Arbeitsbereich DBIS

Prof. Dr. Joachim W. Schmidt
Fachbereich Informatik
Universitat Hamburg
Vogt-Kolln-Strafie 30
D-22527 Hamburg (FRQG)

Title:

Author:

Identification:

Status:

Date:

Description:

Related Documents:

Tycoon

The Tycoon System
and Library Manual

Bernd Mathiske
Florian Matthes
Sven MuBig

DBIS Tycoon Report 101-96
Revised for system version TL (t10-dyn 2.0)

January 1996

This document provides a practical introduction to the interactive
Tycoon system environment and an overview of its polymorphic
libraries. It explains how to bind external C libraries to Tycoon
programs and how to work with persistent stores. Moreover, it
proposes formatting und naming guidelines for Tycoon programs.

Definition of the Tycoon Language TL:

A Preliminary Report [MS92]

Persistent Object Systems [Mat93]

Online documentation shipped with the Tycoon system software
(Unix, MacOS, Windows)

Tycoon WWW home page [Tyc92]

Contents
1 Introduction

2 The Interactive Tycoon Development Environment
2.1 Components of the Tycoon System
2.2 Entering Top Level Phrases
2.3 Understanding Compile-Time Error Messages
2.4 Understanding Run-Time Error Messages
2.5 Using Modules and Libraries

3 Layout and Naming Conventions
3.1 Spelling o oo
3.2 Punctuation
3.3 Indentation
3.4 Comments,
35 Namingo

3.6 Indentation Examples
4 Overview of the Tycoon Libraries
5 Resolving Cyclic Import Relationships

6 Using Dynamic Types
6.1 Motivation
6.2 The Initial Proposal for Dynamic Typing
6.3 The New Approach to Dynamic Typing

6.4 Current Restrictions

7 Programming with External C Libraries
7.1 Function Calls from Tycoon to External C Libraries

7.2 Function Calls from External C Libraries to Tycoon

N NV VL

© © o oo

13

14

15
15
15
16
18

1 Introduction

! is a polymorphic persistent programming environment for the development

Tycoon
of data-intensive applications in open environments. The Tycoon system emphasizes
system scalability and interoperability with commercial servers like Ingres, Oracle,
ObjectStore, 02, Inquery, SAP R/3, NeWS, StarView, C and C++ libraries, Sun-
RPC, DCE-RPC and Kerberos. Flexible and safe interoperation between these servers

in heterogeneous distributed environments is supported by

e an elaborate higher-order type system (precise and generic service definitions),

e orthogonal persistence (longevity for objects of arbitrary complexity and size),
and

e orthogonal mobility (unrestricted migration of data, code and threads between
multiple system platforms).

Tycoon is a long-term research project at DBIS, Hamburg University that started in
1992. Tycoon is the most recent member of the family of database programming lan-
guages and multi-user database systems developed by our group since 1978 (Pascal/R,

Modula-R, DBPL).

The Tycoon programming language TL is described in several publications [MMS94,
MS94, Mat95, MSW95, MMS95a, MMS95b] and in a formal language report [MS92].
This text complements these publications and provides guidance for programmers
during their first steps with the Tycoon system and also some practical programming
hints for advanced Tycoon programmers.

2 The Interactive Tycoon Development Environment

TL is implemented as an interactive compiler. This means that the system behaves
very much like an interpreter. The user inputs a phrase in order to evaluate a term
and the system produces a reply. In between, the term is parsed, type-checked,
translated into portable Tycoon machine code and linked with other TL values or
external machine code.

Larger TL programs are typically divided into modules, interfaces and libraries that
are compiled separately, then linked and executed. Larger fragments of TL source
code are usually stored in text files. However, there is no distinction between input
read from files or interactively from a terminal. In particular, it is possible to enter
modules, interfaces and libraries interactively and to read expressions and commands
from files.

The level of interaction at which the user enters a phrase and receives an answer is
called the top level interface of the system. The details of the top level user inter-
face depend on the host operating system (Unix, Windows, MacOS, Linux, ...) and
are described in the online documentation that is shipped with the Tycoon system
software.

2.1 Components of the Tycoon System

The Tycoon system consists of two parts:

e The Tycoon store contains program code, persistent data and persistent threads
(descriptions of programs in the process of being executed) in a platform-neutral
format;

ITycoon: Typed communicating objects in open environments.

e The platform-specific Tycoon application is responsible for multi-threaded pro-
gram execution, persistent store management and for host operating system ac-
cess (MacOS, Windows, Unix, Linux,...). The online documentation describes
how to invoke the Tycoon application with a given Tycoon store.

The evaluation of expressions and the linking of programs takes place in a persistent
store. Bindings established in one Tycoon session can be made accessible for later
Tycoon sessions. Furthermore, the persistent store is shared. Multiple TL application
programs can have access to a linked module. Assignments to shared variables defined
in such a module are visible to all importers of that module.

A Tycoon store contains a set of linked modules and interfaces as well as value and
type bindings entered at the top level. Within a persistent store there is a single name
space for modules, interfaces and libraries. However, every user can set up a private
name space for top level bindings. This name space is called a top level.

During (interactive) program development, a Tycoon store also contains the Tycoon
compiler, linker and library manager which are loaded from a precompiled boot file
whenever a fresh store is created.

