACTION DeleteSuppliers(Suppliers: SupplierRelType): BOOLEAN;
BEGIN IF SOME bp IN PartRel (bp.State = base) AND
SOME s IN Suppliers (bp.SuppliedBy = s.Num) THEN
RETURN FALSE; (* referential integrity violated *)
ELSE
SupplierRel:- Suppliers;
RETURN TRUE
END;

END DeleteSuppliers;

BEGIN ... END Application;

Figure 2: An application program that imports shared database objects

import these names from a third module. The compiler enforces the consis-
tent use of names across module boundaries. Program modules have a copy
semantics in the sense that variables visible in the scope of multiple programs
are implemented by independent variable instances.

In DBPL we extended modules using a second concept which we call
DATABASE modules (see Fig. 1). All variables declared within such a module
are persistent and shared: in contrast to other program variables their life-
time exceeds a single program execution [29] and concurrent processes share
a common variable instance. In this sense database modules have a reference
semantics. The lifetime of a persistent variable is longer than that of any
program importing it.

Using these rules it is a straightforward matter to model the scoping rules
of conventional relational database systems. A database schema is simply a
database module that declares and exports names for types of appropriate
basic domains and declares and exports persistent variables of relation types
(see Fig. 1). Similarly, an application program is a module that explicitly
imports names from a database schema (see Fig. 2).

Read and write access to shared variables is required to be part of the
execution of a transaction [30]. The ACID property [31] of DBPL transactions
allows database programmers to abstract from concurrency and recovery issues
since transactions are atomic with respect to their effects on persistent and
shared database variables (see Fig. 2).

The potential arising from the separation between type and lifetime is
exemplified in Fig. 1 by the declaration of single persistent and shared in-
teger variable HighestPartNoUsed which issues unique part numbers. An-
other example is the transaction in Fig. 2 that uses a (temporary) parameter
Suppliers of type RELATION to specify a set of suppliers to be deleted from
the database variable SupplierRel.

Another highly relevant modeling alternative supported by DBPL (the
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ADT style) is to encapsulate database variables like SupplierRel and PartRel
in Fig. 1 into a DBPL implementation module and to restrict update operations
to “trusted“ transactions exported by its corresponding definition module [32].

Since the import relationships between modules have to be declared stati-
cally, there is no possibility for name conflicts and schema incompatibilities at
run-time. Furthermore, since we allow for the definition of multiple (database)
modules, the concept of multibases is also covered by DBPL.

3.4 Bulk Expressions and Operations

The extension of the type space available to DBPL programmers through an
orthogonal bulk type constructor RELATION OF is complemented by an orthog-
onal extension of the DBPL expression language by bulk value constructors
and associative value selectors. Again, we aimed for high language economy
by supporting full orthogonality between Modula-2’s arithmetic and Boolean
expression syntax and DBPL’s bulk expression syntax.

For each type constructor of DBPL (record, array, relation) there is a
value constructor to create objects of the composite type by enumerating its
components:

vl:= SupplierRecType{11l, "John", important};

v2:= MadeFromSubRecType{11, 100};

v3:= PartRecType{3, "nut", base, 300.0, 20.3, 11};
v4:= PartNumSet{1, 3, 77%};

v5:= Point2DSetType{ {1.0, 2.0}, {2.0, 1.0} };

v6:= PartRelType{ {4, "bolt", base, 30.2, 11.4, 11} };

The right-hand sides of these assignments make use of value constructors for
record values (assigned to v1, v2, v3) and relation values (assigned to v4, v5,
v6). Note that the curly brackets {} are overloaded: depending on the type
identifier preceding them they construct records, arrays, or relations. The
assignments to variables v5 and v6 contain nested value constructors, for ex-
ample, v6 is assigned a relation that contains a single record of its element type
PartRecType. Type identifiers for nested value constructors can be omitted.

