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Abstract. Based on the notion of persistent threads in Tycoon [30], we investigate thread
migration as a programming construct for building activity-oriented distributed applications. We
first show how a straight-forward extension of a higher-order persistent language can be used to
define activities that span multiple (semi-) autonomous nodes in heterogeneous networks. In par-
ticular, we discuss the intricate binding issues that arise in systems where threads are first-class
language citizens that may access local and remote, mobile and immobile resources.

We also describe how our system model can be understood as a promising generalization of the
more static architecture of first-order and higher-order distributed object systems. Finally, we
give some insight into the implementation of persistent and migrating threads and we explain how
to represent bindings to ubiquitous resources present at each node visited by a migrating thread
on the network to avoid excessive communication or storage costs.
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1. Introduction and Rationale

Most of the work on migrating threads described in this article has been carried
out in the context of the European ESPRIT basic research project FIDE (fully
integrated data environments). The rationale behind the FIDE project is to improve
significantly the productivity in the process of building integrated, data-intensive
applications. The overall goal of FIDE is to develop a consistent and small set of
orthogonal language and system concepts to eliminate the historical mismatches
and overlaps between independently developed component technologies.

While the initial contribution of FIDE has been the development of persistence
and type system technology to overcome the mismatches between programming
language and database technology, the work described here addresses the overlaps
and mismatches between distributed programming, transaction management and
workflow management.

*  This work was supported in part by the Commission of the European Communities under grant

number ISC-CAN-080 CIS, Activity Modelling and Object Technology for Cooperative Information
Systems.



More specifically, we propose to generalize the well-understood programming con-
cept of threads [38] to also cover persistent and migrating threads which can be
used as primitive building blocks to implement long-term and distributed coopera-
tive activities. In a recent paper [30], we describe the notion of persistent threads
while this article reports on our work to migrate such persistent threads between
heterogeneous nodes in local or wide area networks.

The analogy with the concept of remote procedure calls may help to clarify the
rationale behind our work. Remote procedure calls and migrating threads both
demonstrate how to reduce successfully the complexity of distributed systems by a
generalization of a well-established non-distributed programming concept:

e Programmers do not need to learn a new programming abstraction.

e Local software architectures and libraries can be scaled easily to distributed
software architectures.

e Tools can be provided to optimize the mapping from high-level language ab-
stractions to low-level communication mechanisms.

e The generalized programming abstraction interacts well with other program-
ming language concepts like static typing, modularization and parameteriza-
tion.

Our work on migrating threads reveals a strong synergy between concepts, lan-
guage constructs and technologies which support persistence through time with
their counterparts to support distribution through space. This synergy will be-
come obvious in the rest of this article which is organized as follows.

First, we present migrating persistent threads as a generalization of conventional
thread concepts and motivate them as a valuable programming abstraction for the
implementation of long-term distributed activities. We then introduce a terminol-
ogy for data, code and thread bindings (Section 3) and basic thread operations as
well as related typing aspects (Section 4). This is the basis for a comparison of
alternative models for distributed programming in Section 5. These range from
a client-server oriented programming style via higher-order languages and object
migration approaches to migrating threads. In Section 6 we discuss the difficult
binding issues arising in the context of thread migration. Based on our classifica-
tion of thread resources we describe how to achieve adequate binding support for
standard programming situations. In Section 7 we give some insight in our imple-
mentation of migrating threads available uniformly on Unix, Windows and MacOS
platforms.

2. Thread Persistence and Mobility

A thread describes a single sequential flow of control in a program. Having multiple
threads in a program means that at any instant the program has multiple points
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Figure 1. Evaluation state and resources of a local volatile thread

Table 1. Thread-based implementations of cooperative activities

Cooperation Mode same time different time
(single session) (multiple sessions)
same location local volatile threads local persistent threads

(single address space)

different location migrating threads migrating persistent threads
(multiple address spaces)

of execution, one in each of its threads. Unlike operating system processes, mul-
tiple threads execute within a common address space, permitting multiple threads
to access shared resources (see Figure 1). Threads are also known as lightweight
processes [42], [34], [19] as they require significantly fewer resources (mostly time
and storage space) than operating system processes. This concerns in particular
creation and context switches.

Today, threads are a well-established and standardized [38] programming abstrac-
tion suitable for short-lived and non-distributed applications. For example, loosely
coupled high-level activities like text editing, spell checking, typesetting, and screen
refreshing can be mapped to separate concurrent threads that execute different code
against shared data. Moreover, there is a rich repertoire of explicit and implicit syn-
chronization mechanisms for thread coordination and communication (semaphores,
mutexes, condition variables, channels, message queues, rendezvous’, transactions).
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Figure 2. Implementing a distributed activity by thread migration

However, the traditional thread concept exhibits severe limitations for cooperative
work as required by data-intensive applications, as it covers only one segment of
the space vs. time matrix depicted in Figure 1:

e The lifetime of a thread is limited by its enclosing operating system process
(i.e., a thread is a volatile and not a persistent value).

e The location of a thread is limited by a single address space.

As described in [30], a generalization towards persistent threads makes it possible
to map also long-term activities (business processes or workflows) to threads. For
example, the handling of a customer request by a clerk in a service department can
be modeled by a thread that runs for several days or even weeks, thereby outlasting
multiple activations of the same program. In a type-complete persistent language,
persistent threads can be stored, for example, as attributes of database tables and
they can be manipulated by user-defined queries.