2.2 Entering Top Level Phrases
The Tycoon top level interface prompt looks as follows:
| >

Once at the top level, top level phrases can be entered, for example to bind a value
to a variable:

let peter = tuple ”Peter” 5000 end;
= tuple ”Peter” 5000 end :Tuple ? :String 7 :Int end

The system displays the value computed for the last binding and its (inferred) type.
Note that all input at the top level interface has to be terminated by a semicolon. If
the semicolon is omitted, the Tycoon system prompts for further input by:

It is also possible to bind types to variables:

Let Person = Tuple name :String salary :Int end;
= :Tuple name :String salary :Int end

A function binding is entered as follows:

let rich(p :Person) :Bool = p.salary > 4000;
= fun(p :Person) :Bool <hidden> :Fun(p :Person) :Bool

Variables introduced in bindings can be used in subsequent bindings:

rich(peter);
= true :Bool

A top level phrase that starts with the keyword do is not parsed and executed as a
TL compilation unit but as a top level command. The top level commands control
various aspects of the Tycoon system components.

do help;

The latter command prints a list with the syntax and the description of all available
top level commands.

Sequences of Tycoon top level phrases can be stored in files that by convention have
the extension .tyc. Assuming that the file Test.tyc contains the phrases above, the
command

do 7Test.tyc”;
= (Including input from ’Test.tyc’)

reads and immediately executes the phrases. Nested include files are admissible.
Files or pipes of top-level commands are a primitive mechanism to access the Tycoon
system from other programs. However, their use in normal program development is
discouraged.

2.3 Understanding Compile-Time Error Messages
All compile-time error messages start with a source position. For example:
stdenv/string.tm:66.13 Syntax error: expecting ’then’, found ”end”

indicates that a syntax error was found on the symbol end that starts in column 13
of line 66 in the source file stdenv/string.tm where the symbol then was expected.

Each individual top level input terminated with a semicolon is viewed as an anony-
mous, numbered source file. For example:

a end
= #15:1.3 Syntax error: expecting <end-of-input>, found ”"end”

indicates a syntax error in colum 3 of line 1 of the top level input number 15.

Some effort has been devoted to the generation of informative type error messages:

Let Address = Tuple street :String end

Let Person = Tuple name :String age :Int address :Address end

let f(x :Person) = ok

let address = tuple let street = 3 end

f(tuple ”Peter” 40 address end);

#25:6.2 Argument type mismatch:’_builtin.String’ expected, ’_builtin.Int’ found
#25:5.25 [while checking tuple field ’street’]

#25:6.20 [while checking tuple field ’address’]

#25:6.3 [while checking function argument x’]

In the example above, a type error occurs because the type Int of the address.street
attribute of the argument passed to the function f does not match the type String
specified for the address.street field of the variable x in the signature of the function.

The first line of a type error message prints the error context (Argument type mis-
match) followed by a description of the type expected by the type checker (_builtin.-
String is the type defined for the street field in type Address). The next line prints the
offending type found in the program (_builtin.Int is the type inferred by the compiler
for the number 3).

If a type mismatch occurs inside a composite type expression, further error messages
in square brackets give a traceback that help to localize the error. Source position
specifications preceding the square brackets refer to the declaration point of the re-
spective subexpression. In the example above, the error occurs while checking the

field x.address.street and the faulty binding let street = 3 is found in line 5, column

25.

In a long error listing it is a good idea to look at the non-bracketed error messages
first and to consult the type error traceback only if needed.

In addition to syntax and type errors, the Tycoon compiler also flags lexical errors.
Beginners sometimes find it difficult to localize these errors. For example, if a piece
of input contains a string constant that is not properly delimited by a closing ”, the
compiler flags a large number of lexical errors since it assumes that the string extends
upto the end of the input and since it encounters several line breaks which are not
allowed inside string constants:

Lexical error: illegal character in source file

A similar problem occurs if a closing comment bracket *) is omitted since the compiler
will continue to prompt the user at the top level for additional input until a closing
comment bracket is entered. A standard solution to recognize such situations is to
enter ”3;” several times at the top level and to check which output is produced by
the compiler.

2.4 Understanding Run-Time Error Messages

By virtue of Tycoon’s static type system, many run-time errors of other languages
like message not understood, nil dereference error or dynamic type test error can be
avoided. Other run-time errors like division by zero error or array index out of bounds
error are mapped to Tycoon exceptions with typed arguments that can be handled
selectively with try expressions.

Unhandled exceptions that propagate to the Tycoon top level are displayed by the
Tycoon compiler and their arguments are printed in a raw data format, for example:

let a = array ”1” 72”7 ”3” end
a[400];
= *#* Exception: {”indexOutOfBoundsError” 2 2 7#9” {”17 727 73"} 400}

The signatures of all language-defined exceptions are defined in the file boot.tyc.
Each of these exceptions provides also the detailed source code position of the faulty
expression as an explicit argument which can be inspected with a try expression, for
example:?

try
let a = array 71”7 72”7 73” end
a[400]

when indexOutOfBoundsError with exc then
”cannot access index ¥ <> fmt.int(exc.index) <>
” in line 7 <> fmt.int(exc.line) <>
7 of source file 7 <> exc.where

end

= ”cannot access index 400 in line 5...” :String

2.5 Using Modules and Libraries

Much of Tycoon’s functionality (data types like String, Date or Time, file input and
output, bulk data management, etc.) are factored-out into library modules that can

2The identifier fmt denotes a standard formatting module that can be imported with the command
import fmt.

be imported into applications as needed. This section describes how to work with
modules and interfaces.

