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ABSTRACT
In many legal domains, the amount of available and
relevant literature is continuously growing. Legal content
providers face the challenge to provide their customers
relevant and comprehensive content for search queries on
large corpora. However, documents written in natural
language contain many synonyms and semantically related
concepts. Legal content providers usually maintain
thesauri to discover more relevant documents in their
search engines. Maintaining a high-quality thesaurus is an
expensive, difficult and manual task. The word
embeddings technology recently gained a lot of attention
for building thesauri from large corpora. We report our
experiences on the feasibility to extend thesauri based on a
large corpus of German tax law with a focus on synonym
relations. Using a simple yet powerful new approach, called
intersection method, we can significantly improve and
facilitate the extension of thesauri.
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1. INTRODUCTION
Legal content providers offer their customers access to

large amounts of different text documents. Clients expect a
search engine that serves all relevant search results in an
ordered manner with most relevant results at the top. The
expectation of users encompasses that all relevant
documents are returned be a major task in information
retrieval and receives much attention, also in the legal
domain, cf. Qiang and Conrad [14] or Grabmair et al. [7].
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One possibility is the employment of thesauri to capture
the ambiguous nature of natural language. Thesauri
capture binary relations such as synonyms or antonyms
and some thesauri additionally cover hierarchical
relationships. Large general purpose thesauri have been
built, for example WordNet (Fellbaum, 1998). Thesauri
can be used for search query expansion to increase the
recall of information retrieval systems and particularly to
include documents that use synonymous words.

Maintaining a thesaurus is expensive and error prone,
especially for large thesauri, see for example Dirschl [3]. In
the area of computational linguistics, the automated
creation of thesauri has been investigated since the 1950s,
cf. Section 2. The distributional hypothesis claims that
words that share contexts likely have a more similar
meaning (perceived by humans) than others. Since 2013
there has been an increasing interest in a technology called
word embeddings that combines machine learning (ML)
technologies with the distributional hypothesis. In contrast
to distributed thesauri calculated based on statistical
evaluations, the relatedness of words is calculated in a
softer/iterative fashion and is easy to access using the
cosine similarity measure.

In this paper we investigate the applicability of the word
embeddings technology, in particular the word2vec
implementation [16], to support humans to extend an
existing thesaurus. While the overall goal is to find new
relevant synonym relations that can be suggested to
humans to consider for inclusion in the existing thesaurus,
one focus of this paper is how word embeddings can be
trained such that the quality of the word embeddings is
good. The basic assumption is that high-quality word
embeddings will lead to better suggestions for synonym
relations that are not present in the current thesaurus.
Related use cases are the creation of thesauri from scratch
or the automated merging with 3rd party thesauri.

Moreover, an unsolved problem is to determine only
relevant synonyms given a word, i.e. to build sensible
synonym sets (synsets). Most approaches need to resort to



Figure 1: The used text corpus comprises different
document types on the topic of German tax law with
a total amount of approximately 130.000 documents.
The corpus comprises roughly 150 million tokens
yielding a vocabulary size of circa half a million
words (not pre-processed).

a fixed amount of relevant words or to rely on the
identification of a suitable threshold of relatedness. We
investigate a straight-forward approach to identify
semantically closed synsets without resorting to unreliable
thresholds for a large corpus of German tax law and report
our experiences. Using a given thesaurus that is manually
maintained specifically for this corpus, we conduct
parameter studies for the different parameters of word2vec.
We propose and evaluate a novel approach to intersect
result lists of a relatedness ranking of all words in the
vocabulary of the corpus. Multiple word2vec word
embeddings models are calculated with different
parameters. For a given word (target word), we calculate
the relatedness ranking of all words in the corpus and
intersect the lists of the first top results among the word
embeddings models calculated with different word2vec
parameters. We can report promising results of our
evaluation of the intersection method with the given corpus
and the corresponding manually maintained thesaurus.

The remainder of this work is organized as follows: In
Section 2 we give a brief summary of automatic thesauri
generation and related work. In Section 3 we give an
overview of the corpus and the corresponding manually
maintained thesaurus used for all our experiments. The
word embeddings technology is introduced in Section 4.
We study the different word2vec parameters in Section 5
and present our intersection list method in Section 6. We
evaluate the novel intersection method in Section 7 and
discuss limitations in Section 8. Finally, Section 9
summarizes our findings and discusses future work.