In DBPL there are three kinds of value selectors for the selection of com-
ponents within a structured value. Elements of an array are selected by an
index value of their index type, enclosed in square brackets (vector[7]).
Fields of a record are selected by their field name (supplier.Name). FEle-
ments of a relation are selected by their key value, enclosed in square brackets
(SupplierRel[7]). Therefore, variable designators of DBPL consist of a name
followed by a path of value selectors:

SupplierRel[7] .Name:= "Peter";
PartRel[3] .Mass:= 13;

In addition to these element-wise operations, DBPL provides specialized
set-oriented bulk expressions for relation types. There are three kinds of bulk
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expressions, namely Boolean expressions, selective and constructive access ex-
pressions.
Boolean Expressions yield a truth value (TRUE / FALSE) and may be nested:

SOME s IN SupplierRel (s.Name = '"John")
ALL s IN SupplierRel (s.Status = important)

ALL p IN PartRel (p.State <> base) OR
SOME s IN SupplierRel (p.SuppliedBy = s.Num)

The comparison operators (=, <>, >=, <=, <) for relations are abbreviations
for key-based quantified expressions, e.g., SupplerRell>=SupplierRel2 de-
notes relation containment and is equivalent to

ALL s1 IN SupplierRell SOME s2 IN SupplierRel2 (sl.key = s2.key)
The test for membership (thisSupplier IN SupplierRel) is equivalent to
SOME s IN SupplierRel (thisSupplier.key = s.key)

Selective Access Expressions are rules that select subrelations.

EACH s IN SupplierRel: s.Status = important

selects all elements s of the relation variable SupplierRel that fulfil the se-
lection predicate s.Status = important.

A selective access expression within a relation constructor denotes a rela-
tion of all selected elements:

SupplierRelType{EACH s IN SupplierRel: s.Status = important}

Constructive Access Expressions are rules for the construction of relations
based on the values of other relations:

NameRecType{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)

where NameRecType is a record of two strings defined as
TYPE NameRecType = RECORD Part, Supplier: String END

The construction rule above declares that pairs of names of all base parts to-
gether with their suppliers from the two stored relations PartRel and SupplierRel
are to be constructed.
The application of a relation constructor to a constructive access expression
creates a relation that contains the values of the target expression (preceding
the keyword OF), evaluated for all combinations of the element variables (p, s)
that fulfil the selection expression (p.State = comp) AND (p.SuppliedBy = s.Num):
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NameRelType{{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)}

results in a relation value which has to comply with
TYPE NameRelType = RELATION OF NameRecType;

Note that access expressions do not denote relations; only in the context of a
relation constructor RelType{. ..} do they evaluate to a relation value. Other
contexts in which access expressions can be used are given below.

In addition to these (side-effect free) bulk expressions, DBPL provides spe-
cialized bulk operators (:=, :+, :-, :&)for relation alterations which assign,
insert, delete, and update sets of relation elements:

PartRel:= PartRelType{};
SupplierRel:- SupplierRelType{EACH s IN SupplierRel: s.Status=important}

The types of the expression and the variable on the left-hand side have to be
compatible according to the rules of section 3.1. Asillustrated by the examples
above, the nesting of DBPL expressions captures the essence of relational query
languages, namely to provide iteration abstraction by means of high-level set-
oriented selection, construction and update mechanisms.

3.5 Exploiting Language Orthogonality

It should be noted that the database and programming language features
of DBPL sketched in the previous sections do not simply stay side-by-side.
On the contrary, there are many interfaces to create synergy between these
features, for example:

e Relation types are allowed to appear in arbitrary contexts, i.e. not only
as types for database variables, but also as types of local variables within
procedures, or as types of value- or variable-parameters;

e Quantified expressions can appear not only within bulk expressions but
also in conditionals or as termination conditions of loops;

e Relation constructors can be used freely within expressions of arbitrary
types. A relation constructor can contain function calls, arithmetic op-
erations etc.

Relation constructors provide an expressive mechanism to build relations
from their elements. To support the inverse operation (“de-setting”) there is
a strong need for iterators. The essence of an iterator is a selective access
expression (see 3.4) denoting selected elements of a relation variable to be
iterated over. The body of an iteration is an arbitrary statement sequence
that can read and update the value of the loop variable:
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FOR EACH s IN SupplierRel: s.Status = important DO
InOut.WriteString(s.Name); InOut.WriteLn;
END;

Up-to-date programming languages provide two important abstraction mech-
anisms to achieve localization of information in large software systems [24, 33].
Process abstraction allows programmers to abstract from the implementation
of a subroutine and to perform complex operations simply through reference
to its name with an appropriate list of actual parameters. Type abstraction
allows programmers to abstract from the implementation of a data structure
and to operate on it only via a well-defined interface expressed as a set of
operations defined for an abstract data type.