2.5.1 Syntax for Interfaces and Modules

An interface defines signatures for values and types exported by a module. Modules
that match the following interface (Counter) export an abstract type T and operations
on values of this type:

interface Counter
export
T <:0k
new(init :Int) :T
dec(counter :T) :Ok
isZero(counter :T) :Bool
end;

A possible implementation of this interface is the following module counter:

module counter
import int
export
Let T = Tuple var value :Int end
let new(init :Int) = tuple let var value = init end
let dec(counter :T) = counter.value := counter.value — 1
let isZero(counter :T) = counter.value == 0
end;

In Tycoon, there can be multiple modules implementing the same interface.

2.5.2 Libraries and Import Relationships

Modules and interfaces can import other modules and interfaces by listing their names
in an import clause. The name space for modules and interfaces is defined by a root
library. A root library lists the names of all components that make up a persistent
object system. There are three kinds of library component declarations:

Component Description
library stdenv a (nested) library named stdenv
interface Counter an interface named Counter

module counter :Counter | a module named counter implementing
interface Counter

Since the module int imported by counter is defined in the Tycoon standard library
stdenv, a root library declaration for the example above has to include the name of
the standard library:

library Root
with
library stdenv
interface Counter
module counter :Counter
end;

The declaration order of library components is significant since types and values
exported from a library component can be imported only into components that follow
its declaration.

For example, the library definition for stdenv has the following form:

library stdenv
with
interface RuntimeCore
module runtimeCore :RuntimeCore

hide RuntimeCore runtimeCore
end;

A library exports all its locally declared components excluding those interfaces and
modules listed explicitly in the hide clause.

2.5.3 Compiling a Library

The first step in developing a modular application is to write and compile its root
library definition. By convention, library definitions are stored in files with the suffix
.tl. Compiled library definitions are consulted by the compiler during the compilation
of modules, interfaces and other library definitions to validate inter-module scoping
constraints and to locate compiled components. Library definitions have to be com-
piled inside out. For example, the library definition of stdenv has to be compiled
before compilation of the library definition Root.

By default, compiled library definitions, interfaces and modules are stored as binary
files in the file system (and cached in the object store). The components of separate
libraries are stored in separate directories. The name of the directory is derived from
the name of its enclosing library.

The command do makeLibraries automatically reads and (re-)compiles library defini-
tions reachable from the current root library. It inspects the file modification date of
library source files to determine which library definitions require recompilation. The
name of the current root library can be changed with the command do setRootLibrary
L or by the command do makeLibraries L.

2.5.4 Compiling Interfaces and Modules

Interface and module definitions are stored in files with the suffix .ti and .tm, respecti-
vely. Imported interfaces and the interfaces of imported modules have to be compiled
before the importing module or interface can be compiled. In the example above, the
interface IntOp for the module int has to be compiled before the module counter can
be compiled.

The command do makeComponent x automatically reads and (re-)compiles the com-
ponent x and all its transitively imported interfaces that are out of date. The com-
mand do make x automatically reads and (re-)compiles the component x and all its
transitively imported interfaces and modules that are out of date. There are other
do commands to control separate compilation and module linkage, Use the command
do help to find out more about thiese commands.

The compiler assigns time stamps to compiled interfaces to validate that all compo-
nents of a system have been compiled with a consistent set of interfaces. Version
conflicts are reported by printing the conflicting time stamps valid at compilation
and import-time. For example, if the interface Counter has been recompiled without
recompiling the dependent module counter, the following error message is printed:

17.18 ’counter’ was compiled with version 8535d 22h 46m 23.361s

of interface ’Counter’

17.18 [Current version of *Counter’ is 8536d 2h 50m 9.15s]

The command do link x reads the compiled modules that are imported transitively
by x into the object store (if they are not cached) and then executes their module
bodies. If a module y is imported by another module x then the module body of y
is executed before the module body of x. Linking aborts as soon as the execution of
a module body raises an unhandled exception. The module bodies of modules that
are already linked are not re-executed. This makes it possible to share (persistent)
variables between multiple applications.

The command do unlink x marks the module x as unlinked. A subsequent import
operations on x (or on another module y importing x) returns a fresh instance of x
by re-executing its module code. Unlinking is performed automatically as soon as a
module is recompiled.

2.5.5 Using Modules and Interfaces at the Top Level

The do link command is sufficient for main programs that do not export any bindings.
To get access to exported bindings and signatures it is also possible to import module
and interface identifiers into the top level:

import counter;
= (’:Counter’ defined)
(’counter’ defined)

This command links the module counter and imports its identifier counter into the
top level. Notice that also the name of its interface Counter is made accessible. More
precisely, the import of a module forces the import of all modules and interfaces
transitively imported by its interface. This import is necessary to type-check further
access to the module value via top-level commands.

The import of an interface X with export signatures S is equivalent to the declara-
tion Let X = Tuple S end. The import of a module x with interface X defines a
value binding with signature x :X. Therefore, access to exported module components
requires qualification by the module identifier:

let ¢ = counter.new(2);
counter.dec(c);
counter.dec(c);
counter.isZero(c);

= true :Bool

A open expression can be used to access module components without qualification.

import counter;

open counter;

let ¢ = new(2) dec(c) dec(c) isZero(c);
= true :Bool

The disadvantage of open is that the top level will be polluted with names that may
hide other bindings.

2.5.6 Organizing Source and Object Files

In order to support the exchange of compiled library definitions, interfaces and (un-
linked) module code between autonomous object stores, all information derived during
compilation of a library component is also stored outside the persistent object store

in operating system files. The following naming conventions are imposed by the com-
piler. The base directories librarySourceDir, and libraryObjectDir can be defined via
do set commands.