If one adopts an activity-oriented view of distributed applications, it is desirable
to be able to express distributed workflows directly by migrating threads that span
multiple network nodes and independent databases. For example, Figure 2 and
the associated Tycoon script in Figure 3 describe an expense report activity in
a company by means of a single thread. This thread migrates through different
departments (sites) and carries around information about its past history. Being
invoked by an employee, it is equipped with various bindings to mobile resources like
the attributes of the expense report and immobile resources like a project budget



databases maintained by the group manager. Passing through the secretary’s and
the group manager’s site, it eventually reaches the finance department where a
money transfer is initiated.

In a conventional system, activity persistence is implemented by writing the full
thread state to afile or a database. To continue an activity after a process restart, its
stored state has to be reloaded and a new thread has to be created in order to resume
code execution at the last instruction executed in the previous session. Similar
techniques have to be applied for activity migration. This “manual” approach
to thread persistence and migration fails for non-trivial long-term and distributed
activities due to the following technical difficulties:

e Bindings between variable names in the code (e.g., expenseReport, projectBud-
getDB in Figure 3) and their associated entities have to be reestablished. Such
thread bindings are discussed in more detail in Section 3.

e Depending on the power of the language at hand (loops, function calls, recur-
sion, exception handling, etc.) it may be very difficult to recreate a thread that
is in the correct execution state (program counter, evaluation stack, exception

handler).

e It is often necessary to transmit the state and code information of a thread sep-
arately and to apply ad-hoc dynamic code binding mechanisms at the receiver
side prior to thread restart.

In our Tycoon system and language, persistence and mobility is the default for
all data, code and thread entities. Only immobile and volatile resources require
special treatment by the programmer (see Section 6). This relieves the program-
mer from low-level thread implementation details and turns threads into a suitable
programming primitive for distributed, data-intensive applications.

3. Thread Bindings

In this section we introduce a terminology for the description of data, code and
thread bindings (c.f. [30]) that we use in the rest of this article to describe the
Tycoon thread semantics, to discuss selected thread implementation aspects and to
compare different models for distributed programming.

A binding is an association between a name and a computational entity from
a specific semantic domain [41], [32]. We also say that a name is bound to a
computational entity. An environment is a (possibly ordered) collection of bindings.
Names are used to identify entities in an environment. Different names can be
bound to the same entity (sharing, aliasing).

Entities can be atomic (like integers or booleans) or structured (like records,
objects or functions). Structured entities typically consist of environments. For
example, the fields of a record lead to bindings from field names to other entities.
Therefore, bindings can be used to model (recursive) relationships between entities.



migrate to Employee do
repeat
let data = getExpenseDataFromUser()
migrate to Secretary do
let expenseReport=compileReport(data)
end
until valid(expenseReport)
end
migrate to GroupManager with remote
projectBudgetDB :ProjectBudgetDB
do
update(projectBudgetDB, expenseReport.total)
end
migrate to FinanceDepartment do
transferMoney(expenseReport.total)
end

Figure 3. Tycoon script for a migrating thread (expense report)

Entities can be flat (like records) or nested (like functions in Algol-like languages).
In a nested entity, names bound in a global outer environment are automatically
visible in a local inner environment.

The binding of names to structured entities naturally leads to the concept of a
transitive closure of bindings that underlies many persistence and migration mod-
els: any entity reachable through a chain of bindings from a persistent (mobile)
entity becomes persistent (mobile), too. This approach which is also adopted in
Tycoon decouples the lifetime and mobility of an entity from its type (orthogonal
persistence [1], orthogonal mobility) and should be seen in contrast to systems and
languages where the programmer has to tag persistent and mobile objects explicitly
at creation-time. The latter systems provide a weaker notion of referential integrity
since bindings from persistent (mobile) to volatile (immobile) objects are replaced
at transaction-commit (migration-time) by bindings to a distinguished NIL entity
or they may even become undefined.

We distinguish three categories of structured entities:

Data describes the persistent state of an information system by a collection
of computational entities related through bindings. The structure (types) of the
entities and their bindings are described by types. For example, the database
schema of the projectBudgetDB at site GroupManager describes the signatures of
the local persistent bindings between project and account entities stored at that
site.

Code is a description of operation sequences that query and update volatile or
persistent entities and bindings. Code can be expressed by means of imperative or
declarative, high-level or low-level programs and scripts. For example, the impera-



tive script in Figure 3 is written at a rather high level of abstraction and involves
static bindings to further code entities (getExpenseDataFromUser, compileReport)
but also to mobile (data, expenseReport) and immobile (projectBudgetDB) data
entities.

Threads are representations of code in the process of being executed. A thread is
created by submitting a (non-parameterized) code fragment like the expense report
script in Figure 3 and (persistent) data to an evaluator. Multiple threads executing
the same code typically have different local bindings (expenseReport) but shared
global bindings (projectBudgetDB).

The semantics of the thread evaluator can be defined inductively by rules that
map thread states to thread states and that perform side-effects on data as described
in more detail in [30]. A thread state subsumes bindings to the code fragments cur-
rently being executed and a dynamic environment that records the current bindings
from names occurring in the code to local and global entities. In most imperative
programming and query language implementations, thread states are represented as
records that reference stacks of so-called “activation records”, one for each function
or query invocation (cf. Figure 1).