DBPL embodies both abstraction mechanisms by means of procedures that
abstract over statements, functions that abstract over expressions, and opaque
types that abstract over type expressions [10]. In addition, DBPL provides
selectors that abstract over selective access expressions and constructors that
abstract over constructive access expressions (see 3.4) [34]. These two abstrac-
tions capture the essence of updatable and non-updatable views in relational
databases since selector applications can appear wherever a relation variable
is expected and constructor applications can appear wherever a relation ex-
pression is expected.

The selector SuppliersWithStatus (important) defines an updatable view
on the supplier relation selecting those suppliers having important as their
status (see also Sec. 3.4):

SELECTOR SuppliersWithStatus(st: SupplierStatusType): SupplierRelType;
BEGIN EACH s IN SupplierRel: s.Status = st END SuppliersWithStatus;

The following constructor SuppliersForParts names a non-updatable view
that is derived from the base relations PartRel and SupplierRel and that
contains pairs of parts and supplier names for all base parts with their respec-
tive suppliers.

CONSTRUCTOR SuppliersForParts: NameRelType;
BEGIN
NameRecType{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)
END SuppliersForParts;

Without going into details it should be noted that naming (of statements,
expressions etc.) naturally leads to the concept of recursion. The semantics
of a recursive query expression in DBPL is not defined operationally (as is
common practice for procedures) but as a least fixed point of recursive set
equation [19, 34]. Thereby, constructors are at least as expressive as recur-
sive DATALOG programs with stratification semantics [35, 36] over complex
objects:
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TYPE NumPairType = RELATION OF RECORD Super, Sub : PartNumType END;

CONSTRUCTOR TransitiveMadeFrom: NumPairType;
BEGIN
{p.Name, mf.Num} OF
EACH p IN PartRel, EACH mf IN p.MadeFrom:
p.State = comp,
{mf1.Super, mf2.Sub} OF
EACH mf1 IN {TransitiveMadeFrom}, EACH mf2 IN {TransitiveMadeFrom}:
mfl.Sub = mf2.Super
END TransitiveMadeFrom;

4 DBPL System and Environment

The development of data-intensive and long-lived applications is recognized as
a demanding system construction task that requires full software-engineering
support. In implementing DBPL we therefore paid attention to smoothly in-
tegrate the DBPL tools into the native software development environments
available on DBPL’s host architectures. In several DBPL spin-off projects we
also studied more advanced issues of open distribution, commercial interoper-
ability and computer-aided software engineering (see Sec. 5.2).

We based the DBPL system implementation on state-of-the-art relational
database and compiler technology. We were, however, compelled to invest a
significant amount of development work to overcome mismatches of the con-
tributing technologies that otherwise would have disrupted the clean and sim-
ple DBPL language model described in the previous section. In section 4.2
and 4.3 we therefore report on experience gained during the past six years of
DBPL system (re-)implementation and refinement in

e removing conventional compiler implementation restrictions,
o extending the expressiveness of the bulk query language,
o generalizing the storage model, and

o reducing system performance bottlenecks resulting from mismatches be-
tween independently developed contributing technologies.

In section 4.4 we share some of the conclusions we have drawn from the DBPL
implementation effort for our future work on database programming language
implementations.

4.1 Architectural Overview

An important task in the design of the DBPL system was the division of labour
between the various DBPL system components. Program analysis and code
optimization is performed statically by the DBPL compiler, the linker verifies
the overall consistency between separately developed system components at
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Figure 3: Overall DBPL system architecture

application link-time, while the run time system looks after dynamic aspects
of database applications such as query optimization, storage management,
serialization of transactions and failure recovery for persistent data.