Directory Files | Contents

librarySourceDir/L/ | L.t source code for library definition L
X.ti source code for interface X in library L
x.tm source code for module x in library L

libraryObjectDir/L/ | L.tl.x | compiled library definition for library L
X.ti.x | compiled interface X in library L
x.tm.x | compiled module x in library L (portable)

3 Layout and Naming Conventions

3.1 Spelling

3.2 Punctuation

Common formatting conventions are worth a lot, especially when several people work
together on large projects. In addition to the communication inefficiencies caused by
differing conventions, newcomers to a programming language often spend a significant
amount of time incrementally developing and retrofitting their own style, usually re-
learning what turn out to be simple lessons that others have already learned. While
this is not always wasteful, it is clearly worthwhile to have a good set of guidelines at
hand, if only for reference. Also adherence to common conventions makes automatic
formatting tools easier to provide and more useful [RLW85].

This section offers a complete set of conventions for formatting TL modules and inter-
faces. Such conventions address indentation, capitalization, punctuation, comments,
etc. The following points of style produce a visually pleasing program. Consistently
applied, they also provide syntactic cues to semantics that make a program easier to
read.

Furthermore, a subsection presents naming conventions for TL programs. To simplify
the usage of the TL libraries it is necessary to standardize the names of value, type,
function and exception identifiers.

Identifiers that name values (e.g. variables, functions, modules and exceptions) start
with a lower-case character and identifiers that name types (e.g. type operators and
interfaces) start with an upper-case character. All following characters are entirely
lower case, except for composed identifiers. Each first character of a subcomponent
is capitalized (e.g. longNameForAValue).

Reserved keywords that are used in value contexts are entirely lower-case and keywords
that are used in type contexts start with an upper-case character.

A space (u) appears before and after a binary operator in infix notation and in a
let-binding or destructive assignment.

3u+u4 “con” <>, cat”
let a,=,3
ai=ud

A space appears before but not after a colon or a subtype sign.

let p,,:Person = ...
let n,<:0Ok = ...

3.3 Indentation

3.4 Comments

A space appears after but not before a comma or a semicolon.

add(x,uy :Int) = ...

module ... end;

A space appears neither before nor after a point, a question-mark or an exclamation-
mark.

person.name
address?national
address/national

Except as required by adjacent tokens, no spaces appear before or after left and right
parenthesis, left and right sqare brackets and left and right curly brackets.

fac(3) get(peter).name
a[3] p[3].name
{3 + 4}

Two spaces appears between two signatures, e.g. in function or tuple signatues. Two
spaces also appears between let-bindings function applications or tuple components.

get(E <:Okyyycoll :T(E) uindex :Int) :E
Tuple name :String,,,age :Int end
fllet x = 2 lety = 7)

tuple let a = 6, let b = "hallo” end

A single space appears between actual parameters in function applications and be-
tween tuple components (anonymous bindings).

get(:Person,persons;,7)
tuple ”Peter” ,29 end
array 1,2,,3 end

Indenting is used to emphasize program structure. Each nesting level is two spaces
wide. A statement sequence is indented under the construct that introduces it. Sec-
tion 3.6 gives indentation examples for all TL syntatic forms.

These forms only apply to contructs that do not fit on a single line. For example, if the
statement sequence following a then or else fits on a single line, it can appear on the
same line with the tokens that introduce and terminate it. Similary, if the statement
sequence of a loop body is short, it can be moved up to the line that introduces the
loop, along with the trailing end.

ifz > 10 then x := z y := z end
for i = 1 upto 10 do afi] := 0 end

The text of a multiline comment begins on the same line as the opening left-comment.
Subsequent lines are indented the same as the first word of the comment. The termi-
nating right-comment appears on the last line of the comment.

(* A comment that fits entirely on one line by itself. *)

(* A long comment that does not fit on one line. A long

3.5 Naming

comment that does not fit on one line. A long comment
that does not fit on one line. *)

By convention, comments which refer to a group of items appear before the group.
Comments associated with a single definition or declaration appear immediately after

1t. This comments starts at the same indentation level as the definition or declaration
begins.

(* Exceptions:
This is a comment for a group of items. *)

error, overflow :Exception with data :Int end
(* Standard exceptions. *)

test :Exception (* Only for debugging. *)

Interfaces and modules have a multiline comment with predefined fields. This com-
ment is placed immediately after the interface respectively the module name. It is used
to give some initial information about the contents. The terminating right-comment
stands on a separate line.

interface Editor
(* System: editenv
File: Editor.ti
Author: Florian Matthes, Sven Muessig
Date: 02-dec-91
Purpose: Generic data editor and browser.
*
)

import
export

end

This section gives guidelines how to name variables, types, functions and exceptions.

variables:

types:

functions:

Locally used variables are named like the first character of its type, like i for an
integer or s for a string variable. The iteration-variable in for-loops is named i.

The exported type of a library module is named T, for example int.T.

A large number of functions has a historically grown meaning (See also the files
of StdLib). These functions are presented in the following table.

10

Function

Description

copy
create

default
elements
empty
equal, ==
fmt

free

get

hash

new

nil
notEqual, =
order

set

setSub
size

sub

create a shallow copy

create a collection by an enumeration of its components
default value

iteration over elements of a collection

test for emptiness

test the equality of two values

conversion to string

deallocation of volatile resources

access by index

hash function

create a new object possibly with local state
empty element

negation of equal, ==

defines a linear order

destructive update by index

subcollection update by index range

size of a collection

subcollection selection by index range

exceptions: If a module provides exception handling, the major exception is named error,
for example int.error.

