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Abstract

Research and development in the FIDE project on Fully Integrated Data Environ-
ments has led to the concept of Persistent Object Systems (POS) which generalize
database systems by re-interpreting schemas as type definitions and databases as
typed variables in addition to treating lifetime as a type-independent property. Fur-
thermore, FIDE develops uniform linguistic interfaces for data modelling, computa-
tion and communication, and extends database, programming and communication
technology to enable integrated application development based on interoperating
POSs.

As a consequence of such an integrated view, formerly disjoint concepts such as
databases, program and module libraries, files or repositories can now be treated
uniformly as POSs differentiated essentially by the types of objects they contain
and by the operational abstractions they provide.

Based on state-of-the-art database technology, this paper outlines FIDE results
in extending databases and providing the integrated technology considered necessary
for the construction and maintenance of Persistent Application Systems. Since our
main goal is to improve substantially a system’s capability of persisting successfully
over time in changing environments, particular emphasis will be placed on systems
scalability and its consequences for POS interoperability.

1 Introduction: Application Development in Fully Integrated
Data Environments

Successful application development nowadays is rarely based on extensive coding of ap-
plication programs. Instead, there is a strong tendency to application systems modelling
by exploiting the services provided through open and modular environments already pop-
ulated with prefabricated and packaged functionality and information. Examples of such
environments are databases, function libraries and module repositories.

This shift in application development has motivated service suppliers to improve their
market by providing safer and functionally extended servers, in addition to allowing service
consumers to conveniently buy functionality and information by simply specifying their
needs (— and paying for it). However, since such services are developed independently
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of each other with widely varying conventions on naming, typing, binding and whatever
else may describe their interfaces, application developers who wish to exploit multiple
services within a single application find themselves working in quite complex and finally
unfriendly and unsafe environments. Examples are interfaces between C programs and
SQL databases, window system or RPC packages.

In the ESPRIT Basic Research project FIDE our response to the situation sketched
above is the development of a technology for Fully Integrated Data Environments. Central
to the FIDE Research and Development is the concept of Persistent Object Systems (POS)
which can be seen as a generalization of database systems along the following lines:

e re-interpreting database schemas as type definitions and databases as typed vari-
ables,

o treating lifetime as a property of computational objects which is independent of
their type,

e developing uniform linguistic interfaces for data modelling, computation and com-
munication,

o extending database, programming and communication technology to enable inte-
grated application development based on interoperating POSs.

As a result of such a generalized view, formerly disjoint concepts such as databases,
program and module libraries, files or repositories can now be treated uniformly as POSs
differentiated essentially by the types of objects they contain and by the operational
abstractions they provide.

Persistent Object Systems are required to provide the basis for characteristic interop-
eration needs such as:

o Persistent Object Management: Objects which outlive program executions or ex-
ist independently of any application impose specific requirements on their naming,
scoping and binding mechanisms. Such mechanisms have to cope not only with the
fact that object creation and object use may happen at different times but also on
different platforms using diifferent tools.

e Data and Function Control: Within a single language, important classes of con-
straints on data and functions can be expressed by various type systems and for
many of them there exist efficient algorithms to prove constraint satisfaction. Sim-
ilarly, language-independent mechanisms have to be provided for persistent objects
shared across platforms.

o Generic Interfaces and Functionality: The degree of re-usability of Persistent Object
Systems is strongly correlated with the genericity of the services offered by the POS.
Querying, report generation, form management, sorting and searching are examples
of services accomplished best by instantiating generic algorithms with type-specific
arguments. On the system level, substantial portions of interoperation protocols,
e.g. link functions or marshalling procedures, can be obtained by providing gener-
ators with object signatures and platform specific information.