Figure 3 depicts the overall DBPL system architecture as well as the inter-
action between the various parts of the DBPL system. A DBPL application
typically consists of a collection of modules and interfaces (represented by
dashed boxes in Fig. 3). Some of these modules define shared objects like li-
brary routines or database variables, others define private, application specific
code or data. Individual modules and interfaces are translated by the DBPL
compiler and then linked with other compiled DBPL modules or object code
developed in other programming languages (C, C++, Modula-3) yielding an
executable program with (symbolic, type-safe) references to shared libraries
and shared databases.

At run-time, this executable program interacts through the interface mod-
ule DBPLRTS with the various layers of the DBPL run time system. Database
objects are either stored in a DBPL-specific format in files accessed through
operating system calls issued by the layer SMS or they are held in commercial
SQL databases (Ingres, Oracle) and accessed via set-oriented dynamic SQL+C
statements following the X-Open standard for SQL database access. The dis-
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tinction between DBPL and SQL database objects is fully transparent to the
application programmer.

Fig. 3 also shows the interaction between two DBPL applications (possi-
bly running on different nodes of a TCP/IP or a DECnet local area network)
that import a common set of database modules and therefore run against
shared databases. The sharing of DBPL database objects is achieved by a
page-oriented client-server architecture using a three-level (CTMS, CRDS, SMS)
concurrency-control and recovery protocol based on explicit message passing.
The layer LMS provides communication services and a centralized scheduling
process that guarantees serializable transaction execution for DBPL applica-
tions. Concurrent and possibly remote access to SQL databases is handled
using built-in services of the commercial SQL servers. Due to limitations of
the currently available SQL server interfaces there is no two-phase commit
protocol to guarantee abort and commit consistency across mixed DBPL and
SQL databases in case of system failures at commit-time.

Currently, we are distributing DBPL in two distinct system implemen-
tations, VAX/VMS DBPL and Sun DBPL. Application programs developed
with one system (including user-interface code) can be recompiled without
change using the other system. Both systems are written entirely in Modula-
2 and consist of a compilation and a run-time environment. The multi-user
DBPL run time system is highly portable and runs under VAX/VMS 6.1,
SunOS 4.1, IBM AIX 3.2 and IBM 0S/2. Both DBPL systems can be inte-
grated fully into commercially available software development environments
(NSE, Teamware, CMS) and provide an optional SQL gateway in addition to
the DBPL-specific storage manager.

4.2 Extending Compilation Technology

By recasting the concept of schemata into the concept of shared modules,
we were able to successfully exploit the compilation and module management
technology developed for modular languages like Ada, Modula-2, Modula-3
and Fiffel. We extended this technology by link-time mechanisms to check
the consistency of persistent variables against the type information used by
their importing applications. Furthermore, we developed “binding tools” to
support simple persistent data conversions as required by typical evolution-
ary schema changes. These tools also allow database administrators to bind
dynamically persistent variables to alternative type-compatible implementa-
tions like internal DBPL storage structures or external (Ingres, Oracle) SQL
database relations.

The scoping and polymorphic type checking required at compile-time for
relational expressions and (higher-order) selectors and constructors was im-
plemented (analogously to array operations and procedures) by hand-coded
checking routines, one for each language construct. The DBPL compiler also
performs a limited form of type inference to eliminate the need for “redun-
dant” type annotations in nested queries. While these tasks are captured
adequately in the larger framework of polymorphic type systems (like ML [37]
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or Quest [38]), the DBPL system also calls for dynamic type descriptions avail-
able at run-time to perform, for example, type-dependent tuple value equality
comparisons.

The interaction between imperative programming language statements and
declarative, dynamically optimized bulk operations in DBPL is solved techni-
cally as follows: DBPL operations on individual relation elements and navi-
gational operations are mapped by the compiler directly to operations of the
run-time system. Bulk operations (quantified predicates, calculus expressions,
assignments of entire relations to relation variables, applications of selectors),
however, are not realized by means of (nested) loops in the object code. In-
stead of this, the run-time system receives a compact internal representation
of the operation in form of a predicale tree containing attributes. The exe-
cution of an arbitrarily complex relation-valued operation is accomplished in
three steps:

1. Evaluation of simple (non-relational) parts of the expression and address
computations, utilizing inline code.

2. Generation of a predicate tree by means of a sequence of operations of
the run-time system, thereby binding operands to program variables.

