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Abstract

System security services like authentication, access control and auditing
are becoming increasingly critical for information systems particularly in
distributed heterogeneous environments. Since information system archi-
tectures are moving rapidly from centralized, grand unifying architectures
towards open, service-oriented and communication-based environments
(“Persistent Object Systems”) constructed with well-organized compo-
nent technologies it is essential that such structural changes are reflected
adequately in the architecture of system security services.

In this paper we present an open, library-based approach to the se-
curity of Persistent Object Systems which generalizes and unifies the
protection mechanisms that traditionally come bundled with database,
communication or operating system services. More specifically, we il-
lustrate how polymorphic typing can be exploited to abstract from par-
ticular commercially available security services, such as Kerberos, and
how higher-order functions allow the user to add value to existing secu-
rity services. Furthermore, we demonstrate how higher-order functions,
first-class modules and reflection provide a technical framework for the
realization of domain-specific security policies and for the systematic con-
struction of security-enhanced activities.

1 Introduction

Customer demands on information systems in the commercial, public and pri-
vate sectors require an ever-increasing number of services such as bulk data
storage, data persistence, transactions, network data communication, window-
based data visualization or data retrieval. Consequently, there is a strong
market pressure to factor-out such services into generic libraries and to fa-
cilitate the safe use and free combination of such services. Furthermore, the
required functionality is offered through a variety of service providers such as
operating systems, database systems, language processors, directory servers,
communication services or “middleware” toolkits.

1This research is supported by ESPRIT Basic Research, Project FIDE, #6309 and by a
grant from the German Israeli Foundation for Research and Development (bulk data classi-
fication, 1-183 060).



The Tycoon? Persistent Object System addresses this situation and com-
bines a higher-order polymorphic language (Tycoon Language TL) with or-
thogonal persistence to implement directly the desired services and to integrate
existing external services via type-safe interfaces to foreign libraries (written
in languages like C or C+4). Tycoon achieves thereby type-safe “plug and
play” interaction between objects on screen, objects in memory, objects on
disk, and objects on the wire in open heterogeneous environments. This free-
dom in the manipulation of persistent objects immediately raises security issues
like the protection of sensitive or personal data held in shared repositories or
the control and billing of resource consumption (time, space, communication
bandwidth).

Traditionally, the security mechanisms required for authentication and au-
thorization came hard-wired with a specific service provider like a database
management system. Since it is impossible to cover an entire application do-
main that involves different service providers with a unique security model and
it is also impossible to tailor a hard-wired security mechanism to specific appli-
cation requirements. In this paper an add-on approach to security is proposed
based on generic security libraries. It is clear that an add-on approach to se-
curity requires a certain degree of built-in security support in an integrated
framework that contains all computational objects like values, functions and
threads.

Section 2 introduces basic security notions. A presentation of the Tycoon
framework is given in section 3 including an insecure example of a classical
database application. The reinterpretation of security in the Tycoon framework
and its integration is shown in section 4 together with a secure version of the
example presented above. Since all this is done on a purely application level,
the underlying built-in system support is described in section 5. Using the
library-based security capabilities of Tycoon the correct development of secure
applications can be simplified using generators as detailed in section 6. Final
conclusions are discussed in section 7.

2 Basic Security Notions

Security’ in persistent application systems is based on authentication and au-
thorization. The semantics of these terms can be explained by the example
of a distributed environment. In such an environment active entities can be
identified (and named) uniquely on a purely logical level not restricted by ma-
chine or application boundaries. These active entities which are mainly users
or processes (acting for itself or on behalf of a user) are the principals [BAN8Y]
of the environment. Their counterparts are the passive entities which are part
of an application having an identity only inside their application and which
are controlled by a principal. A typical passive entity is a table in a relational
database controlled by a database management system.

An active environment is characterized by the interaction of its principals.
Since this may happen across machine boundaries via open potentially insecure
networks there is no identity guaranteed by an operating system. This raises
the need for a trusted authentication mechanism [SNS88, Lin93] between the

2Typed Communication Objects in Open Environments
3Security aspects like availability and integrity are not covered by this paper.



principals. The heart of such a mechanism is an Authentication Server admin-
istered by a (environment-) global authority. Using these protocols based on
cryptographic algorithms [DES77, RSA78] each and every principal can con-
struct a credential [FLI3] containing the cryptographic information allowing
another principal to verify the claimed identity. In addition, this information
enables the creation of passive entities labeled with the identity of their creating
principal which guarantees the provability of origin and lack of modifications.
On a technical level this is done by adding a cryptographic checksum as sig-
nature to the entities. These safe objects can further more be made private
through enciphering.