2. RELATED WORK
The manual creation of thesauri is a very labor intensive

process. There have been various attempts to automate
the process. A popular approach emerged from the
distributional hypothesis formulated by Harris in 1954 [9].
The distributional hypothesis claims that words with
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Figure 2: Illustration of the characteristics of word
embeddings in two-dimensional space [12]. The
angle α between the two vectors for the words
freedom and obligation is larger than the angle β,
which reflects that the two words duty and obligation
are semantically more related than duty and freedom
or obligation and freedom.

Table 1: The occurrence frequency of a token in
the corpus has a strong impact on the quality
of the resulting embeddings for individual words.
Therefore, we choose different evaluation selections
of synonym sets from the given thesaurus - that is
specifically maintained for this corpus - based on the
minimal individual term frequency of the tokens; N
is defined as the minimum occurrence frequency of
each individual token in the corpus to be included
in a synset in a evaluation thesaurus.

N Synsets Terms Terms/Group Relations
250 260 587 2.26 874
625 125 289 2.31 464

1000 84 195 2.32 312

similar or related meanings tend to occur in similar
contexts. The hypothesis is supported by many studies [25,
15, 10, 22].

In 1964, Sparck Jones [27] used the distributional
hypothesis to automatically create thesauri using
count-based methods. Many followed this approach, for
example Grefenstette [8]. Thesauri are useful for several
natural language processing problems and much effort has
been put into improving distributional thesauri. Rychly
and Kilgarriff [26] developed a system called SketchEngine
that efficiently generates distributional thesauri from large
datasets. They pre-process the dataset and remove word
pairs that have nothing in common before the actual
calculation is performed. Hence, their algorithm can
process a dataset with 2 billion words in less than 2 hours
(compared to 300 days without the removal).

In their project JoBimText, Riedl and Biemann [23] use a
parallelized approach based on MapReduce and a Pointwise
Mutual Information (PMI) measure to improve calculation
speed as well as the quality of the generated thesaurus.

Word embeddings can be seen as an evolution of
distributional statistics enhanced with machine learning
approaches. Traditional distributed thesauri are calculated
based on co-occurrence counts, while word embeddings
leverage sub-sampling methods that are heavily used in the
machine learning domain. Word embeddings provide an
easy access to word relatedness via the cosine similarity
measure.

Kiela et al. proposed that during the training phase,



word embeddings can be pushed in a particular direction
[11] and optimized for detecting relatedness. In the
TOEFL synonym task Freitag et al. [4] report considerably
better result than for non-specialized embeddings.
Thesauri often not only contain synonyms, but also
antonyms. Ono et al. [19] presented an approach to detect
antonyms, using word embeddings and distributional
information. Nguyen et al. [18] improve the discrimination
of antonyms and synonyms by integrating lexical contrast
into their vector representation. In 2015, Rothe and
Schütze [24] presented AutoExtend, an extension of word
embeddings, optimized to train embedding vectors for
synonym sets (one vector per synset) and their composing
lexemes. To the best of our knowledge and in contrast to
our intersection method, all approaches use fixed-length
result sets or fixed thresholds to build synsets.

Recently, word embeddings have been used for
query-expansion for information retrieval directly, i.e.
without the creation of knowledge-bases. Examples for
such query expansion using word embeddings are Ganguly
et al., Zamani et al. and Amer et al. [5, 28, 20]. Query
expansion using word embeddings specialized for the legal
domain has recently been proposed by Adebayo et al. [1].