3. Optimization and evaluation of the operations on the dynamically bound
operands as defined by the predicate tree.

Selectors and constructors are represented at run-time exclusively by means
of predicate trees. Therefore, predicate trees are allowed to contain parameters
as well as (possibly cyclic) references to other predicate trees, together with a
list of actual parameters. The run-time system provides symbolic operations
for the manipulation of predicate trees (copy, delete, expand, ...). With the
help of these elementary operations, the compiler can implement selector and
constructor declarations as well as variables, partial parameter substitution,
selector applications and the usage of selectors and constructors in relational
constructors and iterators.

It was possible to undertake virtually all extensions from Modula-2 to
DBPL without interference with the machine dependent parts of the code
generation and to obtain a high portability of the compiler front end. Many
operations of DBPL are (conceptually) implemented by sequences of equiva-
lent statements of Modula-2, containing calls to the run-time support module
DBPLRTS (see Fig. 3). Accordingly, the VAX DBPL and the Sun DBPL com-
piler utilize the same compilation strategies despite significant differences in
the details of the target code generation.

4.3 Extending Database Technology

The architecture of the DBPL run-time system is similar to the layered archi-
tecture of other extended or extensible relational database systems [39, 40].
As can be seen in Fig 3, the DBPL run-time support subsumes a storage man-
agement system (SMS) for fixed-sized records and variable-sized long fields
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(maximum 8MB in size), a complex-object relational data system (CRDS), a
predicate management system for the optimization and evaluation of compos-
ite relation- and boolean-valued expressions (CPMS), a database deduction
engine to perform optimized fixed-point algorithms over sets of predicates
(PSMS), a predicative set-oriented transaction-manager (CTMS, see also [25]),
and an ADT-based interfaced (DBPLRTS) to the DBPL compiler and other
DBPL tools.

A repeating pattern in the development of the DBPL system was the need
to generalize existing database solutions to meet the requirements imposed by
the orthogonal DBPL language model. At the storage level, for example, we
had to substantially revise the interface to the “relational data storage system”
to be able to identify, create, manipulate and destroy non-persistent relations,
non-set-valued persistent objects, non-homogeneous collections, or to navigate
through nested complex objects. Similarly, the query evaluation and opti-
mization component had to be extended substantially to handle parameter-
ized query expressions, non-set-valued queries, type-complete data structures,
user-defined functions and arbitrarily nested query expressions.

As a result of these generalizations, the operations at the interfaces of the
DBPL system layers are centered around general programming language ab-
stractions like value, variable, type, scope, object identifier, parameter and
expression and no longer around DBMS-specific combinations of these con-
cepts like tuple, relation, dictionary, TID, view, or query tree.

4.4 On the DBPL System Complexity

Figure 4 gives a rough quantitative overview of the relative complexity of
the different tasks in the DBPL system. The complexity is distributed fairly
equally between the run-time system, the compiler front-end that performs
type checking, inter-module consistency checking, intermediate code genera-
tion and the industrial-strength compiler back-end that performs object code
generation and optional intermediate code optimizations like tail call opti-
mization, automatic inlining, aggregate breaking, loop-invariant code motion,
strength reduction, common subexpression elimination, copy and constant
propagation, register allocation, loop unrolling or unused code elimination.

The compactness and relative efficiency of the DBPL run-time system re-
sults from the fact that a large number of scanning, parsing, type check-
ing, error recovery and consistency checking tasks performed by conventional
database systems was factored-out into the DBPL compiler. In particular,
there is no need to check the parameters or the nesting of run-time system
calls (e.g., hidden cursor operations, buffer creation and deallocation) since
these calls are generated exclusively by the compiler and not by application
programmers.