Authentication is a necessary requirement for answering the central security
question of as to whether a principal has the authorization to execute an action
on an entity. While the desired access can be done only by an active entity,
a principal, the accessed entity can be either an active one (another principal)
or a passive one. It is not necessary, however, that every principal has to be
able to be both accessor and accessee. For this reason, authorization distin-
guishes between subjects which are principals in the role of an accessor, and
objects [Mul91], which are active or passive entities in the role of an accessee.
Assuming a successful authentication, it is the task of the principal represent-
ing or controlling the object the object to decide whether this access is to be
granted or not. This task requires an internal information base structured by
rules describing a specific access control model (security model).

If an access control model allows the creator of an entity to decide on the
subjects to which entity access will be granted, the model realizes discretionary
access control [DRKJ85, Vin85]. A typical example of discretionary access
control models are access control lists. They are attached to the object where
access should be controlled and contain subjects and the type of access which
will be allowed for these subjects.

This is in contrast to mandatory access control models [BLT3, BN89, Mil89,
TCS85] where a system-wide security model defines the allowed access patterns
without further influence of the entity creators. Most of these models define
a partially ordered set of security levels and assign a security level to every
object and every subject. Read access will only be granted if the security level
of the accessing subject dominates the security level of the accessed object;
write access will only be granted if the security level of the object dominates
the security level of the subject. One main difference in the mandatory access
control models is that they require strict enforcement of the security model in
the whole system environment whereas discretionary access control is restricted
to the application environment. Therefore, discretionary access control can be
used on top of a system guaranteeing mandatory access control.

3 The Rationale Behind Tycoon

The Tycoon Persistent Object System is an example of a software system that
gives users flexible, problem-oriented, safe access to large sets of long-lived ob-
jects of various types [SM93, Mat93]. In Tycoon, the main abstractions neces-
sary for the construction of such systems, namely functions, polymorphic types
and persistence, have been identified and generalized. The system consists of
three layers related hierarchically.



The top layer consists of Tycoon’s higher-order language TL where functions
and types are treated as first-class language objects thus allowing the user to
write generic libraries and generators without leaving Tycoon’s language frame-
work. The semantic model of Tycoon is based on higher-order type theories
[Car88]. The core semantic entities of Tycoon are values, types, bindings and
signatures [BL84, Car89]. Values and types can be named in bindings for iden-
tification purposes and in order to introduce shared or recursive structures at
the value and type levels. Signatures act as (partial) specifications of static
and dynamic bindings. Bindings are embedded into the syntax of values, i.e.
they can be named, passed as parameters, etc. Accordingly, signatures appear
in the syntax of types to describe these aggregated bindings.

Higher-order functions imply function parameterization which enables pro-
grammers to pass functions dynamically as arguments to other functions and
function generation, i.e., the possibility of returning functions as the result of
functions. In supplying generic data structures like relations or stacks in the
application framework, user-defined higher-order type operators are provided.
They denote parameterized type expressions that map types or type operators
to types or type operators. For example, the type operator Pair takes any type
X that i1s a subtype of the trivial type Ok and returns a tuple type with two
fields of type X:

Let Pair=Oper(X <:0k) Tuple fst:X snd:X end type operator binding

These generic types can be instantiated later with type parameters to con-
struct application-specific types like

Pair(Int), Pair(String), Pair(Pair(Int)) type operator applications

Large TL programs are typically divided into modules, interfaces and hier-
archically nested libraries with support for separate compilation and dynamic
linking by the language processor. They are translated to TML (Tycoon Ma-
chine Language) [GM94] thereby entering the second layer. TML is a mini-
mal intermediate language based on an untyped lambda calculus and extended
with imperative constructs that serve as a low-level, portable TL program rep-
resentation in distributed heterogeneous environments. TML was designed to
support efficient host-specific target code generation as well as dynamic opti-
mizations analogous to query and transaction rewriting in database systems.
Execution is performed by the Tycoon Machine, TM, represented by a set of
threads that act as the unit of execution for TML code. These threads are
first-class objects and as such they are available as TL-values and can also be
made persistent [MS94].