3. DATASET & PRE-PROCESSING
We conduct our parameter studies and the evaluation of

our intersection method for extending thesauri on a legal
texts corpus provided by our industry partner DATEV eG.
The corpus comprises different document types on the
topic of German tax law, cf. Figure 3. The corpus of 150
million pre-processed tokens yields a vocabulary of circa
180.000 entries. Our industry partner manually maintains
a high-quality thesaurus specifically for this corpus
including approximately 12.000 synonym sets with around
36.000 terms.
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Figure 3: Continuous Bag-of-words (CBOW, CB)
and Skip-gram (SG) training model illustrations
adapted from [16]. The word2vec algorithm
implements both training models. The basic idea
behind the two training models is that either a word
is used to predict the context of it or the other way
around - to use the context to predict a current
word. This task is iterated word by word over
the corpus. The prediction can be thought of as
a classifier from machine learning. The vectors are
collected from the weights of the artificial neural
network that serves as a classifier. Hence, large
amounts of text can be used in an unsupervised
fashion to train word embeddings.

We pre-process both the corpus and the thesaurus. The
main corpus is pre-processed such that we include only
tokens with more than four characters, remove all special
characters and punctuation and lowercase all tokens. A
single line with all cleaned and white-space-separated
tokens is entered into the word2vec algorithm. For the
thesaurus, we additionally restrict ourselves to terms that
consist of a single token. It is well known that the
occurrence frequency of words is crucial to the quality of
resulting word embeddings. We extracted three different
evaluation sets where all words in the evaluation thesaurus
occur at least N={250,650,1000} times in the corpus, see
Table 1.

All experiments have been carried out on an Intel Core
i5-2500 (4x2333MHz) machine with 8 GB DDR3-1333 RAM
running Ubuntu 14.04, Python 2.7.6, Numpy 1.13.1, scipy
0.16.1 and word2vec 0.1c (only versions ≥ 0.1c support the
iterations parameter).

4. WORD EMBEDDINGS
Word embeddings are a family of algorithms producing

dense vectors that represent words in the vocabulary of a
corpus. The word embeddings can be trained using the
Continuous Bag-of-words (CBOW) or Skip-gram training
models depicted in Figure 3.

Word embeddings combine the distributional hypothesis
with artificial neural networks [13]. Due to new efficient
methods of calculating word embeddings, Mikolov et al.
[16], word embeddings for several gigabytes of text data
can be calculated within hours. While word embeddings
are still considered a Bag-of-words approach, word
embeddings do encode the general context of words in
dense vectors. Mathematical operations, for example
vector addition, can be carried out on the vectors while
preserving their inherent semantic characteristics. Mikolov
et al [17] show that word embeddings trained on fictional
English literature capture semantic relationships among
words. We illustrate such semantic relationships encoded
in word embeddings in Figure 2. We noticed that relevant
characteristics are recognizable even for word embeddings
trained on comparably very small training corpora [12], at
least regarding text similarity tasks. Hence, we assume
that our corpus with 150 million tokens is large enough to
produce word embeddings with sufficient quality.

Next, we give a short summary of a selection of the most
important implementations to calculate word embeddings:

• word2vec: The original C++ implementation of
word2vec by Mikolov et al. [16], [17] is very fast. It
provides a multi-threaded implementation, but it
does not support check-pointing (i.e. resuming
computations after stopping).1

• gensim: The gensim implementation of word2vec
provides a Python interface to calculate word
embeddings and supports check-pointing.2

• Apache Spark: Apache Spark includes a Java/Scala
implementation of word2vec that can be run in a

1https://github.com/kzhai/word2vec, word2vec version
0.1c for MAC OS X, accessed on 22/January/2017
2https://github.com/nicholas-leonard/word2vec, accessed
on 22/January/2017
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Figure 4: Illustration of our overall approach: word2vec parameters need to be chosen. Our intersection
method can be applied after the (repeated) calculation of (fixed length) synsets.

Hadoop cluster.3

• deeplearning4j: This Java implementation is
embedded in the general deeplearning4j framework
for machine learning and is similar to gensim but
implemented for usage with Java and Scala.4

• GloVe: GloVe vectors, presented by Pennington et
al., [21] are a count-based algorithm implemented in C.
GloVe vectors are similar to the word2vec embeddings,
but optimize a different objective function.5

• Torch: Torch is, similar to the well-known Tensorflow
framework, a deep learning and scientific computing
framework that provides a Lua interface to a word2vec
implementation.6

• Tensorflow: Tensorflow is a deep learning
framework provided by Google and offers (among
others) a Python interface to its own word2vec
implementation.7