Fig. 4 also reveals a disadvantage of the multi-level concurrency control
and recovery scheme adopted in the DBPL system [41]. The layer CRDS
that is responsible for the mapping of tuple-level complex object operations to
operations on atomic fragments maintained by the storage manager SMS does
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not rely exclusively on concurrency control and recovery primitives of the SMS
but performs its own concurrency control and recovery mechanisms exploiting
the semantics of complex object manipulations. As can be seen in Fig. 4, the
price for a gain in parallelism is a significant increase in the complexity of
this system component. Furthermore, bugs in the recovery code are very hard
to locate since they only become visible if the system is operated in stress
situations. In retrospect, we feel that we should have chosen a less aggressive
approach to scheduling and fault tolerance in DBPL.

The heavy dependency of the DBPL compilers for Sparc, VAX, Motorola
and Intel architectures on architecture-specific object code, debugger infor-
mation and link formats turned out to be a major issue in the long-term
maintenance of the DBPL system. In our current research projects outlined
in Sec. 6 we therefore moved to platform-independent, optimizable and per-
sistent code representations based on continuations [42]; a move that seems
to give rise to interesting new database programming concepts like run-time
reflection, persistent threads, or the dynamic distribution of data and code
across architecture boundaries [17].

The Open DBPL/SQL gateway (compare Sec. 5.2.2) and the bidirectional
call interfaces between DBPL and other languages demonstrated that it re-
quires a surprisingly small effort to embed a “closed” database programming
language with a well-designed internal architecture into “open” system envi-
ronments. On the other hand, this effort was highly appreciated by DBPL
users since these generic gateways enable the construction of hybrid applica-
tion systems that make best use of the technologies from both worlds.

5 A Short Reflection on DBPL’s Development

DBPL was not designed in “one shot” but developed in phases which reflect
rather clearly our degree of understanding and our level of ambition. In the

20



mid-70ies we were not the only group working on algorithmically complete
languages for data-intensive applications — in the relational setting the corre-
spondence between central concepts in programming and database modeling
seemed obvious and it was agreed that types were the notion to bridge the
gap [43, 44, 45]. However, it took us more than 30 man-years to develop
the concepts underlying a relational database programming language into the
DBPL system which fully exploits them and provides sufficient efficiency and
operational support for their effective use.

On the other hand, DBPL was not the end of our efforts in supporting
database programming. We embedded it into a network of DBPL-based spin-
off projects ranging from distributed DBPL [20] to SQL server gateways [13]
and DBPL-oriented programming environments [46].

5.1 DBPL as a Learning Experience

In Pascal/R [1] we concentrated on capturing and integrating relational se-
mantics in the context of a strongly and statically typed monomorphic pro-
gramming language. We introduced relation types to model schemata, relation
expressions for queries and generalized assignment statements for relation up-
dates. A database was an aggregate of relation variables imported through
external program variables in the same manner as Pascal works with external
files. Optimization of relation expressions was another large issue at that time
[47] and some of the algorithms designed by Matthias Jarke and Jirgen Koch
[18] still seem to be alive in DBPL. Since nesting of relational expressions was
heavily used for controlling subquery execution, we soon discovered that some-
thing must be wrong with the standard predicate transformation rules in cases
of empty range relations: universal quantifiers do not necessarily commute in
this case. Frank Palermo visited us in Hamburg and helped us by fixing his
algorithms [48]. Another issue was that of update semantics in the case of
key constraint violations. Keys while being part of type definitions destroyed
static type checking for relations. Pascal/R introduced specific run-time ex-
ceptions on relation updates, an experience which motivated our subsequent
emphasis on transactions and on exception handling in general.

The Pascal/R system was used quite extensively and successfully in educa-
tion including about 20 installations abroad. However, as soon as we started
implementing bigger database applications with Pascal/R (e.g., FIBEX [49])
we quickly experienced two rather severe deficiencies. The first inadequacy was
the missing transactional support in Pascal/R, the second one was a general
deficit inherited from Pascal, namely its lack of support for modular system
programming. We recognized that, in order to make progress with system
programming support, we had to leave the framework of Pascal. Before initi-
ating the DBPL project we began an intensive period of concept development
and evaluation in order to improve on the deficits mentioned above?. As a
consequence, we decided to move to Modula-2 as a host and implementation

*This work was supported by DFG grant Schm.450/2-1
(“Datenbankprogrammiersprachen”).
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language, an effort we started by porting the ETH/Zurich compiler into the
DEC/VMS environment [26] (As a side effect we still hold more than 600
licenses for that product!).