Finally, persistence of all values is realized in the third layer via TSP (Ty-
coon Store Protocol), a data-model-independent object store protocol based on
the notion of a persistent heap that shields TML evaluators (and TL program-
mers) from operational aspects of the underlying persistent store like access op-
timization, storage reclamation, concurrency or recovery. By forcing all higher
levels of the system to use the TSP (software) protocol, it provides a starting
point to add system functionality at the object store level (e.g. distribution
transparency). A key contribution of the TSP to the overall Tycoon system
functionality is support for orthogonal persistence [AB8T7]: data of any type
(including functions) can exist for any length of time or as short as required by



the application. Programmers do not need to write explicit code to move data
between persistent and volatile store.

A classical persistent application is the storage of bulk data. For example,
a database storing personal records consisting of a name and an address can
be modeled by an abstract data type (ADT) Person.T and implemented in
Tycoon as follows:

interface Person
T <: Ok
new(name :String address :String) :T
get(name :String) :T
name(person :T) :String
address(person :T) :String

end

It is assumed that the corresponding implementation of this interface does
not contain any security mechanisms. Furthermore, the application requires
that access to the personal data is restricted to authorized users and that the
set of authorized users for the name attributes differs from the set for the
address attributes of a specific person tuple (of type Person.T). The use of the
Tycoon security libraries (see section 4.2) will be demonstrated by securing this
simple application.

4 An Add-On Approach to Security

Traditionally, security is being handled as a built-in system feature. This can
be observed in the fact that security is not a feature where it is up to the user
to apply it or not but it is a restriction that must be enforced, especially with
respect to users who want to circumvent this restriction intentionally. The
high cost of the the built-in approach has as a consequence that only a few
systems, mainly database and operating systems, possess integrated security
components.

Another key disadvantage of built-in security components is their lack of
flexibility and exchangeability in cases where they do not fit the application
requirements. In addition, it is a much too narrow view that only values in a
database or operating system objects must be put under access control. In a
programming environment access to every creatable object regardless of its type
has to be controllable by a matching access control model. This requirement
leads to the development of an open add-on approach to security as exemplified
in the following sections by the Tycoon security model.

4.1 Tycoon’s View on Security

In section 2 security control is defined as the task of defining and deciding
whether a principal has the authorization to act on an entity. This security task
is tackled in the Tycoon framework by relating the security concepts introduced
in section 2 (i.e., principal, action, entity) to Tycoon’s computational entities
as outlined in section 3 (i.e., thread, function, value).

Intuitively speaking in Tycoon the three central security questions are an-
swered as follows:



Who is active principal? All application activities are represented and con-
trolled by Tycoon threads.

What action is performed? Application actions are abstracted by Tycoon
functions.

Which entity is involved? All abstractions of Tycoon are wvalues and have
first-class status.

This leads to a reformulation of our security task:

Has the TL thread at hand the right to apply the intended TL func-
tion to a given TL value?

In the example in section 3 a principal is a client’s application program
being executed by a thread (on behalf of a user) that accesses an ADT-value
(of type person.T) with ADT-functions.

In section 4.2 we present the security concepts introduced in section 2 as
Tycoon add-on libraries. The central issue of how such security libraries can
be securely added to a Tycoon kernel and which basic security support must
already be built-in remains open until section 5.

4.2 Add-On Security Libraries

In the Tycoon environment with its inherent add-on approach [MS93] the ap-
plications security needs are realized by implementing the basic security con-
cepts presented in section 2 as polymorphic libraries which are described in
this section. It should be noted that activities needing security in a distributed
environment are characterized by at least two principals, one client and one
server. For activity execution they have to communicate with each other in a
secure way. The underlying communication abstractions (interprocess commu-
nication, RPCs, ...) including details of the authentication protocols on top
of the security libraries are outside the scope of this paper and will not be
discussed in the following.