3.6 Indentation Examples

The following sections illustrate the recommended form of the TL constructs. A
statement sequence (ss in the following examples) is indented under the construct
that introduces it, which lines up vertically with its corresponding end.

11

let a = 4
let a =123 /3 and var b = a + 2

let t = tuple ”Peter” 3 end

let t =
tuple
let name = ” Peter”
let age = 3
end

let address =
tuple case national of Address
let street = ”Johnsallee 217
let city = ”Hamburg”
let zip = 21234
end

let paul :Student =
tuple
open peter
let semester = 6
end

Let T = Int
Let T = Stringand U =T

Let Person = Tuple :String :Int end

Let Person =
Tuple
name :String
age :Int
end

Let Address =
Tuple
street, city :String
case national with
zip :Int
case International with
state :String
zip :String
end

Let Student =
Tuple
Repeat Person
semester :Int
end

let rec fac(n :Int) :Int =
ifn == 0 then I else n * fac(n — 1) end

let swap(A <:Ok var x, y :A) :Ok =

Let Fac = Fun(n :Int) :Int

newSubWindow(client :Canvas. T
label :Displayltem

begin dismiss, unpin :Action.T
let temp = x super :Window.T) :Popup.T
x:=y
y = temp
end
setisum(x + y iter.enum of
z 1
a) 2
3
end

12

begin if bool then case address

ss ss when national with n then
end elsif bool then fmt.int(n.zip)
ss else
loop else “not national”
ss ss end
end end
while bool do if bool typecase type
ss andif bool when Int then fmt.int(7)
end orif bool then when String then ”abc”
ss else 77777
fori=xuptoydo else end
88 s
end end
let noCredit = try
exception ”No Credit” with od :Int end withdraw(petersAccount 300)

print.string(” Transfer succeded”)
when noCredit with exc then
print.string(” Overdrawn”)

else
print.string(” Unexpected exception”)
end
interface name module name library name
import import import
importList importList importList
export export with
88 88 library
end end list
interface
list
module
list
hide
list
end

4 Overview of the Tycoon Libraries

A significant part of the Tycoon system functionality is defined in an open set of
libraries. Currently, the following libraries are available:

[*** xx Gerald to update based on library definitions and DBIS.bib ***]

13

Library Description Documentation

stdenv basic data types and operations
machineenv low level functions

bulkenv bulk data types

compenv compiler toolkit

dbenv transaction and integrity support
sqlenv interface to SQL databases

commenv communication support (RPC)
newsenv interface to The NeWS Toolkit (TNT)
editenv generic data visualization

As indicated by the references in the last column, for some of these libraries additional
documentation is available as German master’s theses.

5 Resolving Cyclic Import Relationships

The current Tycoon library concept does not allow libraries with cyclic import rela-
tionshps. The main problem with cyclic imports is that the compiler should ensure
that the module initialization code of a module M only accesses modules M; that are
already properly initialized. This check is analogous to the checks performed by the
TL compiler on recursive value bindings.

In the following, a systematic approach to circumvent this limitation is described.
Suppose the following recursive module system is to be implemented:

library Test
interface A, B
rec module a:A b:B
end

module a import b export let f(): Int = b.g() end
module b import a export let g(): Int = a.f() end

First, it is necessary to determine a correct nitialization sequence. For example, if a
has to be initialized prior to b, one has to write:

library Test
interface A’, B
module a:A’
module b:B
end

where A’ 1s defined as follows:

Interface A’
export
(* All signatures of interface B needed in module a prefixed with ”var”: *)
pre : Tuple
var g() :Int
end

(* All remaining declarations of A without changes: *)
f() :Int

end

module a (* import of b no longer required here! *)

14

export
let pre = tuple
let var g() :Int = raise "module b not yet initialized”
end

let f() = pre.g()

end

module b import a

export
(* All bindings of module b without changes: *)
let g(): Int = a.f()

(* Fixup of forward-references in all other modules: *)

a.pre.g:= g
end

6 Using Dynamic Types

This section describes how to use dynamic types in the current TL language imple-
mentation. It also gives some background information on the rationale behind these
TL language mechanisms.

6.1 Motivation

Programmers of data-intensive and long-lived applications are faced with situations
that cannot be handled with static type checking alone:

1. The inspection of type information at run time is needed, for example, to write
a schema browser or to dynamically generate a type-specific user-interface for a
complex run-time data value.

2. The manipulation of values with a dynamic type that cannot be determined
statically at compile time is necessary whenever values generated outside the
static scope of the type checker have to be manipulated by strongly typed code.
For example, the type of a data value retrieved from disk or recieved via a
communication channel from a different network node has to be checked at
run-time against the type information utilized at compile-time.

It is important to note that most language proposals for dynamic typing only address
issue (2) but not issue (1). In such languages it is not possible to inspect a type
without having a run-time instance of that type available.

6.2 The Initial Proposal for Dynamic Typing

The original TL language report [MaSc92] defines the following language constructs
to address the issues raised in the previous section:

e The signature of a type variable T can be prefixed by the keyword Dyn. Such
a type variable can be inspected (like a value variable) at run time to obtain
information about the actual type bound to T.

e Type variables can be inspected using a typecase expression. In the branches
of a typecase expression, the type variable is narrowed to a statically-known
type. Therefore, it becomes possible to statically type-check the access to values
of that dynamic type.