4. Thread Operations and Typing

Following Tycoon’s add-on approach to data modeling [28], [29], the migrate to
construct utilized in Figure 3 is not built into the core Tycoon system. Instead
of this, migrating threads are provided by a hierarchy of library abstractions and
Tycoon’s extensible grammar [5] is exploited to provide the necessary syntactic layer
to hide the underlying infrastructure from high-level workflow script programmers.

Tycoon’s core thread functionality is provided by a library module that exports
exactly the following exceptions, types and functions:

interface Thread export
(* — Types: *)
T(R <:0k) <:0k
State <:Ok
(* — Constants: *)
error, abortion :Exception
runningState, blockingState, suspendedState,
terminatedState, exceptionState :State
(* — Queries: *)
main() : T(Int)
self() :T(Ok)
running() :Array(T(Ok))
state(R <:0k thread :T(R)) :State
(* — Thread management: *)
new, fork, launch(R <:0k f(self :T(R)) :R) :Ok
duplicate(R <:0k thread :T(R)) :T(R)
suspend, run, abort, kill(R <:Ok thread :T(R)) :Ok



Jjoin(R <:0k thread :T(R)) :R
(* — Termination by exception: *)

throw(R <:Ok thread :T(R) exc():0Ok) :0k
catch(R<:Ok thread :T(R) handler(exc():0k):0k):Ok
joinCatch(R <:Ok thread :T(R)) :R
(* — Synchronization primitives: *)

atomic(R <:0k action() :R) :R

sleep(timeout :Real) :0Ok
end

In Tycoon, threads are typed first-class values that can be stored in variables,
passed as parameters, embedded into (persistent) data structures and transmitted
between network sites. For example, a variable of type thread. T(Person) can only
hold a thread that evaluates code which returns a value of type Person. Tycoon’s
polymorphic typing makes it possible to define both, generic functions that work
uniformly on threads with an arbitrary result type R (like new, fork or suspend),
as well as user-defined functions that depend on a specific thread result type.

A Tycoon thread executes a function which is specified as an argument of the
respective thread creation operation. For example, the following program fragment
creates a new thread t which immediately start the execution of the function fthat
returns an integer value. It is required that a “thread script” function like fexpects
a thread parameter of the appropriate type, T(Int) in this case. At runtime, the
thread.fork operation passes the newly created thread as an actual argument to the
function to support type-safe reflexive thread operations.

let f(self :thread. T(Int)) :Int = (* Thread-Skript *)
begin ...
thread kill(self) (* a reflexive operation on the current thread *)
4711
end
let t = thread.fork(f) (* Creation of a new thread that executes f. *)

More precisely, the abstract data type thread.T is a type operator parametrized by
the result type R of the thread function.

T(R <:0k) <:Ok

By virtue of Tycoon’s polymorphic type system, a thread result can be obtained in
a type-safe way. For example, ¢ is a value of type thread.T(Int) which implies that
the result of the thread.join function applied to ¢t returns an integer value.

let x :Int = thread.join(t)

At runtime, this statement blocks the execution of the current thread (thread.self)
until the evaluation result of the function fis available. Thereupon execution of the
waiting thread is resumed and the result of ¢ is bound to the variable x. Mismatches



between the type (here Int) required by the given expression context and the thread
result type are detected by the Tycoon compiler at compile-time

Without going into details, the functions throw and catch exploit the presence
of higher-order functions in Tycoon to unify asynchronous signal handling with
exception handling. For example, the function call thread.abort(otherThread)
raises the exception thread.abortion in otherThread. In addition to critical sections
(thread.atomic), several related modules export further synchronization primitives
(semaphores, mutexes and condition variables) not shown here but discussed in
detail in [37].

Building on these thread primitives, other Tycoon library modules add mech-
anisms to create a portable linear byte stream representation of a thread value,
to establish a stream connection between network sites, to address network sites
based on roles and logical identifiers, to atomically migrate running threads be-
tween network sites, etc. All these modules are loosely coupled and (by virtue of
polymorphic typing and structural dynamic type checking across sites) strongly
typed. This makes it possible to modify selected modules, for example, to ex-
periment with different addressing and coordination protocols between migrating
threads while ensuring a certain degree of overall system consistency.

5. Models for Distributed Activity-Oriented Systems

In this section we compare migrating threads with other programming models for
distributed applications like remote procedure calls and (higher-order) distributed
object management. We argue that in particular for activity-oriented tasks like
workflow management it is desirable to add threads as mobile resources to these
more traditional models. Our comparison is based on the uniform view of data,
code and thread bindings introduced in Section 3.

In the following we restrict ourselves to distribution models that scale to het-
erogeneous, federated and widely distributed environments. Therefore, we do not
discuss concurrent or database languages based on the notion of a single (persistent)
address space, like distributed databases, distributed virtual memory or distributed
persistent heaps, some of which already provide multi-threading capabilities. As
argued in more detail in [26], we believe that the autonomy and heterogeneity
requirements of larger-scale distributed systems are not addressed by these models.

5.1. Remote Procedure Call

Already in the introduction we quoted remote procedure calls as an example how to
successfully generalize a well-established local programming concept to a distributed
scenario. From a binding perspective, the core concept of RPCs are bindings from
local to remote code entities which can be maintained for the duration of a session.