4.2.1 Authentication

Authentication in a distributed programming environment requires agreement
on a protocol and a supporting infrastructure which consists mainly of authen-
tication servers administered by a trusted authority. On the one hand all of
these services could be implemented completely in Tycoon itself but, on the
other hand existing standardized authentication systems with a C-APT (like,
for example, the Kerberos system [SNS88]) are to be preferred. In the latter
case, access to the authentication services is done via a type safe TL-interface
using the C-call mechanism of the Tycoon system. In both cases the authen-
tication services are presented to the application programmer by a common
interface with exchangeable implementations.

Under the assumption of an existing authentication infrastructure, the li-
braries have to contain abstractions for principals and their credentials as de-
scribed below. Since all authentication is based on cryptographic algorithms,
an abstraction for these algorithms must also be made available. In combina-
tion with a credential they can be used to make arbitrary objects private or
safe.



Component Principal The principal abstraction contains two type defini-
tions for principals according the two different roles in which a principal can be
used (Principal.T and Identity.T). This distinction on the type level helps
to increase the correctness of the application programs.

interface Principal export
T <: Ok
Identity <: Ok
get(name :String) :T
proveldentity(p :T secret :String) :Identity

end;

e A principal is simply an identifier of an active entity. Such an identifier
is described by the type Principal.T. Values of this type, called simple
principals in the following, support the management of principals but do
not include the possibility of acting on behalf of a principal.

o If a user wants to act as the named principal he/she has to get the identity
of this principal (a value of type Principal.Identity). For proving that
he/she really is the intended principal a secret has to be presented which
normally is a password. Internally this is used for authentication against
the authentication server or unlocking stored encryption keys depending
on the underlying authentication system. Only the owner of an identity
can acquire credentials.

The most important functionality of the interface is to lookup a princi-
pal (function get) by giving the name of the desired principal and to ob-
tain the identity of a principal by presenting the correct secret (function
proveldentity).

Components Credential and Encryption If a principal (in the role of
a client) who has successfully received his identity has to prove this identity
against a peer principal (in the role of a server) a credential is required. This
contains the cryptographic information necessary for the peer to verify the
claimed identity. This credential will be transported to the peer using the
communication medium selected by the application.

interface Credential export
T <:0k
new(p :principal.Identity) :T
valid(p :principal.T c¢ :T) :Bool

end;

Credentials in the interface are described by values of type Credential. T
which hides the specific structure of a credential used by the authentication
system. The new-function takes a principal identity as parameter and returns
the credential whereas the valid-function used by the server to check whether a
received credential proves the claimed identity of a client returns only a simple



principal. Additional functions are provided for credentials valid only for a
specific server which are needed by some authentication protocols.

The encryption component contains the abstractions for encryption keys
and functions for en- and decrypting. Since their use is restricted to the cre-
dential component and the safe/private components described below, they will
not be discussed in detail here.

Components Private and Safe Following a successful authentication by
the exchange of credentials these credentials are used to guarantee the safety
or privacy of objects created by the principals. These objects can also be
exchanged by a communication mechanism. The corresponding abstraction
component in the Tycoon libraries uses the cryptographic information like en-
cryption keys stored in the credentials and the corresponding cryptographic
algorithms. The component Safe is described as an example:

interface Safe export
Signed(A<:0k) <:0k
Signature(A<:0k) <:0k
signIt(A <:0k c :credential.T object :A) :Signed(4)
signedBy(A <: Ok ¢ :credential.T object :Signed(A)) :Bool
contents(A <: Ok ¢ :credential.T object :Signed(A)) :A

end;

The type operator Signed is parameterized with the type of objects to be
signed and describes signed values. A signed value of type Signed(Int) is a
pair of a value of type Int and a hidden signature. Signatures itself are described
by values of type Signature(V) where V denotes the type of the signed value.
The function signIt takes the credential of the signing principal as parameter
and returns a signed object. The verification that a signed object was signed
by a specific principal is carried out by the function signedBy, again using
the credential of this principal (the match between a principal and a credential
can be checked using the principal component); the function contents works
similarly but returns the value and raises an exception if the value was not
signed by the principal represented by the credential. Analogous functions
using signatures only are also available.

Again, the use of type operators in combination with the static typing of
TL enforces at a language level that arguments to functions are signed and
that every access to a parameter value must be preceded by a call to a function
that returns the value and checks its authenticity (and integrity). Polymorphic
typing avoids a type loss during the sign operation.