We started working on transactional abstraction, work leading to param-
eterized transaction procedures [30]. Furthermore, we recognized the central
importance of iteration abstraction for relation value construction, relation
iteration control and relation view definition (see Sec. 3.5). Selectors were in-
troduced as named and parameterized access expressions thereby supporting
iteration abstraction by a first-class concept in database languages.

In 1980 we began a close cooperation with ETH/Zurich on Modular/R [50]
(by having Manuel Reimer from Hamburg working at ETH). This small project
was essentially an exercise in evaluating the concepts developed for iteration
and transaction abstraction. Furthermore, we started exploiting Modula’s
module concept for database programming. Having modules available as a
general concept to organize code sharing between programs surely influenced
our next step to exploit modules also for data sharing [51]. We introduced per-
sistent database modules which, in Modula/R,, were still restricted to relations
only. Relation types and operations as well as the work on query optimization
were carried over in a fairly straightforward way from Pascal/R into Modula/R
and then further into DBPL.

Based on the above experience we decided around 1983 to start the DBPL
project. Our vision for DBPL was as simple as ambitious [52]: define and
implement a language which provides, in an algorithmically complete context,
its four database concepts — relation type, access expression, database module,
transaction procedure — unrestrictedly.

During DBPL development it became obvious that both communities,
databases and programming languages, were adhering to several, mostly un-
necessary and ad-hoc restrictions. Some limitations, for example, the lack of
data type orthogonality (i.e. the restriction to first normal form relations),
had already been realized, others, such as orthogonal persistence (providing
persistence for all types, not just for relations), were new for the database
community (but already discovered by the persistent programming language
people [29]). Other insights, for example, the relationship between abstract
access expressions and queries, iterators and views, or between recursive access
expressions and deductive databases, came as a surprise, at least to us.

5.2 DBPL Spin-Off Projects

DBPL initiated several spin-off projects, all of which were triggered by the
fact that a language is hardly ever used in isolation but has to enable good-
quality interaction in heterogeneous environments consisting of other pro-
grams, databases, tools, machines etc. Therefore, we embedded DBPL as a
product deeply into its native environments (see Sec. 4.1) and we used DBPL
as a research vehicle for several R&D projects to investigate issues of distri-
bution, interoperability and computer-aided software engineering.
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5.2.1 DURESS: Distributed DBPL in Heterogeneous Environments

In the DURESS project® [20, 53] we exploited DBPL’s module concepts de-
scribed in section 3.3 to add an additional layer of type-safety to standard
remote procedure call mechanisms (RPC) in federated client-server program-
ming environment. In DURESS, individual DBPL compilation units may be
located at different nodes in a (LAN/WAN) network consisting of PC work-
stations and VAX servers.

In the distributed DBPL environment, the compiler automatically gener-
ates the necessary client and server stub code to access procedures exported
from remote sites. Furthermore, dynamic type descriptions are assigned to
compiled remote interface definitions. These descriptions are used during con-
nection establishment to verify that all parts of a distributed program have
been compiled using compatible versions of the interface specifications. This
mechanism directly generalizes the link-time consistency control mechanisms
developed for persistent DBPL modules.

In DURESS, remote modules can also export (database) variables, trans-
actions and views (represented as selectors and constructors). In this case, the
extended DBPL run-time system performs the necessary low-level communi-
cation and distributed query evaluation to blur the distinction between local
and remote objects:

DATABASE DEFINITION RemoteSupplierDB ON "Server7";
IMPORT SupplierPartDB;

VAR SupplierTable : SupplierRelType;

END RemoteSupplierDB;

5.2.2 Open DBPL/SQL: A Gateway to Commercial SQL Servers

In another subproject® we studied issues of DBPL system interoperability by
extending the DBPL system to support bindings to external persistent objects
in addition to internal persistent DBPL objects [13]. The only change to the
language definition of DBPL is the syntax of definition module headers:

DATABASE DEFINITION FOR Ingres MODULE Suppliers2;
IMPORT SupplierPartDB;