Typically, an activity is implemented by one thread of control at a single client
side invoking subactivities at several server sites. A remote invocation either uses



10

a single thread at the server side which implicitly serializes requests from multiple
clients or it creates a fresh volatile thread for each incoming client request (multi-
threaded server).

The plain RPC model has the crucial disadvantage for activity-oriented pro-
gramming, that the code describing a long-term activity has to be fragmented,
distributed and installed statically at the relevant sites. Furthermore, with conven-
tional RPC mechanisms [6], [36] it is very circumstantial to transmit recursive data
structures.

5.2. Distributed Object Systems and Remote References

Distributed object management is viewed as a promising approach to build scalable
distributed systems that are also capable of integrating legacy (database) systems
by means of a unified object paradigm [24]. There are numerous proposals for
specific object models like DSOM of IBM [14], DOM of GTE [24], Network Ob-
jects of Modula-3 [2] and future versions of Microsoft’s OLE [31] and there are
several related standardization efforts like CORBA of the OMG [12] and the OSF
DCE/DME [36]. For a detailed feature analysis of these models see [35], [23].

From a binding perspective, distributed object models provide bindings to local
and remote objects which aggregate data and code. Compared with the RPC
model, the argument bindings for remote method invocation are generalized, since
it is not only possible to transmit values but also references to other (local or
remote) objects.

However, like in the RPC model there is no migration of behavior and object
types have to be installed statically. As sketched in Figure 4 it is necessary to split
activities into separate scripts stored as object methods at different sites. Moreover,
long-term and recoverable activities are difficult to implement in today’s distributed
object models.

Figure 4 shows how the expense report activity described in Section 2 can be im-
plemented by communicating distributed objects. Separate server objects describe
the services available through the secretary, the project manager and the finance
department. Activity control is centralized at the client (employee) site which is
also responsible for exception handling at all stages of script execution.

The availability of remote references minimizes the data transfer during activity
migration since each binding to a local entity at the originator site is replaced
transparently on transmission by a remote reference. A remote reference identifies
the originating address space and an entity local to it [18], [2], [4]. Subsequent
read, write or execute access to the entity at the remote site transparently invokes
a network communication with the originating site.

Conversion to remote references has clear, simple semantics since it preserves the
original sharing. On the other hand it causes data fragmentation across address
spaces, in particular it decreases the autonomy of migrating threads. Its usefulness
depends on high site availability and low network latency.
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Figure 4. Implementing a distributed activity by communicating objects

5.3. Higher-Order Languages

Higher-order languages do not make a distinction between code and data bind-
ings. In distributed higher-order languages like Obliq [4] it is therefore possible to
transmit code and data uniformly between network sites. For example, by passing
a function as an argument in an RPC, programmers can implement migration of
behavior directly, as required by activity-oriented applications.

Moreover, since function abstraction dynamically aggregates state bindings, func-
tion migration already exhibits a limited mechanism to transmit partial evaluation
states of activities across networks. For example, the Tycoon code in Figure 5 uti-
lizes four functions (stepl through step4) to encode the four evaluation states of the
expense report script as valid at migration time. As expected, activity migrations
are implemented by passing (the closures of) the above functions to higher-order
RPCs [26] that simply execute their argument at the respective remote site. Such
a remote execution engine can also establish bindings to resources available only at
the receiver side by passing them as actual arguments to the function. For example,
groupManagerSite.execute will execute step3d with the project BudgetDB as a local
argument.

Note that in this approach iteration has to be expressed by recursion.

As illustrated by Figure 6, the resulting scenario is very close to our thread
migration approach (see Figure 2). However, additional local thread functionality
is required to implement concurrent activities and activities can only be transmitted
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let rec stepl = fun() begin
let data = getExpenseDataFromUser()
let step2 = fun() begin
let expenseReport=compileReport(data)
if valid(expenseReport) then
let step3=fun(projectBudgetDB :ProjectBudgetDB)
begin
update(projectBudgetDB expenseReport.total)
let step4 = fun() begin
transferMoney(expenseReport.total)
end
financeDepartmentSite.execute(step4)
end
groupManagerSite.execute(step3)
else
employeeSite.execute(stepl)
end
end
secretarySite.execute(step2)
end
employeeSite.execute(stepl)

Figure 5. Encoding thread states with higher-order functions
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Figure 6. Emulating thread migration in a higher-order distributed language

in an execution state captured by an explicit function abstraction which destroys
the block structure of imperative programs.

5.4. Migrating Objects

While entities in many distributed object models are immobile (they never leave
their creation address space), some systems also support explicit object migration
(Emerald [16], [18], SOS [40]). If an object leaves an address space, some local
references are converted transparently into remote references. Conversely, if an
object enters an address space, some remote references may be converted back into
local references.

In addition to technical advantages (load balancing, reduced communication traf-
fic, simplified system reconfiguration) object mobility provides migration of behav-
ior and encapsulation of state as required for activity migration.

On the other hand, the state of a long-term activity represented by a migrating
object has to be encoded explicitly as a (structured) object attribute. In particu-
lar, conditional, iterative and recursive state transitions lead to complicated state
encodings. This explicit encoding should be seen in contrast to persistent threads
where the runtime support implicitly and efficiently maintains the state of the long-
term activity.
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5.5. Migrating Threads and Network Agents

If one is interested in building systems where a large number of loosely coupled ac-
tivities roams the network and makes heavy use of network resources, it is desirable
to avoid a cumbersome encoding of activities and to have persistent and migrating
first-class threads for straight-forward activity programming.

