Florian M atthes

M obile Processes in Cooper ative I nformation Systems

Cooperative information systems can be understood as distributed systems where multiple
autonamous agents (possbly in dfferent organizational units) have to coordinate their long-term
adivities towards the fulfillment of a operative task [DDJ+97]. For example, within an
insurance enterprise the central contrad management division (using a mainframe information
system), a sales representative (using a laptop-based information system) and a cdl center (using
another switch management information system) could al be invaved in a single coperative,
long-term process, the mntrad negotiation with a particular customer.

In this paper we present an approad to the @nstruction d cooperative information systems
based onfirst-class persistent and mobhil e threads which communicate via structured Business
Conversations.

1. Background and rationale of thiswork

The main task of languages and middleware services for modern information systemsis to alow
system buil ders to abstrad from the detail s of

1. cooperation ower time: Agents and artifads shoud exist as long as required by the business
processes they suppat, independently of the underlying language and system concepts.

2. cooperation within space: Agents and artifads fioud be &le to migrate fredy within a
physicdly distributed environment, independently of the particular system platforms or
organizational structuresinvaved in the moperative work.

3. cooperation in multiple modalities: Artifads shoud be accesble uniformly for agents that
cooperate in dfferent modaliti es like simple overnight batch processng, orline transadion
processng, dired manipulation by human agents via form-based or graphicd user interfaces,
computer-suppated cooperative work by humans, computer-asgsted workflow management,
or automatic information rocessng by mobil e software aents.

Our reseach work in the field of persistent objed systems [Matt93] has focused onthe isaues (1)
and (2) by providing full persistence and mobility abstradion in the platform-independent
Tycoon system [MaSc94 MM S95h culminating in the development of persistent migrating
threads [MM S961 which can be used to implement software agents smilar to Telescript agents
[Math9q]. In [Matt97a] we introduced Business Conversations as a software model to address
the third issue, cooperation in multi ple modaliti es. In this paper, we put these two developments
into perspedive by describing the implementation o BusinessConversationin Tycoon.

2. Why distributed persistent objects are not enough
One can dstinguish roughly the foll owing three(complementary) views on information systems:

Data-centered modeling: Which data structures are maintained by the system? What are their
attributes and relationships? Which integrity constraints exist on these data structures?

Object-centered modeling: Which operations can be gplied to these data structures? What are
legal state transitions onthese objeds?

Activity-centered modeling: How does the system interad with its environment over time? Are
there subsystems with restricted communicaion links to cther subsystems? What are protocols
between subsystems? What is the long-term goal to be adieved by a sequence of communicaion
steps between subsystems?

These views give rise to three basic goproaches to adiieve @moperation ketween information
systems which we will discussin turn.

The moperation d multiple goplicaions based on dstributed and persistent business data, for
example, using relational database systems and remote database accss protocols leals to
client/server systems organized around centralized data servers, as exemplified by integrated
businessapplication systemslike SAP R/3, Baanh ar Orade Financials.

The promise of distributed oljed management is to arrive & more flexible, scdeale and
maintainable system architedures by buil ding cooperative information systems using distributed
and persistent business objects [OHE96]. A business objed encgpsulates business data and
acdhieves a higher degree of autonamy by restricting access to the business data through well -
defined methodinterfaces.

Distributed business objeds are a promising software structuring concept for rather tightly
integrated business applicaions, e.g. in-house desktop clients accesang corporate business
objed servers. However, we believe that it does not scde well for more alvanced patterns of
cooperative work involving truly autonamous profit centers within an arganization a involving
several departments of independent enterprises which are unlikely to agree on a cmmon
businessobjed model and a shared oljed infrastructure which may be expensive to maintain.

Ancther difficulty of this model is the fad that the interadion between businessobjeds and the
coordination d their behavior is hard-coded and dten distributed in a cmplex way over the
methods of multiple objeds. Thisis to be seen in contrast with the need for multi ple modaliti es
for cooperative work quaed in the introduction d this paper and the flexibility requirements
impased by businessprocessreengineaing [DDJ+97].

3. Why distributed persistent agents are not enough

Despite significant differences in detail, models for distributed agents view a moperative
system as being compased of largely autonamous agents, ead with a well -defined responsibility,
independent activity, private knowledge, memory and capabilities. Moreover, agents are
regarded as a unit of persistence and mobhility.