VAR SupplierTable : SupplierRelType;

END Suppliers2;

This module exports a persistent variable SupplierTable that is implemented
by the table SupplierTable stored in the Ingres database Suppliers2. All
DBPL statements and expressions referring to such an “external” variable
are translated fully transparently into SQL update and selection expressions
submitted to the Ingres SQL database management system. These SQL ex-
pressions typically take DBPL program variables as arguments and return (re-
lation) values that are converted appropriately for further processing within
DBPL. For example, the query

*DURESS was supported by a grant from the IBM European Network Center, Heidelberg.
5This work was supported by a grant of the DAAD, Bonn.

23



IF ALL s IN SupplierRel (s.Status > x) THEN ... END

is translated into a select from where SQL expression that uses the actual
value stored in the DBPL variable x of type SupplierStatusType. Depending
on the cardinality of the set-valued result, a boolean value is then returned to
the compiled DBPL code.

It should be noted that DBPL can handle arbitrarily nested (possibly re-
cursive) query expressions that mix volatile relations, persistent DBPL re-
lations residing in local or remote databases and SQL database relations.
Therefore, much care has been devoted to develop evaluation heuristics that
minimize data transfer and make best use of index information available for
individual relations. Evaluation strategies are not determined at compile-time
but depend on cardinality and index information available at run-time.

5.2.3 DAIDA: An Environment for Data-Intensive Application De-
velopment

In the DAIDA project” [54, 55, 46], software houses, research centers and uni-
versities from five European countries have contributed to solving the problem
of intelligent development assistance for database applications. Within the
integrated DAIDA framework, DBPL served as the target language for the
implementation of high-quality database application software while the ap-
plication requirement analysis task and the conceptual modeling process are
expressed using specialized high-level languages (Telos and Taxis DL, respec-
tively). A central contribution of DAIDA is the development of methodolo-
gies and tools that assist the system analyst, system designer and database
programmer in the mapping process between the three languages involved.
The mappings and the associated design decisions are recorded in a global
knowledge base (ConceptBase [56]) to support the long-term evolution and
maintenance of software systems.

6 On Project Termination

To summarize, the most prominent feature of the DBPL language is the type-
complete integration of sets and first-order predicates into a strongly typed,
monomorphic language with persistence as an orthogonal property of indi-
vidual compilation units. The DBPL system is further characterized by its
coverage of a wide range of operational database demands, such as query
optimization, transaction and distribution management and computer-aided
support for database application development.

Over the years, we encountered several data modeling concepts (inher-
itance, object identifiers, ordered bulk data structures, triggers, ...) and
database system requirements (communication between concurrent processes,
exception handling, ...) that did not fit nicely into the original DBPL lan-
guage framework. However, instead of “fixing” these DBPL limitations by

"DAIDA was supported by Esprit Project #892.
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ad-hoc, incremental language extensions, we tried to isolate the conflicting
system or model assumptions in the initial DBPL (or Modula-2) design.

More specifically, we regard the monomorphic type system of Modula-2,
the lack of first-class procedures, and the strict separation between built-in and
user-defined system functionality in the DBPL system architecture as hard,
built-in limitations which prevent, without violating our design principles,
DBPL extensions beyond the realms of set- and predicate-based data models
and first-order programming languages.

As a consequence, our work in the Tycoon project® [57] is based on a higher-
order polymorphic core language consisting of a small set of highly generalized
primitives for naming, typing and binding [58]. Our initial Tycoon experiments
[15, 59, 9] suggest that the Tycoon framework by virtue of the orthogonality
of its contributing concepts goes significantly beyond conventional relational,
object-oriented and deductive approaches.

In a similar vein, the Tycoon system architecture [17] aims at increased
system scalability, portability and interoperability with commercial and stan-
dardized systems by “unbundling” database functionality and separating data
storage, data manipulation and data modeling. To summarize, the Tycoon
project carries forward in a more general linguistic and architectural frame-
work the experience gained with bulk data typing, iteration abstraction, and
modularization in DBPL.

8Tycoon is supported in part by Esprit project #6309 (FIDE).
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