15

For example, the following polymorphic function f receives a dynamic type represen-
tation T and a value x of that type as its argument. The result type of the function
is statically known to be identical to the type of the argument. Furthermore, in each
of the typecase branches, the type T is known to be a subtype of the type in its when
clause.

let f{(Dyn T<:Ok x:T) :T =
typecase
when Int then x+1
when String then x <> ”'Test”
else a
end

The first TL compiler already implemented the type rules necessary to type check
typecase expressions and to verify the matching of signatures and bindings including
Dyn keywords. However, the run-time support for these language constructs required
a bootstrap of the TL compiler to re-use the subtype test algorithm of the compiler
also for the run-time subtype tests.

During the implementation of this run-time support code the following limitations of
the original approach became clear:

e The facilities of the typecase expression are not sufficient for highly generic
type-directed (reflective) programming techniques where it is necessary to dy-
namically explore the structure of a type representation using algorithmically-
complete code. The typecase expression is essentially limited to programming
situations where a dynamic type is verified to be a subtype of a fixed static type.

e Due to the higher-order nature of Tycoon, it is desirable to be able to inspect
types (Int, Person, PersonList), type operators (Array, List, Bag) and higher-
order type operators (e.g., mapping type operators to other type operators) in
a uniform way. However, TL does not provide a kind specification to quantify
over the universe of types and higher-order type operators. For example, in TL
one has to write different functions to inspect types (subtypes of the top type
Ok), unary type operators (subtypes of the type Oper(X<:Nok) Ok), and
binary type operators (subtypes of the type Oper(X<:Nok Y<:Nok) Ok):

let inspectType(Dyn T<:0Ok) = ...

let inspectTypeOperl(Dyn T<:Oper(X<:Nok) Ok) = ...

let inspect TypeOper2(Dyn T<:Oper(X<:Nok Y<:Nok) Ok) = ...
Instead of this one would like to write a single generic piece of code with an
appropriate signature, e.g.

let inspectAnyType(Dyn T<: ?77) = ...

e The code generation for dynamic type variables (passed as parameters, bound
to local variables or embedded as components of aggregates) introduces quite
some hidden complexity into the TL language processors.

Following the minimalistic add-on approach of Tycoon, we therefore decided to make
the management of type representations at run-time much more explicit and factor it
out into ordinary TL libraries.

6.3 The New Approach to Dynamic Typing

Support for the inspection of type information at run time (task 1 described above) is
provided by the module typeRep defined in the Tycoon standard library tl_reflective.
It exports the following (semi-abstract) types and functions

16

The type T'is the type of a run-time type representation for an arbitrary Tycoon
type or (higher-order) type operator. A type representation is a first-class-value
representing a static type. Contrary to static types, type representations do not
need an environment in which they are valid.

The type Expansion gives a more detailed description of a type representation.

The function inspect(type :T) :Expansion returns more detailed information
on a type that is represented by a type representation. It returns a one-level
unfolding of a type representation.

A number of type representations is provided that match the standard TL types
defined in the initial environment (Int, String, ...).

A number of constructor functions support the dynamic creation of type repre-
sentation for structured types (arrays, ...).

The function to construct a type representation for a given static type cannot be
exported by the add-on module typeRep since its implementation requires special
compiler support to access static type descriptions. Therefore, this function is not
named typeRep.new, but typeRep_new and it is available without explicit import at
the top level and in every module.

As explained in the previous section, the signature of this function cannot be expressed
completely in the TL type system:

typeRep_new(T <: 777) :typeRep.T

Here are some examples how to create values of type typeRep.T.

typeRep_new(:Int) (* builtin type *)
typeRep_new(:Tuple :String :Real end) (* structured type *)
typeRep_new(:Fun(:String) :Int) (* function type *)
typeRep_new(:Array(Int)) (* type operator application *)
typeRep_new(:list.T) (* type operator *)

typeRep_newOper(Oper():0k):Ok) (* higher-order type operator *)

Support for the manipulation of values with a dynamic type (task 2 described above)
is provided by the module dynamic, also located in the library tl_reflective. This
module exports types and functions on dynamic values, such as:

The type T is the type of dynamic values in TL. A dynamic value is a pair
consisting of a value x of type T and a type representation t_RT for T. The
module dynamic ensures that each access to x respects the type T.

The type Expansion gives a more detailed description of a dynamic value.

The function inspect(value :T) :Expansion performs a one-level unfolding of a
structured value. This function is particularly useful in cases where the pro-
grammer does not have any knowledge of the static type of a dynamic value.

The function typeOf{value :T) :typeRep.T returns the type representation com-
ponent of a dynamic value.

A number of constructor functions is provided that return structured dynamic
values.

In addition to these library functions there are two predefined functions that require
compile-time support by the TL language processors. These functions are available
without explicit import at the top level and in every module:

17

e The constructor dynamicnew(T<:Ok d :T) :DynValue takes a value d of a

closed type T and returns a new dynamic value consisting of a type representa-
tion for T and the value d.

Here are some examples how to create dynamic values:

dynamic_new(3) (* integer value *)

dynamic_new(tuple 3 4 end) (* structured value *)
dynamic_new(fun(x :Int) :Int x + 1) (* function value *)
dynamic_new(array 1 2 3 end) (* built-in parameterized type *)
dynamic_new(list.new(:Int)) (* user-defined parameterized type *)

The function dynamic_be(d :dynamic.T T<:0k) : T takes a dynamic value d and
a type variable T which has to be a closed type and returns d’s value component.
A run-time exception (dynamic.error) is raised if the value component’s static
type is not a subtype of T. This function provides the core functionality of the
typecase construct of the original TL language design.