Such a complete unification of data, code and thread binding is achieved in Emer-
ald [16], [17], [18] and in Tycoon. Emerald makes heavy use of reference semantics
for these bindings. In particular, object state attributes and thread stack frames
tend to be fragmented across multiple network nodes. Therefore, the main focus of
Emerald is on applications in local area networks with high site availability and low
network latency. As discussed in Section 6, Tycoon provides a spectrum of binding
mechanisms to handle also other distribution scenarios, like autonomous network
agents on global electronic marketplaces, a vision sketched in [45], [44].

Clearly, migrating threads are not a replacement for todays established dis-
tributed programming mechanisms, but they constitute a valuable programming
abstraction that can be integrated smoothly into many distribution models.

6. Binding Techniques for Thread Resources

In this section we discuss the central issue in thread migration, namely how to
transmit a thread state which represents a set of transitive bindings to data, code
and other threads between address spaces. After a classification of thread resources
we present tailored binding mechanisms provided in Tycoon for local and remote
as well as for mobile and immobile resources.

6.1. Classification of Thread Resources

In order to determine appropriate binding mechanisms for resources that are in-
volved in the migration of a thread, we first classify these resources based on their
implementation technology:

Tycoon resources are all language entities (data, code, threads) which are defined
entirely in Tycoon libraries or application code and which are therefore managed
by the Tycoon runtime system.

External resources are conceptually pre-existing resources that are not under di-
rect control of the Tycoon runtime system. These resources include files, com-
munication channels, input or output devices, graphical elements (windows,
buttons, menus) or programs (mail tool, word processor). External resources
are created by external library code written in C or C++ which is available to
Tycoon programmers via typed language gateways. In Section 6.6 we sketch a
method that allows volatile external resources to “accompany” persistent and
migrating threads through time and space.
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In general, every atomic and structured Tycoon entity is persistent and mobile.
If a component binding of a structured Tycoon entity (tuple, array, function, thread,

..) refers to an external resource, its persistence and mobility has to be ensured
by explicit Tycoon code (see Section 6.6).

Some resources like platform-dependent software components or hardware devices
are inherently immobile. In addition it may be necessary to regard some resources
(for example, a huge database or a licensed piece of software) as immobile.

A further classification is based on the scope of resource definitions:

Local resources are defined in the inner lexical scope of a thread code definition and
they are allocated dynamically for each thread (e.g., data and expenseReport
in Figure 2).

Global resources are defined in the outer lexical scope of a thread code defini-
tion and they are potentially shared by multiple threads (e.g., the procedure
definitions in Figure 2).

The following important cases of distributed resources require special binding
methods:

Remote resources are available at a remote site only. For example, project Bud-
getDB in Figure 2 is available exclusively at the group manager’s site and re-
quires a dynamic binding on thread migration from the secretary’s site to the
group manager’s site.

Ubiquitous resources are available at all sites visited by a thread. Standard ex-
amples are the thread migration software itself (module thread in Section 4),
operating system functions and program libraries that serve rather general pur-
poses like GUI and network programming. Ubiquitous resources are usually
stateless but an application-specific notion of resource equivalence frequently
leads to a more general interpretation of ubiquity.

6.2. Shipping Mobile Resources

We explain the shipping of mobile resources using the following migrate to state-
ment taken from Figure 3:

let data = ...
migrate to Secretary do

let expenseReport = compileReport(data)
end

Assuming that the migrate to command is executed by a thread t running at site
Employee, the migration of ¢ is performed as follows. First, ¢ is suspended at site
Employee. Then, t is shipped to site Secretary. Finally, ¢ is resumed at site Sec-
retary. The notation migrate to ... do is realized by Tycoon’s extensible syntax
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[5] which translates directly into Tycoon library calls to perform these elementary
thread manipulation and data communication steps.

As explained in Section 3, the thread ¢ contains a continuation binding to the
code still to be executed. This code fragment (let expenseReport = compileRe-
port(data)) in turn is represented as a function closure with bindings to all its free
variables (compileReport and data). The free variables in the example above con-
stitute a local thread resource (data, a data entity) and a global thread resource
(compileReport, a code entity).

The basic semantics of thread shipping in Tycoon is a deep copy operation be-
tween address spaces. Therefore, the thread t at site Secretary contains direct local
bindings to all mobile resources transitively reachable from ¢.

User-defined bulk data structures like lists, trees, database tables, etc., and also
nested entities referring to code and threads are handled correctly by the Tycoon
system. Programmers have to be aware that deep copying does not preserve sharing
of mutable locations and may lead to high storage and communication costs.

In order to minimize the transitive referential closure of an entity, its represen-
tation must not include (indirect) references to entities which are irrelevant for its
further use. A counterexample is a linked-list representation of function closures
as found, for example, in Napier88 [33] where nested functions can unattendedly
capture indirect references to bulk structures, as for instance the persistent root of
the object store. This virtually prevents code and thread transmission and is also
a severe obstacle to garbage collections. To avoid these problems, Tycoon uses flat
function closures of minimal size determined by a static binding analysis during
code generation.