Agents provide asystem structuring concept appropriate for the decomposition d cooperative
systems into smaller subsystems resporsible for well-defined short-term or long-term tasks
(claims processng, order management, shopgang, information retrieval) which can be caried ou
either by a human o a software agent (demon, roba, script invocaion, etc.) at a single site or
invalving a migration from site to site. As a concrete example for agent programming, the
foll owing Tycoon code fragment creaes an autonamous col | ect Agent

| et collectAgent(self :thread. T(k)) : Ok = begin
| et csDeptDB = agent. nigrate(conputingScience)
| et addressesO Professors =
sel ect p.address fromp in csDeptDB. persons where p?professor
| et admin = agent.m grate(adm nistration)
adm n.insertAll (addressesO Prof essors)
end
t hread. fork(col | ect Agent)

Inside the body of the function, the parameter sel f is a hande for the thread that exeautes the
function (unused in this example). Thread migration is accomplished by cdls to the function
m grat e exported from the modue agent . It (atomicdly) copies the arrrent thread to the site
designated by its argument, kill s the aurrently exeauting thread and resumes thread exeaution at
the remote site, returning a binding to locd resources at the remote site, as defined by the type
dedared for that site [MM S950):

conputi ngSci ence : Site(Tuple persons :Persons ... end)
adm nistration :Site(Tuple insertAll (: Addresses):k ... end)

Abstrading from the (significant) differences in typing and reaming, this programming style is
very similar to the one used in Telescript [GM95a], Mole [Hoh9], Fadle [Kna95] or Obliq
[Card94.

Unfortunately, such a programming style does not scde well to cooperative information systems
since it inherits many of the deficiencies described in the previous fdion: the agent accesses
directly through methods (admi n.insert Al 1) or even through unpoteded database variables
(csDept DB. per sons) the state & the destination site, instead of interading on a pea-to-pea
basis with another agent.

To overcome these deficiencies, we @mncentrate on the externally observable behavior of agents,
namely their ability to sustain long-term, goal-direded conversations with ather agents which is
also an important medhanism to coordinate agents (Synchronization, delegation, replicaion, ..).
By forcing agents to interad through conwversations only, some disadvantages of dired objed
bindings can be avoided:

* Conwersations do nd impair agent autonamy. By exchanging well-defined daog content
with copy semantics only, no pivate objed bindings become avail able to the ommunicaion
partner. Therefore, it is not necessary to introduce new binding medhanisms like the ill -
defined concept of object references of Telescript which attempts to dstinguish oljeds
belonging to the dient and the server, respedively.

* Conwersations do nd restrict agent mohility since locd and remote aents are treded
uniformly. Therefore, it is possble for an agent to migrate between address paces while
sustaining persistent conversations, e.g. with its human owner.

» The aent system arealy provides a well-defined concurrent exeaution model. Contrary to
dired objed interadions, the mordination d multiple aents and conversations is
encgpsulated in the aent system layer and there is no recessty for applicaionlevel
synchronization in cases where shared resources are manipulated. The g@plicaion
programmer is thus diielded from much of the cmplexity that arises in highly concurrent
agent systems

* Conwersations are based on static process descriptions (conversation spedficaions) which
are first-class runtime objeds available to bah communicaion partners as on as a
conversation is initiated. This makes it possble to deted mismatches between the dient and
server view ealy. (e.g., "clams can only be settled after a cntrad has been signed.”).

4. The modédl of business conver sations

The leitmotiv of the Business Conwersation model are speet ads between customers and
performers [Wino87FGHW88 MWFFO2]. For example, an enterprise or a business unit is
viewed as an agent that isinvolved in a number of (long-term) businessconversations with ather
agents like austomers, supgiers or government agencies. Within eah o these cnwersations,

ead agent has afixed role (either customer or performer). For example, an insurance broker is a
performer for its customers and at the same time a aistomer for several insurance aencies.

Ead business conversation can be decompaosed into an ardered sequence of speed ads which
can be dasdgfied into four phases that occur in the foll owing sequence (see &so Figure 1).

* Request Phase: The astomer states the (busines§ goa to be adieved duing the
conversation. ("1 want to insure my ca").

* Negotiation Phase: A sequence of negotiation speet ads may be necessary to align the
speafic austomer neads and the avail able performer services. Only if bath partners agreeon
the common goa, a wmmit of the performer is readed which can be understood as a
promise &ou hisfuture adivity.

* Performance Phase: The performer reports on the progressof and/or the ammpletion d the
requested adivity to the austomer. ("Hereisyour insurance cad")

* Feedback Phase: This phase gives the aistomer the oppatunity to dedare its stisfadion
with the service provided and may comprise the obligation for payment.

Request Negotiation

Customer /»’\ Performer
Feedhack Performance

Figure 1: The four phases of a BusinessConversation

In the Business Conversation framework, customers and performers can be ether human or
software ayents which leads to an uriform treament of four modes of agent/agent cooperation:

* Application Linking: Customer and performer are redized as two autonamous applicaions
that synchronize via asynchronous message exchange.