Here are some examples how to extract the value component of a dynamic value:

let i = dynamic_new(3)
let a = dynamic_new(array 1 2 3 end)
let t = dynamic_new(tuple 1 2 3 end)

dynamic_be(i :Int) (*= 3%
dynamic_be(a :Array(Int)) (* = array 1 2 3 end *)
dynamic_be(t :Tuple :Int end) (* = tuple 1 end *)
try
dynamic_be(i :String) (* = raises dynamic.error *)

when dynamic.error then
7error occured”
end

6.4 Current Restrictions

Naming issues: Due to historic reasons, the identifiers and keywords supported by
the current TL compiler still differ from the names used in the previous section:

The module dynamic is currently called dynamics.
The type identifier typeRep_T is currently called DynType.
The value identifier dynamic_T is currently called DynValue.

The value identifier dynamic.error is also available through the name type-
caseError in the initial environment.

However, the next public release of the system will use the names described in this

text.

Type unification variables: The type of a dynamic value may not contain type
unification variables introduced by the TL type checker during type argument syn-
thesis. For example, it is not possible to package the polymorphic empty list directly
into a dynamic value:

dynamic_new(list.new()) (* = compile-time error *)

Instead of this, one has to explicitly instantiate the type parameter of the list.new
function:

18

dynamic_new(list.new(:Int)) or
dynamic_new(list.new(:String))

However, explicit polymorphic functions (like the polymorphic identity function) can
be turned freely into dynamic values.

dynamic_new(fun(A<:Ok a:A) a)

Universally quantified type variables: The type of a dynamic value may not
contain (free) universally quantified type variable, for example,

let f(T <:0Ok x :T) :dynamic.T = dynamic_new(x)

is rejected at compile-time since the type of x depends on the free, universally quan-
tified type variable T. Alternatively, the compiler could construct a dynamic value
with a type representation describing the statically-known bound type Ok of T, but
we prefer to warn the programmer that this function does not exhibit the desired
run-time behavior.

To obtain the desired behaviour, the keyword Dyn has to be added in front of the
type variable T to ensure that at run-time a representation of the actual type of the
value bound to x is available:

let f(Dyn T <:Ok x :T) :dynamic.T = dynamic_new(x)

7 Programming with External C Libraries

Tycoon provides a bidirectional programming interface between TL and C that fea-
tures a seamless integration of both languages’ function paradigms. External C func-
tions can be integrated into TL as ordinary function values. TL functions can be
wrapped in a way that makes it possible to use them as C function pointers.

7.1 Function Calls from Tycoon to External C Libraries

Tycoon provides a generic mechanism to use system functionality implemented in ex-
ternal languages. The binding of TL identifiers to external function values is achieved
by the predefined function bind. This function has the following signature:

bind(Function <:Ok library, label, format :String) :Function

The parameters of the bind function have the following meaning: Function describes
the type of the resulting TL function. It has to be of the form Fun(...) :A. The
library parameter is a string that identifies the library file that contains the required
external C function. This can either be the full path name? of a dynamic library or
the string result of one of the functions exported by the module runtimeCore (see the
following table) belonging to the Tycoon library stdenv.

Function Description

library identifies the core of the Tycoon runtime system
cLibrary identifies the standard C library
dynamicLibrary | identifies dynamically bound libraries
staticLibrary identifies statically bound libraries

31f the same shared library is referenced several times the path should always be exactly the same.
Otherwise the dynamic linker loads several instances of the shared object. This means not only
consuming more process memory than necessary, but leads to subtle bugs when global C variables
are defined multiple times in the same process.

19

The label parameter is a string that contains the original C source text name of the
C function. The format parameter is a string that specifies the assumed parameter
format of the C function. Every single character of this string corresponds to one
parameter. It specifies the conversions between tagged and untagged data represen-
tations to happen before and after a call. The parameter order is from left to right
like in C, except for the function result type. It is given by the last character that is
mandatory. The following table contains the set of characters that denote parameter
formats.

Format | Tl type | C type | Description

i Int long integer number

r Real double | floating point number

c Char char ASCII character

b Bool long boolean value (see text)

v Ok void return value only

= <:0k void * | Tycoon value, no conversion
& address. T | void * | memory address (see text)

5 String char * | zero-terminated string

w word. T void * | 32-bit word

There is no predefined type for boolean values in C. Boolean TL values are converted
to C long values as follows.

true — 1
false — 0

A C value x produces the following TL boolean values:

x!=0 — true
x==0 — false

When s is used as a format character for a parameter, it acts exactly like &, because
all Tycoon strings are represented with zero-termination. Specifying s instead of &
means just to provide a little documentation. In case of return values this is different.
Stings returned from C are copied into newly created store objects (copy-out).

For Tycoon store objects (strings, tuples, arrays, etc.) that are passed to C by using
the format character &, every call is enclosed by automatic fix and unfix operations
for the argument. The result of the fix operation is passed to C.

Suppose a library /usr/lib/libexample.so contains a function example that takes a
string argument and returns a 32 bit integer number. Thus, example can be assumed
to match the following declaration:

extern long example(char *s);
An appropriate binding for example in TL is:

let cCallExample =
bind(:Fun(:String) :Int ”/usr/lib/libexample.so” “example” ”si”)

The value cCallExample has the type Fun(:String) :Int. Therefore, the C function
can be called as follows.

let result :Int = cCallExample(” My favorite String”)

Note that external bindings are persistent and portable across host architectures. For
example, if the value cCallExample is transferred with dynamic.extern/intern, the C
binding would be reestablished automatically.