6.3. Working with Immobile Resources

There are two alternatives to handle immobile resources like the database project-
BudgetDB in Figure 3.

e Thread migration to the remote site (see Figure 2);

e Explicit communication with the remote site where the immobile resource is
located.

In Tycoon the latter can be achieved by a remote procedure call (RPC) facility
which is portable across different middleware architectures. As described in [26],
there are two Tycoon RPC implementations based on ONC-RPC (also known as
Sun-RPC) and BSD sockets respectively. A third implementation which utilizes
DCE as its communication medium is in preparation.

6.4. Dynamic Binding to Remote Resources

In a thread script, only the static bindings to local resources can be checked at
compile time against the local database schema. In a loosely coupled system where
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remote sites can perform schema updates between thread script compilation time
and thread migration time, it is necessary to perform dynamic bindings to remote
resources (e.g. projectBudgetDB in Figure 3). In order to locate a remote resource
within the destination address space, an ubiquitous name service like the network
object import mechanism in Modula-3 [2] or Obliq [4] can be used to identify
resources based on a string value. This requires a dynamic type check between the
actual resource type and the types used in script programming and bears the risk
that a type error is detected after migration only.

As an alternative, the types of the remote resources can be attached already to
the type specification of a remote migration engine. A migration engine is an RPC
server that accepts a thread, binds it dynamically to local site resources and then
resumes the thread. In Tycoon, a remote migration engine is typed based on the
signatures of its resources. Therefore, mismatches between remote types and the
types used in thread scripts are detected already at server binding time. Thus type
errors are limited to the departure site and can only happen once per connection.

Syntactically, the name and the type of each remote resource is listed in the with
remote clause of a migrate statement. The scope of these identifiers is restricted
to the block enclosed by the keywords do and end (see also Figure 3):

migrate to GroupManager with remote
projectBudgetDB :ProjectBudgetDB
do
update(projectBudgetDB, expenseReport.total)
end

To summarize, Tycoon thread scripts are fully statically type checked at their
originating site. Whenever two sites establish a network connection (which may lead
to a large number of thread migrations or RPC calls), the resource type definitions
of the two sites are verified to be (structurally) compatible.

6.5. Access to Ubiquitous Resources

Experience with non-trivial activity-oriented applications shows that in order to
avoid excessive communication or storage costs on thread migration, system support
is needed to handle bindings to ubiquitous resources present at each node visited
by a migrating thread on the network.

From the programmer’s viewpoint, it suffices to mark ubiquitous resources with
a call to the function register of the module ubiquitous.

ubiquitous.register(windowManager)
ubiquitous.register(list)
ubiquitous.register(database)

In the example above, the Tycoon modules windowManager, list (polymorphic
lists) and an application-specific module database are tagged as ubiquitous re-
sources. The argument of the register function can be an arbitrary Tycoon entity;
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Figure 7. Rebinding ubiquitous resources by means of dynamic linking

it is not constrained to coarse-grained module values. This is a generalization of
the limited dynamic linking capabilities of other distributed programming systems
(see e.g., Emerald [16], SOS [40], [39], FACILE [20] and Java [9]).

On transmission between address spaces, bindings to entities explicitly marked as
ubiquitous are replaced by symbolic references. At the receiver site, these symbolic
references are replaced by corresponding local bindings. In principle, a dynamic
type check has to be performed during this dynamic linking to ensure that the type
of the remote resource matches the type of the resource at the originator site. In
the Tycoon implementation, this expensive repeated operation can be avoided by
global identification mechanisms (for details, see [26]).

The dynamic linking of ubiquitous resources is most useful for immutable values
(code, literals, external bindings) replicated over the network. However, there are
also some situations where a migrating thread has to bind to mutable repositories at
multiple network sites. For example, a migrating thread might operate on multiple
databases, file systems or ftp servers or produce side-effects on multiple screens, fax
machines, etc. while roaming the network.

The following Tycoon code shows the definition of the function info in the module
statistics which is bound to the ubiquitous modules database and print.

modaule statistic import database print
export let info() = print.int(database.count())
end;

The left hand side of Figure 7 illustrates the bindings within the address space A
that contains the module statistics. If a thread that uses solely the function info
is transferred to another address space B, the deep copy operation stops at the
ubiquitous resources database and print.

6.6. Recreation of Volatile Resources

Volatile resources like window handles and bindings to C data structures outside of
the Tycoon persistent store can be registered with the module volatile in order to
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make them pseudo-persistent. Such volatiles are recreated automatically following
a system restart or a migration operation and they are destructed automatically
preceding shutdown, rollback or migration operations.

The order in which volatiles are registered is significant, because typically there
exist bindings from “younger” to “older” volatiles. If programmers register volatiles
in creation order, the automatic recreation operations follow the original creation
sequence and destruction happens in reverse order. A similar mechanism is em-
bodied in the SOS system, where resource dependencies are defined by naming
pre-requisite objects [40] which have to be recreated before their dependent objects.

Each Tycoon address space contains a global data structure referencing all volatiles
under the control of the module volatile. The elements of this data structure never
migrate; instead they are recreated automatically at the receiver site. Volatiles
interact with the Tycoon garbage collector through “weak references” [13].

7. Implementing Migrating Persistent Threads

The previous sections described migrating threads from an application program-
mer’s point of view. We now turn to implementation aspects of thread migration,
namely storage and data representation (Section 7.1), communication protocols
(Section 7.2) and transaction management (Section 7.3).