4.2.2  Authorization

Authorization decides on the question of whether a subject is allowed to access
an object or not. A subject can be a principal but authorization can be based
also on other granularities. For example, in many systems access has to be
granted to groups or roles.



In each of these cases, the access granularity is represented by a principal
who is the basis of authentication. It is the task of the access control mechanism
to decide whether a principal is a valid representative of its claimed access
granularity.

Component Subject The subject abstraction of the Tycoon libraries built
on top of the principal and credential abstractions supports multiple access
granularities and describes subject values by a type operator Subject.T pa-
rameterized with the type of the accessing granularity.

interface Subject export
By(B <:0k) <:0k
new(B <:0k
equal(:B :B) :Bool
isPrincipal(:principal.T :credential.T) :Bool
representative(:B :principal.T) :Bool) :By(B)
T(B <:0k) <:0k
Identity <:T
get(B <:0k by :By(B) baseEntity :B p :principal.T) :T(B)
prove(B <:0k by :By(B) s :T(B) c¢ :credential.T) :Identity(B)
fromSystem() :Identity(principal.T)
baseEntity0f(B <:0k by :By(B) s :T(B)) :B
principal0f(B <:0k by :By(B) s :T(B)) :principal.T
credential0f(B <:0k by :By(B) s :Identity(B)) :credential.T
byPrincipal :By(principal.T)

end;

As is the case for principals (see section 4.2.1) it is necessary to distinguished
between simple subjects and subject identities. Whereas a simple subject is only
an identification for a subject, a subject identity proves its identity based on
a claimed principal, a credential and a check that the principal belongs to
the access granularity. The management of access rights can be done only on
simple subjects, access granting decisions have to be based on subject identities.
The twofold character of subjects is reflected by the additional type operator
Identity which is a subtype of T and therefore also parameterized by the type
of the accessing granularity.

Multiple access granularities are supported by the type operator By. A
value describing the framework for a specific granularity is created with the
new—-function. This function takes three functions as arguments to describe the
structure of a specific access granularity. All other functions must be parame-
terized with such a value; the coherence of the access granularity type of all pa-
rameters is guaranteed by the type parameter B expressing an inter-parameter
constraint. For example, the function prove takes a granularity value, a sim-
ple subject and a credential restricted to the same access granularity type. It
returns a subject identity, only if all necessary checks have been passed. The
function fromSystem returns a subject identity based on the system authenti-
cation as described in more detail in section 5.



Access Control Models Based on the subject abstraction described above a
wide range of access control models can be constructed. Access control lists are
such an example for a discretionary access control model and will be described.

interface ACL export
T(ObjectT, SubjectT <:0k) <: Ok
new(0ObjectT, SubjectT <:0k
equal(:subject.T(SubjectT)
:subject.T(SubjectT)) :Bool)
:T(ObjectT SubjectT)

addSubject(0bjectT, SubjectT <:0k
s :subject.T(SubjectT)
acl :T(ObjectT SubjectT)) :0k

deleteSubject(ObjectT, SubjectT <:0k
s :subject.T(SubjectT)
acl :T(ObjectT SubjectT)) :0k

grant(ObjectT, SubjectT <:0k
s :subject.Identity(SubjectT)
acl :T(ObjectT SubjectT)) :Bool

end;

An access control list is attached to the object to which access should be
controlled. It simply contains the subjects to which access will be granted.
The interface defines a type operator T describing access control list values. It
is parameterized with the type of the controlled object as its first parameter
ObjectT; as explained in section 4.2.2, a subject represents an access granularity
that is defined by the second parameter SubjectT.

The interface contains functions to create access control lists for a given
object and subject type and to add and delete subjects (of the correct access
granularity type) from an access control list. These two functions still work on
simple subjects whereas the grant function which checks whether a subject is
contained in the access control list uses subject identities (requiring the use of
an authentication check function of the subject component).

A major difference between the access control lists in the Tycoon libraries
and traditional access control lists is the apparent lack of an access type spec-
ification (like read or write). In an environment where functions are one of
the main abstractions and all activities are done by functions, the application
access type is expressed by a function value and there is only one access type
available on functions, namely to execute them.