20

7.2 Function Calls from External C Libraries to Tycoon

The programming interface between TL and C is bidirectional. It is not only possible
to call C functions from TL, but also to call back from C to TL.

In order to minimize the programming effort for callbacks on the C side, it is desirable
to make TL functions appear like ordinary C function pointers. Moreover, this is
indispensable in situations where an external software component requires C callbacks
but cannot be changed.

The module cCallback exports an abstract type cCallback.T which represents C func-
tion pointers that refer to callbacks. The creation function for values of type cCall-
back.T has the following signature:

new(Function <:Ok function :Function format :String) :T(Function)

The first value argument (function) of new must always be a function, although this
restriction is not checked. Nevertheless, the function’s signature has to be mirrored
in the format string that specifies how C arguments of the resulting callback are
converted into TL values. Every single character of the string corresponds to one
parameter. The parameter order is from left to right like in C, except for the function
result type which is given by the last character. The latter is mandatory. The format
characters are shown in the table in section 7.1.

If the format character s is used for a parameter, a C string argument will be copied
into a newly created store object (copy-in). In case of a return value, a C string is
copied into a chunk of memory allocated by malloc. Hence the parameter passing
semantics are copy-out instead of call by reference which apply when the format
character & is chosen.

The format character & does not apply to function return parameters.

The format character v specifies a function result value of ok irrespective of the actual
C value returned by C. For

A simple example follows:

import cCallback fmt

let myMessage(n :Int r :Real) :String =
fmt.int(n) <> 7 = 7 <> fmt.real(r)

let myMessageCallback =
cCallback.new(myMessage ”irs”

let test =
bind(:Fun(n :Int messageCallback :cCallback.T) :Ok
”.../example.so.1.0” "test” ikv”)

test(2 myMessageCallback)
The resulting console output would be

7pi ¥ 2 = 6.28”
ok

assuming that the corresponding C program ... /example.c looks like this:

#include <stdio.h>

21

void test(long n, char *message(long n, doubler))

printf(”pi * %s\n”, message(n, n * 3.14));

}

As callbacks can be transferred to address spaces which are not under control of the
Tycoon system, there is in general no way to determine their temporal extent auto-
matically. Callbacks are never persistent. Callbacks occupy some memory resources
that can only be released explicitly:

cCallback.free(myMessageCallback)

After freeing a callback it is invalid. Any subsequent usage is most likely to cause
strange system behaviour (e.g. crashes). Attentive readers may have noticed some
more problems in the example: In what manner does the result string of the function
message get allocated on the C side before it is passed to printf, who is in charge of
releasing its memory and how can this be done?

The current solution is that the format character s in a return value position causes
the allocation of an appropriate memory block by calling malloc. This block has to be
released by the C programmer by a call to free. Thus, the C program in the example
should be written as follows:

#tinclude <stdio.h>
#include <malloc.h>

void test(long n, char *message(long n, doubler))

{

char *p;
p = message(n, n * 3.14);

printf("pi * %s\n”, p);
free(p);

22

References

[Mat93]

[Mat95]

[MMS94]

[MMS95a]

[MMS95b)

[MS92]

[MS94]

[MSW95]

[RLWS5]

[Tyc92]

F. Matthes. Persistente Objekisysteme: Integrierte Datenbankentwicklung
und Programmerstellung. Springer-Verlag, 1993. (In German).

F. Matthes. Higher-order persistent polymorphic programming in Tycoon.
In M.P. Atkinson, editor, Fully Integrated Data Environments. Springer-
Verlag (to appear), 1995.

F. Matthes, S. Mufig, and J.W Schmidt. Persistent polymorphic program-
ming in Tycoon: An introduction. FIDE Technical Report FIDE/94/106,
Fachbereich Informatik, Universitat Hamburg, Germany, August 1994.

B. Mathiske, F. Matthes, and J.W. Schmidt. On migrating threads. In
Proceedings of the Second International Workshop on Next Generation
Information Technologies and Systems, Naharia, Israel, June 1995. (Also
appeared as TR FIDE/95/136).

B. Mathiske, F. Matthes, and J.W. Schmidt. Scaling database languages
to higher-order distributed programming. In Proceedings of the Fifth Inter-
national Workshop on Database Programming Languages, Gubbio, Italy.
Springer-Verlag, September 1995. (Also appeared as TR FIDE/95/137).

F. Matthes and J.W. Schmidt. Definition of the Tycoon language TL — a
preliminary report. Informatik Fachbericht FBI-HH-B-160/92, Fachbere-
ich Informatik, Universitat Hamburg, Germany, November 1992.

F. Matthes and J.W. Schmidt. Persistent threads. In Proceedings of the
Twentieth International Conference on Very Large Data Bases, VLDB,
pages 403-414, Santiago, Chile, September 1994.

F. Matthes, J.W. Schmidt, and J. Wahlen. Using extensible grammars to
support data modeling. In M.P. Atkinson, editor, Fully Integrated Data
Environments. Springer-Verlag (to appear), 1995.

P. Rovner, R. Levin, and J. Wick. On extending modula-2 for building
large, integrated systems. Technical Report 3, Digital Equipment Corpo-
ration, Systems Research Center, Palo Alto, California, January 1985.

WWW home page for the Tycoon project. http://idom-www.informatik .-
uni-hamburg.de/Projects/Tycoon/entry.html, 1992.

23