5. WORD2VEC PARAMETERS
The word2vec implementation has a large number of

parameters. For the most relevant parameters, we
conducted a parameter study using a manually maintained
thesaurus as the ground truth for an evaluation of the
quality of the resulting word embeddings. While a
thesaurus by nature cannot be perfectly sharp, we assume
that relations identified by humans have sufficient truth
and by using a large number of relations identified by
humans our assumption is that this is sufficient to identify
general trends. The following list gives an overview of the
most important parameters:

• Size (Dimensionality): The size of the resulting
vectors is chosen manually. From an information
entropy point of view this value needs to be large
enough so that all relevant information can be
encoded in the vectors. However, the larger the
vector size is chosen, the more computationally
expensive training and subsequent calculations
become.

• Window Size: The window size is a training
parameter that defines the size of the context window

3https://spark.apache.org/, accessed on 22/January/2017
4https://deeplearning4j.org/word2vec.html, accessed on
22/January/2017
5http://nlp.stanford.edu/projects/glove/, accessed on
22/January/2017
6https://github.com/yoonkim/word2vec torch, accessed on
22/January/2017
7https://github.com/tensorflow/tensorflow/tree/master/
tensorflow/examples/tutorials/word2vec, accessed on
22/January/2017

around each word during the training phase. Arguing
from a statistical linguistics point of view, large
(word-)distances between two words (for example in
two consecutive sentences) usually lead to less
influence of the words on each other [6].

• Iterations (I)): The iterations parameter defines
the number of iterations over the full corpus and can
be thought of as an artificial enlargement of the
corpus. The choice for this parameter heavily
depends on the corpus size. A larger number of
iterations is particularly useful for small corpora.

• Minimum Count: The occurrence frequency of
individual tokens has a strong impact on the quality
of the resulting word embeddings. Using the
minimum count parameter, one can control that
words occur sufficiently often in the corpus. The
downside of this parameter is that words in the
vocabulary that do not occur often enough in the
corpus will not have a vector.

• Alpha: The initial learning rate is a parameter that is
derived from artificial neural network training and not
investigated, because we assume that it is very specific
to a concrete dataset.

• Negative: The number of negative examples
presented during the training. Consult [6] for a
comprehensive explanation.

• CBOW or Skip-gram: The two possible training
models that can be used to train word embeddings
with word2vec. Either the current word is used to
predict the context of the current word or vice versa
the context is used to predict the current word, cf.
Figure 3. In our experiments the CBOW model results
faster in high quality word embeddings in less training
time.

We assume that the vector size, window size, negative and
iterations parameters are the most important parameters for
the creation or extension of a thesaurus given a corpus. We
set the minimum count parameter to zero, because we want
a vector for each word present in the corpus.

The manually maintained thesaurus for our corpus
contains groups of synonymously used words. A simple
example for such a group of synonyms is (lawsuit, case,
dispute). We are interested in how the vector size, window
size, iterations and negative parameters affect similarity
score lists calculated based on word embeddings trained by
word2vec. We introduce the RP-Score measure that
measures the average positions of synonyms in ranking lists
of the terms. The RP-Score provides a measure to compare
the relateness of two words obtained from humans and
obtained by our word2vec approach. In contrast to the
mean reciprocal rank (MRR), the RP-Score is not
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Figure 5: The cosine similarity distance measure is
symmetric between (the word embeddings vectors
of) two words. The ranking positions of two words
can be asymmetric, because other words can be
closer to one of the two words, but more distant
to the other word, cf. Table 2.

Table 2: For our parameter study we use a
measure that we call RP-Score. Using the cosine
similarity measure, we compute an ordered list of
the relatedness of all words in the vocabulary to one
selected word from the vocabulary (target word).
For three target words, the five most related words
are listed. The word dispute has the ranking position
(RP) 4 for the target word lawsuit. The RP-Score
for this example synset is 1+4+2+5+3+4

6
≈ 3.16.

RP lawsuit case dispute

1 case trial controversial
2 law-suit lawsuit trial
3 litigation litigation lawsuit
4 dispute law-suit case
5 trial dispute litigation

normalized to 1 and provides a more intuitive
understanding for the quality of a word embeddings model.