The access control list above can be attached directly to the functions or
objects to be controlled by the application developer. If this does not fit the
application requirements, a predefined access control list manager can be
used. This component manages pairs of objects and access control lists.



interface ACLManager export
T(ObjectT, SubjectT <:0k) <: Ok
new(ObjectT, SubjectT <:0k
equal(:0bjectT :0bjectT) :Bool
equal(:subject.T(SubjectT)
:subject.T(SubjectT)) :Bool)
:T(ObjectT SubjectT)

addObject(0bjectT, SubjectT <:0k
manager :T(ObjectT SubjectT)
object :0bjectT) :0k

grant (ObjectT, SubjectT <:0k
manager :T(ObjectT SubjectT)
s :subject.Identity(SubjectT)
object :0bjectT) :Bool

end;

Again the controlled objects can be of arbitrary type including function
types. The necessary object-equality function can be constructed easily with
the existing function-equality-test function of the Tycoon library. It should be
noted that such a function can only exist in a homogeneous environment where
functions are first-class values.

Other access control models can be realized in the same manner. This
includes also mandatory access control models under the assumption of an
adequate system environment. Activities controlled by some access control
model can in turn be used by other activities which may be controlled by

another model. This makes it possible to build up complex access control
structures depending on the application needs.

4.3 Example: A Secure Person Database

In securing the person database of section 3 the first step is the identification
of the objects to be protected following the application needs. These are the
ADT-values like peter in

let peter = person.get("Peter")

The access types for these protected objects are defined on the application
level by the ADT-functions person.name and person.address. The targets
for the access control can be modeled in TL by the tuple ObjectT:

Let ObjectT = Tuple
accessType :Fun(person.T) :String
protected :person.T

end

The secured version of the Person database is now constructed on top of
the existing Person module, the Subject component and an access control
model. Since the application requires a differing authorization for secureName
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Figure 1: The component structure of SecurePersons

and secureAddress the ACLManager (see section 4.2.2) is chosen which uses
itself ACLs. This results in a new component SecurePerson (see figure 1).
Access should be granted to principals determining them as access granu-
larity. The authentication uses for simplicity the information gained during the
system-authentication (see section 5). In the component SecurePerson an acl-
manager (a value personACLs of type ACLManager.T) is created during the link-
ing phase using the functions objectEqual and principalAsSubjectEqual:

let objectEqual(ol, 02 :0bjectT) :Bool =

let principalAsSubjectEqual =

let personACLs = aclManager.new(objectEqual
principalAsSubjectEqual)

For all security relevant functions £ in Person the component SecurePersons
contains a secure variant secureF, which combines security management with
the base functionality of Person. The secureNew-function creates a new per-
son using person.new and adds a value of type ObjectT denoting the protected
person and the access type to the ACLs.

let secureNew(name :String address :String) :person.T =
begin
let p = person.new(name address)
aclManager.addObject (personACLs
tuple person.name p end)
aclManager.addObject (personACLs
tuple person.address p end)

end



The secure access functions like secureAddress are responsible for authen-
tication (reusing the system-authentication in this example) and the following
authorization. Only if all checks have been passed successfully is the base access
function called; otherwise an error is raised.

let secureAddress(p :person.T) :String = begin
let subjectId = subject.fromSystem()
if aclManager.grant(personACLs subjectId
tuple person.name p end) then
person.address(person)
else
raise authorizationError
end
end

It should be remarked that this example neglects details of a possible com-
munication context between client and server (requiring additional authentica-
tion) and the administration of the access rights.

5 System Security Support

The flexibility of authentication and in particular authorization mechanisms in
Tycoon is in strong contrast to existing systems equipped with a hardwired
security system. All security models must be protected against misuse and this
cannot be done by a purely add-on approach. Since hardwiring all security
mechanism is far too strong a mechanism, a measure of security support from
the system will suffice to gain the flexibility of the add-on approach. Security
can be enforced on three levels in the Tycoon environment.

Application Level The Tycoon security libraries following the add-on ap-
proach are discussed in detail in section 4.2.

Machine Level Execution of Tycoon code is finally done by the threads of
the TM. During this execution access control to store objects based on
access types determined by the used machine functions can be done.

Objectstore Level In a Tycoon environment all objects are allocated (and
persistently stored) in a persistent object store. This gives the possibility
of access control during access to the objects in the store.