7.1. A Mobile and Persistent Thread State Representation

Figure 1 shows the most important constituents of the execution (evaluation) state
of a local, volatile thread. Such a thread is represented by a data structure that
captures the states of all relevant registers of the CPU. These registers, in particular
the stack pointer and the program counter, constitute transitive references to all
further components of the evaluation state. Occasionally, the transitive referential
closures of several threads overlap. In this simple way, local volatile threads can
share program resources of all kinds like code, variables, files and communication
channels.

From the programmer’s point of view, Tycoon threads behave just like normal
volatile threads in other programming languages. However, Tycoon thread repre-
sentations are integrated with the global transaction and persistence mechanisms
of Tycoon. Figure 8 illustrates the concrete representation of a Tycoon thread by
persistent store objects. The object in the upper left corner constitutes the actual
thread value (a handle). It contains the thread state, a reference to the thread stack
and the result. Whereas the former is a persistent entry, the latter are valid only in
certain thread states. In the following, the set of possible thread states state and
the respective transitions are explained (see Figure 9.

running: Expression evaluation takes place in this state. Each executing thread
has its own persistent stack object referenced by the field stack. The first slots
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of the stack object contain the abstract machine’s register values (IP ...CF)
and some extra administrative data. By storing these and the stack contents in
a single object, allocation and release of registers and stacks is simplified.

suspended: In this state a thread has been stopped explicitly by a call to
thread.suspend. This does not change its storage structure which also applies
to the state blocked.

blocking: A thread that waits for the result of another thread (due to a call to
thread.join) is blocked until the required value becomes available. A blocking
thread can also be suspended.

terminated: When a thread has completed the evaluation of its function, the
function result is stored in the field result and propagated to all threads that
have a pending thread.join on this thread. Then the reference to the stack is
removed. Thus, a terminated thread occupies only very little storage space, but
still provides its result to other threads that still have a reference to this thread
and may execute thread.join at a later point in time.

exception: This state is reached when a dynamic exception is raised during evalu-
ation that propagates through all active function frames of a thread and that is
not handled by a matching exception handler installed by a try end block. The
exception package is stored in the field result and is propagated to all threads
that execute thread.join on this thread. The field stack is treated as described
for the state terminated.

The evaluation of a Tycoon thread does not use the persistent representation
of its registers directly to avoid expensive persistent store accesses in the virtual
machine. Instead of this, there is also a volatile representation for all frequently
used thread components such as registers and thread stacks which are mapped
to main memory by a special object store operation tsp_openReadWriteLock [27].
Volatile and persistent thread representations are synchronized prior to the follow-
ing events: thread state transition, global garbage collection, transaction commit
and transaction restart.

In case of a global transaction commit, all threads in a running state are captured
in a global list which constitutes the root of the persistent object store. This design
decision leads to a simple and clean storage management strategy:

e All objects (in particular passive threads) that are transitively reachable by an
active thread are recognized by the garbage collection as being “alive” and are
stored persistently.

e All other objects are garbage collected since there is no further activity that
can access them directly or indirectly.

We have designed the thread representation carefully to reduce references between
threads to a minimum. This is not only necessary to avoid persistent storage leaks,
but also to preserve the autonomy of threads which is important for their mobility.
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7.2. Typed Thread Migration Gates

In this section we describe how we implement migration of threads using local thread
manipulation operations and on top of a standard RPC communication layer.

A simple “passive” thread migration takes place when a thread is passed as a
direct or indirect RPC-argument by another active thread. Workflows and agents
typically require an ”active” thread migration since they initiate their migration
themselves. This requires some non-trivial implementation steps, because the trans-
mission of a migrating thread cannot be controlled completely by itself since it is
necessary to distinguish two evaluation states: the state of the thread to be shipped
and resumed at the receiver site as well as the state of the thread that controls the
communication steps. Moreover type-safe bindings to local resources at the receiver
site require special arrangements.

The module gate implements active thread migration. Since this module is im-
plemented completely in Tycoon, is is possible to describe active thread migration
in the remainder of this subsection at a high level of abstraction by explaining the
Tycoon source code, line by line. The module gate is based on Tycoon’s type-safe
and type-complete RPC-mechanism which is described in [26] and [25].

First of all, the module gate defines a type operator Parameter(Data) which is
parametrized by the type Data of resources which will be bound dynamically at
the receiver site.

Let Parameter(Data <:Ok) = Tuple
var data :optional. T(Data)
agent :thread. T(Ok)

end

The implementation of this type operator is a tuple that aggregates the migrating
thread with a placeholder for the resources that will be supplied in the target store.

The main type of the module (called gate.T) are remote gates to which threads
can migrate in order to enter remote object stores:

Let T(Data <:0k) <:Service = Tuple
transfer(parameter :Parameter(Data)) :Ok
end

A value of type gate.T(Data) is an RPC service which provides a single function.
This function (transfer) is invoked by gate.migrateTo to transmit packages of the
matching type Parameter(Data).

A typical application of gate.migrateTo looks as follows:

let groupManagerSite = client.bind(... :T(ProjectBudgetDB))

let projectBudgetDB = gate.migrate To(groupManagerSite)
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First, the remote gate groupManagerSite is made accessible to the current thread
by means of an RPC client binding. When the thread “passes” this gate with the
migrate’To operation, a value that is determined by the respective RPC service is
returned and enters the scope of the thread function which is now being executed
at the remote site.