The RP-Score measure is calculated as follows: For all
target words in a synset we calculate a sorted list of all
words in the vocabulary using the cosine similarity
measure. The ranking list is ordered and most related
words are at the top of the list. We determine the position
for each combination of two words in a synset and
accumulate all ranking positions. We perform this
calculation on all synsets and finally divide the value by
the total number of relations among all words in a synset
and aggregate among all synsets. RPw1(w2) is defined as
the position of w2 in the result list of w1.

RP Score :=
∑

s∈synsets

∑
w1,w2∈s,w1 6=w2

RPw1(w2)

|s|(|s| − 1)

Note that the RP-Scores are not a sharp measure in our
evaluation. On the one hand, a thesaurus maintained by
humans can lack (and contain) similarity relations that are
included (or ignored) by an unsupervised word embeddings
calculation. For example, spelling mistakes are often not
contained in a thesaurus but detected by our overall
approach. Wrongly typed words can be good candidates
for an inclusion in a thesaurus, because documents like
judgments cannot be corrected. Nevertheless, we are able
to observe reasonable results in our parameter studies, due
to the averaging of the RP-Score over a larger number of
evaluation synsets.

For all parameters investigated, we applied both CBOW
and Skip-gram model. For all experiments (unless otherwise
stated) we used a vector size of 300 and ran 20 iterations.
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Figure 6: Parameter studies of different relevant
word2vec parameters: window size, vector size,
negative samples and number of iterations. For all
parameters the computing costs increase with larger
parameter values (cf. Figure 8) and a trade-off
between computing costs and quality is inevitable.
We measure the impact of the different word2vec
parameters on the quality of the resulting word
embeddings using the RP-Score with a thesaurus
that is manually and specifially maintained for
the given text corpus. Good parameter choices
have a reasonably small RP-Score. For example,
the default window size of 5 from the word2vec
implementation is a good choice already. Note that
the CBOW training model results in better RP-
Scores while having smaller runtime values for equal
parameter choices. Best viewed in color.

For the window size parameter study, the window parameter
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Figure 7: We evaluated the word2vec iterations
parameter for larger values: Reasonable quality
of the word embeddings can - for this corpus -
be obtained with I=20, but slight improvements,
especially for individual evaluation thesaurus and
training parameter choices, can be achieved with
larger iteration parameter choices. Note that for
a larger number of iterations we conducted fewer
runs, hence the perceived relative smoothness for
I>20 is not representative. Best viewed in color.

runs from 1 to 20. For the vector size parameter study,
we increase the vector size from 100 to 700 by 100, plus
one run with vector size 50. For the number of iterations,
we run 1 to 20 iterations incrementally and only selected
samples up to 100 iterations, cf. Figures 6 and 7. For the
negative (sampling size) we consecutively vary the negative
parameter between 1 and 10. For each parameter study, we
calculate the RP-Scores using the three different evaluation
thesauri as described in Section 3 for each computed word
embeddings model.

6. INTERSECTION METHOD
Finding good parameters for the word2vec algorithm is

an important step towards the creation or extension of
thesauri. However, several challenges remain. A ranking
with respect to the similarity score of all words in the
vocabulary is not enough. One major challenge is to decide
which words should be included in a synset and which
should not. One possibility is to include a fixed number of
related words according to the ranking list, for example the
first ten. Another possibility is to define certain thresholds
for the similarity score between two words. However, the
similarity scores are very different among result lists for
different target words. For example, the first related result
in a ranking list for the word law might have a similarity
score of 0.7 while the first result for the word doctor could
have a similarity score of 0.4 while both are considered as
true synonyms by humans.

During our experiments with the parameters of word2vec,
we recognized that the result lists differ substantially from
one word2vec parameter selection to another. This led us
to the idea of calculating intersections of the result lists for
target words. This approach has two advantages at once.

Table 3: Artificial example to illustrate our
intersection method. We calculate the k=5 most
related words from the word embeddings models
for the word car. The left column shows the most
related words to the target word car for the word
embeddings model calculated with 20 iterations.
The center column shows the most related words
to the word car for the word embeddings model
calculated with 19 iterations. The right column
displays the intersection of the left and center
columns. Irrelevant words (for example animal
or chair) are dropped from the final result list
by the intersection, because they tend to change
their positions heavily among result lists from
word embeddings models calculated with different
parameters.