The levels on which security support must be used are determined by the
level on which the sphere of control over the execution unit switches from the
client to the server depending on the configuration of the Tycoon system in a
distributed environment. In principle all activities done under the control of the
protected server or an execution unit trusted by the server can be considered
as security enforcing, all activities controlled by clients must be considered as
unsafe.



5.1 Configuration Scenarios

Different configurations are characterized primarily by configuration parame-
ters determining

e single- or multi-user mode (clients and protected server are running con-
currently on the same object store);

e who has control over the thread or the object store;

e whether arbitrary TML-code generated by the client can be executed by
the server (remote code execution).

The consequences of different selections of parameters from the protected
servers view should be clarified by a few examples. In the simplest case of a
single-user Tycoon system without remote code execution the system can still
be used as a server by using some communication mechanisms like RPCs or
sockets. All execution takes place under the control of the server and a security
mechanism on the application level is sufficient. With the additional possibility
of remote code execution which is carried out by the server’s thread additional
security mechanisms on the machine level must be used.

In a multi-user system where the threads are under the control of a trusted
Tycoon kernel the security mechanism on the application level must be en-
hanced by security mechanisms on the machine level. Otherwise unauthorized
clients can try to directly access protected objects by circumventing the secu-
rity enforcing functions of the application level. In the secure version of the
person database this for example means that users must be forced not to use
directly the person.address-function but only the secureAddress-function. If
the threads are running under the control of the clients they again cannot be
forced to use the security mechanisms of the thread. In this case security mech-
anisms on the store level are required. This in turn only works in a secure way
if the store access is done under the control of the trusted Tycoon kernel. If
they are done by the clients themselves no security can be guaranteed. It is
possible to encrypt the store in this situation but the clients will have enough
time to crack the ciphertext off-line without being detected.

5.2 Machine Level Security

Security on the machine level should only guarantee the enforcement of the
application level security. There is no need for high flexibility with regard to
different access control models. In the following the case of a multi-user Ty-
coon system with a tycoon-kernel controlled TM is considered. Access control
information for all relevant thread operations is managed by the kernel. It con-
sists of a principal denoting the owner of the object affected by the operation
and one access right determining whether only this principal or all other prin-
cipals may perform this operation. By default all operations affecting objects
of linked application may only be executed by their owner.

In order to use the Tycoon Environment a client must request the initiation
of a TM with an initial thread by the Tycoon kernel. During this start-up
an authentication (system authentication) needs to be performed. This au-
thentication on the machine level is not a substitute for authentication on the



application level. In combination with the access control described below it only
defines a set of reachable objects for the applications. Inside this set the appli-
cations can perform their own authorization based on their own authentication.
This gives the application the freedom to switch between different principals
while the thread is still running under the same principal. Nevertheless the
system authentication is still available as one of the possible authentications at
the application level.

The activated TM and the first thread are marked with a real principal
and an effective principal (similar to the user-ids of the Unix system), both
are initialized with the starting principal. New threads inherit their principals
from their parent thread. Since a thread can only execute functions owned by
its effective principal there is to this point no possibility of creating servers.
However, if a principal links an application as a server he has the opportunity
to mark some functions as secure. As a consequence the access rights at the
machine level for the machine operations executing these application functions
are modified to allow access for all principals.

This marking can be done by extending the TL syntax with a corresponding
keyword or through the use of higher-order functions which modify the kernel
access control information. It is the responsibility of the application developer
to mark only functions as secure which enforce the application level security
mechanisms.

Only the functions marked as secure can be executed by all principals. The
access rights of functions called by them remain unchanged, otherwise their
security checks can be circumvented. This requires a change of the effective
principal of the executing thread to the principal of the owner of the secure
function directly after entering this function. This is followed by the secu-
rity checks and eventually the function may be executed provided the security
checks are positive.

5.3 Object Store Level Security

Security mechanisms on the object store level require a store designed by the
client/server principle for realizing Tycoon kernel controlled store accesses. The
strict enforcement of this is in contrast to the Tycoon environment’s goal in
supporting flexibly different stores and can only be done by a substantial exten-
sion of the TSP. There exists at present no need to investigate this aspect since
Tycoon kernel controlled store accesses can be simulated by a thread, similarly
under Tycoon kernel control, which checks access control information attached
to the store objects at every access.