The type-safe implementation of gate.migrateTo looks as follows:

let migrateTo(Data <:Ok gate :T(Data)) :Data =
begin
let parameter = tuple
let var data = optional.nil(:Data)
let agent = thread.self()
end
thread.launch(fun(self :thread. T(Ok))
begin
gate.transfer(parameter)
thread kill(parameter.agent)
end)
optional.value(parameter.data)
end

First, a package is created which aggregates the current thread and a null value
(placeholder) of type Data which will be updated by another function at the receiver
site. Second, a fresh thread is launched that carries out the migration operations
on the now ”passive” thread parameter.agent. Finally, the value stored in the field
parameter.date is returned to the caller (which is now being executed at the remote
site).

The transmission of the package parameter is executed by a short-lived local
helper thread which is created (and started) by the thread primitive thread.launch.
The latter acts like thread.fork, but atomically also suspends the calling thread.
The local helper thread executes the anonymous function that begins with the
keyword fun. First, it calls the RPC gate.transfer which transmits the package.
Then it kills the local representation of the already migrated thread. After this, the
helper thread terminates and as there are no references to it, the garbage collection
will release its resources.

The statement optional.value(parameter.data) which yields the function result of
migrateTo is executed by a copy of the migrated thread on the recipient site. This
results from the implementation of the RPC service which constitutes the migration
gate.

At the server site, the function gate.new creates a migration gate and registers it
dynamically as an RPC service.

let new(dispatcher :server. T ... data() :Data) :sid. T(T(Data)) =
begin
let gate = tuple
let transfer(parameter :Parameter(Data)) =
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begin
parameter.data := optional.new(data())
thread.run(parameter.agent)
end
end
server.register(dispatcher ... gate)
end

The parameter dispatcher and further parameters not shown here are simply passed
on to the function server.register which registers a service gate at the dispatcher.
The type Data indirectly determines the type (T(Data)) of the RPC service gate
which is constructed dynamically by the first binding in the function. The function
transfer offered by the RPC service gate takes a parameter of type Parameter(Data)
that matches the packets generated by the migrateTo function described above.

Note that access to the function data stems from a dynamic binding, i.e. pa-
rameter passing. This dynamic binding and the assignment to parameter.data
implement the transfer of a local value into the scope of a migrating thread in a
type-safe way. Moreover, it should be noted that Tycoon provides higher-order
functions such that the parameterless function data can provide arbitrary objects
from within the whole object store.

The examples in this subsection also demonstrate that Tycoon’s polymorphic
type system is sufficiently expressive to describe the migration of threads with
strongly-typed bindings to remote resources without resorting to low-level, type-
unsafe language primitives.

7.3. Transactional Thread Migrations

The preferred application domain for migrating threads is a loosely coupled envi-
ronment with highly autonomous subsystems. In such an environment, consistency
maintenance is limited to local data stores only. If integrity constraints do not span
multiple systems, there is no need for large spheres of control [11] which have to
protect concurrent distributed activities against unwanted interference.

Migrating activities that are implemented by threads should refrain, as far as
possible, from complicating these simple conditions. Therefore we advocate binding
techniques that support the autonomy of migrating threads and in consequence the
autonomy of visited sites. The problematic nature of distributed transactions is
avoided wherever possible.

On the other hand, a thread migration itself may lead to concurrency-control
and recovery problems. In particular, the departure and the destination site should
establish a consistent view of the outcome of each migration step. Otherwise, a
thread instance could be duplicated or be lost. As a consequence, a migration
should be performed as a distributed transaction. For this purpose, the well-known
two-phase commit technique [10], [22], [21], [15] is sufficient.
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During migration, the client of a gate takes the role of a transaction coordinator
and of a transaction participant. The gate server acts as a participant only.

It is important to suspend the reactivation of the migrating thread until the
transaction is completed. Otherwise, it could happen that some actions must be
undone in case of a transaction failure.

Besides the departure and the destination site of a migrating thread there can
be more sites that are indirectly affected by the transaction, because the migration
itself might be an application-relevant information. For example, it might be inter-
esting for a manager to know at which site a certain workflow is situated or a user
might want to know how far in physical terms an agent has already traveled. As
Tycoon does neither restrict distributed programming to agent style (like Telescript
[8]) nor to a pure client/server style, there may also be “tethered agents” that are
more or less under remote control by a third-party site while they are roaming the
network. It is straight-forward to extend the simple migration transaction scheme
by a set of further 2PC participants to suit such scenarios.

8. Conclusion

We propose to enrich today’s distributed programming models with higher-order
concepts like first-class persistent and migrating threads and functions to provide
better support for long-lived distributed activities like process modeling [7], work-
flow management and network agent programming [45], [44], [43].

At the system level, thread migration can be supported uniformly by techniques
that are well-established in the persistent programming language world: stream
representations of tagged object-graphs, portable code formats, function closures
and polymorphic structural type checking. However, our experience with non-trivial
activity-oriented applications shows that in order to avoid excessive communication
or storage costs, additional system and language support has to be provided to
support bindings to remote and ubiquitous resources.

More work is required to scale thread synchronization and coordination to a
distributed, persistent scenario and to investigate the relationship between threads
and transactions [3].
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