Iter.=20 Iter.=19 Intersection
car car car

auto automobile auto
automobile chair automobile

animal sheep
doctor egg

tree auto

First, we do not need to define a threshold or fixed number
of words to form a synset for a given word. Moreover, we
experience that bad results are filtered out because their
positions in ranking lists vary a lot. Table 3 illustrates the
intersection approach. From a different point of view, for a
specific word, words that are always at the top of different
ranking lists form a fix-point set that is stable and as we
will show in Section 7 returns higher quality results. We
also found that the resulting intersection lists have different
sizes that reflect that the approach identifies sensible synset
sizes. For example, specific words like scrapping bonus result
in few words in the intersection lists, while words like doctor
yield a large number of synonyms in the intersection lists.
This behavior reflects the human perception of good synsets,
too.

The intersection of result lists of the size of the vocabulary
results in vectors of the size of the vocabulary. Hence, we use
a fixed number of the first k entries of a result list serving as
an intermediate result. This additional parameter serves as
an upper bound for the size of returned synsets. Due to the
strong variation among result lists obtained from different
word embeddings models, this upper limit is not assumed
most of the time.

7. EVALUATION
Our evaluation is an attempt to quantify the perception

of humans that synsets obtained by the intersection
method have higher quality than synsets obtained using
thresholds. We compare precision/recall values calculated
per synset and accumulate the individual results. We use
precision (P), recall (R) and F1-Score (F1) defined as
follows:

P :=
TP

TP + FP
R :=

TP

TP + FN
F1 := 2 ∗ P ∗R

P +R

True positives (TP) are present in the evaluation
thesaurus and in the result of our method. False positives
(FP) are present in the result of our method, but not in
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Figure 8: The computational costs in terms of runtime for the different parameter selections shown in Figure
6 increase linearly for all investigated parameter values (for the linearly increased parameter values from the
parameter study). The calculation of reasonably good word embeddings models takes around one hour for
the given dataset on the machine described in Section 3. Note that not all word embeddings models have
been calculated in a sequential order of time. Thus, we can exclude cache effects.

the synset of the evaluation thesaurus. False negatives
(FN) are present in the synset of the evaluation thesaurus,
but not in the result lists. First, we use k=30 as the
intermediate result list length.

Table 4: The synsets returned by our intersection
method for the target words Abwrackprämie
(scrapping bonus) and Arzt (doctor). Here, the
intersection of the result lists calculated from five
different word embeddings models on our training
corpus has been carried out (word embeddings
models with iterations parameter I=20 to I=15 from
the parameter study).

Tax law-specific example:
Abwrackprämie (scrapping bonus)

Abwrackhilfe (scrapping help)
Umweltprämie (environmental bonus)

Prämie (bonus)

General example (unspecific to legal domain):
Arzt (doctor)

Zahnarzt (dentist)
Chefarzt (chief physician)

Facharzt (consulting physician)
Rechtsanwalt (lawyer)

Assistenzarzt (assistant doctor)
Oberarzt (senior physician)

Tierarzt (veterinarian)
Kassenarzt (preferred provider)

Laborarzt (camp physician)
Krankenhausarzt (hospital physician)

In Figure 9, we present the precision/recall curves for
successively more intersection steps. The points labeled
with 20 represent the precision recall values comparing the
evaluation thesauri with a fixed number of results for a
target word. This is equivalent to an approach using a
fixed synset size and serves as a baseline. The other
precision/recall data points are calculated by intersecting

the results from the models with 20, 19, 18, etc. iterations.
For I = 19, two lists are intersected obtained from the
models with 20 and 19 iterations. Subsequently, result
lists from one additional word embeddings model are
included per data point. All used models were calculated
during the parameter study described in Section 5.