* GUI Management: A human user interads with a software system. Lega interadion
patterns are described by the Business Conwversation spedficaion which are interpreted by a
software system cdl ed generic customer.

* Workflow Management: A software system (as a austomer) requests adions from a human
user whois guided by a software system cdl ed generic performer.

e Structured Message Handling: The moperative work of two human users can aso profit
from tod-suppated message handling ensuring the adherenceto pre-defined businessrules.

The modality may change dynamicdly during an orgoing conversation. For example, similar to
an automated telephore cdl center, standard requests could be handed by a software ajent
which transfers its conversation (i.e. a simple trace of past communicaion steps) to a human
performer as oonas more amplex or exceptional requests occur.

The speed ads (protocols) between customer and performer are constrained to be sequences of
structured dialogs and they have to adhere to explicit conversation specifications which are
esentialy nondeterministic automata where eat state is enriched with type information to
describe the admissble contents and requests in this particular dialog step.

5. Implementation of business conver sations

The system implementation consists of a paymorphicdly-typed framework written in the
Tycoon persistent and dstributed programming environment [MS5], exploiting mobile
persistent threads described in [MM S96h]. The framework comporents are replicaed at eat
agent-enabled network site and are therefore viewed as an ubiquitous infrastructure.

A conwersation spedficaionis a mntrad between two agents snceit constrains the behavior of
the performer and provides a promise to the aistomer. A conversation spedficaion can express
type onstraints (the structure of the documents snt and recaved) but also as gate-dependent
constraints on the wnwversation hstory (e.g., claims can ony be settled after a mntrad has been
signed and the first payment has been receved). A more software-oriented example is the state-
dependent spedficaionthat a astomer will never exeaute apop operation onan empty stad.

Tednicdly spe&ing, conversation spedficaions are typed, persistent and mobile objeds that
are aeded batom up wsing constructors of their respedive dasses, for example:
| et contract = Recor dCont ent Spec. new()
.add("nane" At om cCont ent Spec. new(String))
.add("first" Atom cContent Spec. newm String))
.add("birthday" Atom cContent Spec. new Date))
.add("met hod of paynent" Muiltipl eChoi ceSpec.new().add(...))
| et contractDi al og = Di al ogSpec. new(contract)
. addPossi bl eRequest (" Accept” confirmati onD al og)
. addPossi bl eRequest ("Rej ect” negoti ati onSubConv)
. addPossi bl eRequest ("Rej ect” noAgreenent Di al og)
| et carlnsuranceConversati onSpec = Conversati onSpec. new " carl nsurance")
.add("Wel cone" wel coneDi al og)
.add("Contract" contractDi al og)

We ae developing tods to generate a onversation spedficaion from a textual or graphicd
representation d the dialog gaph a to receve it from a remote aent, for example, a
conversation broker.

A conwersation spedfication (ca insurance) is a dictionary of named dalog spedficaions with a
distinguished initia dialog speaficaionwhich describes the initia state for both communicaion
partners. A dialog spedficaion can be ae ather a wncrete dialog spedficaion (contrad) or a
subconversation spedfication (negotiation oncontrad detail s).

A concrete dialog spedficaion consists of arecrd dalog content spedficaion and a (possbly
empty) set of request spedficaions avalable for this didog. A record daog content
spedficaion aggregates named content spedficaions (name, birthday, method d payment)
which in turn (and reaursively) can be ather atomic (integer, string, ..), record, variant,
sequence single choice and multiple doice ®ntent spedficaions. In this way, content
spedficaions define asimple monamorphic type system.

Once aBusiness Conversation spedficaion oljed has been creaed, performer and customer
agents which adhere to this edficaion can be defined by rules consisting of an event and a
pieceof code. This code typicdly triggers date transitions, initiates ndary conversations or
performs adions through effedors attached to the aent. The @de is parameterized by a
conversation descriptor which hdds conversation-spedfic data (identity of the conwersation
partner, contents and requests of al precaling diaog steps, etc.). This descriptor can be
expanded by agent-speafic data (invisble to aher agents) and gredly simplifies the
management of concurrent conversations with multiple austomers and performers, respedively.
On termination, the mde dtached to an event has to return an ojed that matches the cnstraints
expressd in the correspondng conversation spedfication which is then transferred bad to the
customer.

An agent can suppat multiple austomer and performer roles (e.g. performer for car insurance,
performer for freight insurance). For eath of these roles there eists a set of customer and
performer rules, respedively.