6 Securing Applications

The use of a Tycoon environment equipped with security mechanisms on the
application and machine levels allows the application developer to create secure
activities by using only the Tycoon security libraries. However, this forces him
to deal with the correct implementation of the application semantics and the
correct integration of the security model which leads to some disadvantages as
follows:



1. Integration of a security model requires for the most part the securing
of selected functions dedicated to the use by the intended clients. The
repetition of this task contains the danger of inconsistencies and raises
the possibility of programming errors.

2. Depending on the programming style of the developer it may be hard to
exchange the security relevant code which is caused by a radical change in
the security requirements. Also changes in the application semantics and
the resulting updates of the implementation may unintentionally lead to
modifications of the security relevant code. A special case is the intro-
duction of a security model to an existing insecure application.

Of course all security mechanisms whether they are built-in or add-on can
not guarantee security if they are used incorrectly. This can be avoided by
automatic generation of the security relevant code which can be done in two
alternative ways.

6.1 Generation by Higher-Order Functions

The capability of higher-order functions to take function values as parameters
and to return function values opens up their use as generators. They directly
fit the requirements securing a function by using a specific security model. In
this context securing is a function which takes the function to be secured and a
value representing the security model as input and returns the secured function
which can be used by clients. As a side effect the securing function can call
the functions necessary to set up the security mechanisms at the machine level
(see section 5.2).

The dependence from the security model requires that the securing functions
are part of the security model components and fixed in an interface. In the
implementation of the securing functions function values of the type of the
input functions have to be constructed. Inside the implementation the ariety
of these function values and the types of their parameters have to be known.
For this the signature of the securing function has to specify the input function
type up to their ariety and only the parameter types itself can be parameterized.
As consequence only securing functions for a fixed set of input function types
with respect to their ariety can be realized. Of course this is no real restriction
if this set is large enough.

6.2 Generation by Code-Generators

Generation using higher-order functions is completely done at the application
level and allows easy securing of single functions. But this does not really re-
flect the process of developing secure applications which consists of creating
components represented by interfaces where all functions should be secured.
As a result an interface containing only secured functions should be produced.
Although an interface in TL is simply a tuple type and its implementation
a tuple value this cannot be realized by generator functions because the gen-
erator function implementation has to be aware of the single tuple fields for
constructing the resulting tuple type. This knowledge consists of the name of



the field and the type of its value. In the case of being a function type the re-
strictions mentioned in section 6.1 for the securing functions apply. Again this
must be reflected in the signature of the generator functions thus disallowing
the parameterization of them with the tuple type.

This problem can be solved by generating the source code of the implemen-
tation for the secured components (the interface remains unchanged). As input
a code-generator function takes the interface to be secured and the interface of
the security model to be used. From this it generates the source code for the
secure interface and its implementation. The implementation primarily consists
of calls to the secure function of section 6.1.

7 Concluding Remarks

A major goal of the Tycoon persistent object system is the realization of an
add-on approach [MS93] to secure system construction. Security is expected to
be a key requirement of tomorrow’s information highways [YS93] and as such
will become the next orthogonal dimension to be integrated into Tycoon and
similar systems. This paper focuses on two aspects of security integration in
Tycoon resulting from the add-on approach.

At first add-on security requires a kernel security support to be built into
system environments. For this authentication and minimal access control infor-
mation is attached to the threads [MS94] executing the Tycoon applications in
varying distributed configurations. The task of this system security support is
to enforce security mechanisms defined independently on the application level
by Tycoon’s security libraries. For the development of these generic libraries,
the second aspect of add-on security, the full power of Tycoon’s higher-order
polymorphic language is available for example avoiding a type loss during en-
ciphering operations. Customizable and exchangeable security models can now
be added safely on application demands supported by Tycoon’s generating fa-
cilities.

While basic security mechanisms for authentication and authorization are
already available as higher-order polymorphic libraries in the current multi-
threaded version of the Tycoon system, future work will concentrate on the
development of high-level security abstractions. These include sophisticated
and flexible access control models, discretionary or mandatory, allowing the
definition and enforcement of uniform environment-wide security policies.
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