The more that result lists are intersected, the better the
precision. The increasing precision reflects the opinion of
experts that intersected result lists are much better than
fixed length synsets calculated by word2vec and cosine
similarity. The recall drops slightly, which can be expected,
because the more lists are intersected the fewer entries
remain in the final result lists, and a suitable trade-off
needs to be chosen. The overall low values of the precision
stem from the large number of false positives, cf. Table 5,
i.e. results obtained by the word2vec approach, but not
present in the thesaurus. Remember that a manually
maintained thesaurus is not complete. For example, many
spelling errors in the corpus are not reflected in the
thesaurus. Since the creation of a high-quality thesaurus
by humans is difficult and expensive, it cannot be excepted
that all sensible synonym relations for a huge corpus are
present in the thesaurus. We therefore show real results
obtained using the intersection method from the corpus for
two exemplary target words from our training corpus, in
Table 4 (one tax-law specific example and one general, not
law-specific example).

The precision values are very low, but an optimization of
the precision values is not the goal here. The relevant
measure is the change in precision (and recall). Also, the
parameter k (the size of the intermediate result list
lengths) needs to be chosen manually. We conducted a
parameter study on the parameter k, see Figure 10. The
recall drops quite a lot in the beginning, but then stabalizes
for k>30 while the precision continues to increase.
However, the larger the individual result lists become, the
more computing resources are necessary to calculate the
intersections. Again, a good trade-off needs to be chosen.



Table 5: The detailed F1-Score (F1), precision (P)
and recall (R) values for the results depicted in
Figure 9 for N=250. For I=20 no intersections have
been calculated (baseline), for I=15 intersections of
the result lists from five different word embeddings
models have been computed. True positives (TP),
false positives (FP) and false negatives (FN) values
are listed. The precision values are very small,
because of the high number of false positives, which
reflects that word2vec returns much more words
than a human made thesaurus contains. Note that
high precision and recall values are not the goal
nor necessary for this evaluation, but the relative
improvement. In fact, it is desired to find additional
relevant words for inclusion in the thesaurus.

I F1 P R TP FP FN
CBOW
20 0.051 0.027 0.543 475 17135 399
19 0.060 0.032 0.538 470 14376 404
18 0.064 0.034 0.535 468 13246 406
17 0.067 0.036 0.532 465 12515 409
16 0.069 0.037 0.524 458 12002 416
15 0.070 0.038 0.519 454 11599 420
14 0.072 0.039 0.517 452 11267 422
13 0.073 0.039 0.514 449 10963 425
12 0.075 0.040 0.513 448 10687 426
Skip-gram
20 0.052 0.027 0.553 483 17127 391
19 0.060 0.032 0.538 470 14212 404
18 0.065 0.034 0.530 463 12974 411
17 0.067 0.036 0.522 456 12198 418
16 0.069 0.037 0.515 450 11653 424
15 0.072 0.038 0.514 449 11232 425
14 0.073 0.039 0.508 444 10852 430
13 0.075 0.040 0.505 441 10506 433
12 0.076 0.041 0.497 434 10167 440

8. DISCUSSION & LIMITATIONS
Building synsets by intersecting result lists from word

embeddings models calculated with different parameters is
a good step towards an automated creation or extension of
thesauri. However, there are several limitations to the
overall process. An open question remaining is the
selection of the different word embeddings models that are
used to calculate intersection lists. An efficient approach
for creating different word embeddings models would be to
dump word embeddings models at checkpoints with the
iterations parameter. After each iteration, a word
embeddings model could be saved to disk. However, the
word2vec algorithm does not support check-pointing (i.e.
resuming training after stopping the algorithm) out of the
box. Other implementations, such as gensim, do support
check-pointing. In our experience, the intersections from
word embeddings models calculated with varying more
than one parameter give better results. This might be due
to larger variation among word embeddings models that
differ in multiple parameters (for example, iterations and
vector size). However, we did not evaluate this in a
structured fashion. Also, we did not evaluate the results
with experts in a structured way. This is an important
next step for the future. Another issue for the automated
creation of thesauri from scratch is that with the
intersection method we can calculate synsets for given
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Figure 9: The precision recall curves show promising
results for our intersection method. The upper
graph shows the results for the CBOW model,
the lower graph for the Skip-gram model. In
both graphs, each data point is labeled with the
iterations parameter (I) that the corresponding -
additionally included - word embeddings model has
been calculated with. For I=20 no intersection
between result lists for the words of the synset has
been calculated yet. For M=19 the intersection
of the result lists from I=20 and I=19 have been
computed. Subsequently, more and more result
lists are intersected from the word embeddings
models with I=18 to I=12 iterations. More
intersections lead to significant increased precision
while the recall only drops slightly. Please note the
description for Table 5 regarding the low precision
values. Best viewed in color.