A peformer rule is defined for a particular request of a particular dialog spedficaion
(contract . accept, to beiswued by a an agent in a austomer role) and hes to return an oljed of
classdialog while a eistomer role is defined for a particular dialog speaficaion (e.g., cont r act,
to be generated by an agent in the performer role) and hes to return an oljed of class request
which has to be one of the requests admissble in this didog step (e.g., accept, reject,
expl ai n).

An adive onwersation links exadly one austomer role and ore performer role of an agent. It
aso implements exadly one mnversation speafication and aggregates an ordered list of history
elements which record the past dialog steps and requests of this conversation.

Customer and performer neither share data nor code or thread state. In particular, the
conversation spedficaion and the conwversation trace ae dudicated in the aldress paces of both
communicaion partners which ensures ahigh degreeof agent autonamy and mobhility.

We ae arrently working on aformalization d the refinement relationship between conversation
spedficaions (smilar to subtyping) and dan to investigate whether it is possble to buld astatic
type dedker that guarantees that a software aent generates (at run-time) only conversation
traces which conform to a given static conversation spedfication.

References

[Card94] Cardelli, L. Oblig: A Language with Distributed Scope. Technicd report, Digital Equipment Corporation, Systems Research Center,
Palo Alto, California, June 1994

[DDJ+97] De Michelis, Giorgio, Duboais, Eric, Jarke, Matthias, Matthes, Florian, Mylopoulos, John, Papazoglou, Mike, Pohl, Klaus, Schmidt,
Joachim, Woo, Carson, and Y u, Eric. Cooperative Information Systems: A Manifesto. In: Papazogou, Mike P. and Schlageter, Gunther (Eds.).
Cooperative Information System: Trends and Directions. Academic Press 1997

[FGHW8E] Flores, F., Graves, M., Hartfield, B., und Winograd, T. Computer Systems and the Design of Organizational Interaction. ACM
Transadions on Office Information Systems, 6(2), 1988 153172

[GM95a] General Magic's Telescript home page. http://www.genmagic.com/Telescript/, 1997.

[Hoh95 Hohl, Fritz. Konzeption eines einfachen Agentensystems und Implementation eines Prototyps. Diplomarbeit, Universitét Stuttgart,
Abteilung Verteilte Systeme, August 1995

[Kna95] Knabe, Frederick Colville. Language Support for Mobile Agents. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA 15213
October 1995

[MaSc94] Matthes, F. and Schmidt, JW. Persistent Threads. In: Proceedings of the Twentieth International Conference on Very Large Data
Bases, VLDB}, Santiago, Chile, September 1994 403414

[Math96 Mathiske, B. Mobility in Persistent Object Systems. Dissertation, Fachbereich Informatik, Universitdt Hamburg, Germany, May 1996
[Matt93] Matthes, F. Persistente Objektsysteme: Integrierte Datenbankentwickiung und Programmerstellung. Springer-Verlag, 1993

[Matt97a] Matthes, Forian. Business Conversations: A High-Level System Model for Agent Coordination. In: Procealings of the Sixth
International Workshop on Database Programming Languages, Estes Park, Colorado. Springer-Verlag, August 1997

[MMS95H Mathiske, B., Matthes, F., and Schmidt, JW. Scaling Database Languages to Higher-Order Distributed Programming.
Proceedings of the Fifth International Workshop on Database Programming Languages, Gubhio, Italy. Springer-Verlag, September 1995

[MM S96H Mathiske, B., Matthes, F., and Schmidt, JW. On Migrating Threads. Journal of Intelligent Information Systems, 1996

[MS®5] Matthes, F., Schroder, G., and Schmidt, JW. Tycoon: A Scalable and Interoperable Persistent System Environment. In: Atkinson,
M.P. (Ed.). Fully Integrated Data Environments, Springer-Verlag (to appear), 1997

[MWFF2] Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. The Action Workflow Approach to Workflow Management Technology.
In: Turner, J. undKraut, R. Proceadings of the Fourth Conference on Computer-Supported Cooperative Work. ACM Press 1992 281-288

[OHE9E€)] Orfali, Robert, Harkey, Dan, and Edwards, Jeri. The Essential Distributed Objects Survival Guide. John Wiley & Sons, 1996

[Wino87] Winograd, T.A. A Language/Action Perspective on the Design of Cooperative Work. Technicd Report No. STAN-CS-87-1158
Stanford University, May 1987.

Author:

Prof. Dr. Florian Matthes

Arbeitsbereich Softwaresysteme

Tedhnische Universitét Hamburg-Harburg

21071Hamburg

Tel.: 040/ 7718 3460QFax: 040/ 7718 2515E-Mail: f.matthes@tu-harburg.de