words, but we did not tackle the problem of selecting the
target words for which synsets are to be calculated. The
word2vec implementation comes with a clustering
algorithm that can be used to identify different clusters of
synonymous words. However, the question of which
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Figure 10: We evaluate the size of the result lists
that are the input to our intersection method. Up
to k=40 the recall drops and stabalizes for k>40
while precision and F1-Score constantly increases.
A decent size of final synonyms that are presented
to humans to consider an inclusion in the thesaurus
is desirable. Therefore, we suggest to use a value
of k around 30 to 40 for this particular corpus and
thesaurus and can report a 50 percent improvement
in F1-Score. Larger values of k lead to even larger
percental improvements. Best viewed in color.

clusters can be considered relevant remains. For a practical
application in a search context, one starting point could be
to find synsets for the words in the most frequent search
queries from the users. Search query expansion methods
based on word embeddings could overtake the manual
creation of thesauri in many cases. However, the manual
creation of a thesaurus allows for more manual control over
search results.

Note that the word2vec implementation is deterministic in
the sense that the exact same corpus and parameter selection
results in identical word embeddings models.

In our experience, abbreviations tend to give very bad
results using our approach. We believe that using existing
abbreviation lists is the better option in this case. Besides
abbreviations, open compound words (terms consisting of
multiple words) are problematic, too. Calculating all
combinations of multiple words is very time- and
resource-intensive for large corpora. One solution is to
convert known open compound words as single tokens
before entering them into the word2vec algorithm. Open
compound words can be detected, for example, using the
phrase2vec algorithm and implementation that ships with
the word2vec implementation.

So far, we did not use any sufficiently reliable word sense
disambiguation algorithm in our approach (such as
POS-tagging). Hence, each token can map only to one
vector for all meanings. Moreover, our approach sometimes
has interesting effects on the meaning of individual words.
For example, the result list to the word doctor yields a list

of mostly different types of doctors (dentist, chief of
medicine, ENT physician and the alike, where the
corresponding German compound words are closed
compound words). In contrast to this, the result list for
the word physician returns all sorts of different job types,
for example, lawyer, teacher and the alike. We also did not
include antonyms or a discrimination of synonyms and
other types of relations in thesauri.

9. CONCLUSION & FUTURE WORK
We investigated an approach to extending thesauri for a

large German tax law text corpus based on word
embeddings, in particular with word2vec. These newly
detected relations can be presented to experts for possible
inclusion in the thesaurus. We use a large existing,
manually and specifically for this corpus maintained,
thesaurus to identify good parameters for word2vec. We
introduced a novel intersection method that intersects
result lists of related words calculated by word2vec and
cosine similarity for given target words. We showed that
the intersection method returns synonym sets with higher
F1-score and precision. The intersection approach provides
an elegant solution to mitigate the problems associated
with fixed length or threshold based approaches to decide
on synset sizes.

For the future, an interesting question is to understand
and quantify the impact of extending the corpus before
entering the word2vec algorithm. It remains unclear why
certain resulting synonym sets encompass certain specific
meanings (doctors are related to different types of doctors
and physicians are related to other professions). Related to
that, a word sense disambiguation could significantly
improve the quality of resulting synonym sets. We plan to
include label propagation approaches based on word
embeddings and to evaluate results with experts. Finally, a
feasible solution to deal with open compound words
(n-grams) and the automated selection of target words
(words that synsets will be calculated for) are important.
Different similarity measures, investigated for
distributional thesauri methods, for example by Bullinaria
and Levy 2007 [2], could be investigated. Finally, it will be
necessary to evaluate the suitability of additionally
suggested synonym relations by our approach with humans.
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