This presentation outlines FIDE results in providing the integrated technology consid-
ered necessary for the construction and maintenance of Persistent Application Systems as
interoperating POSs. Section 2 reports briefly on the state-of-the-art of the integration
and distribution technology developed in the context of Database Management Systems.
The scope of the discussion is widened in section 3 by outlining a framework for in-
teroperability across a variety of services represented by Persistent Object Systems. A
specific environment for database programming with particular emphasis on interoperabil-
ity across sites, languages and platforms is discussed in section 4. The paper concludes
with a short reference on requirements for open communicating environments®.

2 Overview: Distribution and Integration of Database Func-
tionality

The success of Database Management Systems (DBMS) as commercial software products
lies principally in their well-packaged functionality required by many bulk data processing
applications: controlled persistent storage and optimized concurrent iteration. Although
the concentration on a particular, well-chosen functionality is a major cornerstone of
the DBMS success, it also contains the roots for its limitations. Marketed as closed,
sealed servers, DBMSs contribute little to the interoperability across services. DBMSs
interoperate with other systems only through their built-in interfaces which are either
limited in functionality (e.g. SQL) or low in technology (e.g. cursor interfaces). Therefore,
applications which require a variety of services, e.g. for objects on disk, on the screen, in
memory or on wire, usually end up in low-level interface coding on the basis of strings,
addresses and error codes.

On the other hand, in recognition of this shortcoming the database community is fur-
ther improving interoperability between databases. This work can be classified roughly
as covering two dimensions: the vertical dimension addresses interoperability issues be-
tween components of one logically related database transparently managed by a DBMS
distributed over the sites of a network, while the horizontal dimension researches interop-
erability in the setting of multiple independent databases.

In this section we provide a short overview of the state-of-the-art of both dimensions
in addition to reporting on research in the combined areas of distributed multidatabases.
In the subsequent sections we open the discussion and outline a framework for interoper-
ability across a variety of services, present a particular system for interoperable database
programming and conclude with requirements for open communicating environments.

2.1 Databases as Distributed Systems

A distributed database (DDB) is a collection of multiple, logically interrelated databases
distributed over a computer network [6\/91, OV93]. A distributed database management
system (DDBMS) is then defined as the software system that manages a DDB transpar-
ently according to the following assumptions:

e Data are stored at a number of sites. Each site is assumed to consist logically of a
single processor.

e The processors at individual sites are interconnected by a computer network thereby
realizing a loose interconnection between independently operating processors.

!Earlier versions of the material presented in this paper can be found in [SM93, OV91, MS91]



e Data in a DDB are logically connected by relationships defined according to some
structural formalism and accessed at a high level via some common interface (e.g.
the relational model and its query languages).

e The system has the full DBMS functionality. It is neither a distributed file system
nor a transaction processing system [Ber90].

These assumptions are valid for today’s technology. Most of the existing distributed
systems are built on top of local area networks with sites consisting of a single computer.
However, next generation DDBMS environments will include multiprocessor database
servers connected to high speed networks linking them and other data repositories to
client machines that run application code as well as participating in the execution of
database requests [Tay87, K189, ZM89].

A distributed DBMS as deﬁned above is only one way of providing database manage-
ment support for a distributed computing environment. In [OV91] a working classification
of possible design alternatives was presented distinguishing three dimensions: autonomy,
distribution, and heterogeneity.

e Autonomy refers to the distribution of control indicating the degree to which indi-
vidual DBMSs can operate independently. It involves factors such as information
exchange between component systems, independent transaction execution, and the

degree of individual DBMSs modification.

e Distribution deals with data. Usually two cases are considered: physical data dis-
tribution over multiple communicating sites or data concentration at only one site.

o Heterogeneity in distributed systems ranges from hardware heterogeneity and differ-
ences in networking protocols to variations in data managers. DBMS heterogeneity
relates to data models, query languages, interfaces, and transaction management
protocols.

Distribution is identified as one of the major characteristics of next-generation database
systems, which will be ushered in by the penetration of database technology into new ap-
plication areas with different requirements than traditional business data processing and
the technological developments in computer architecture and networking. The nature of
distribution in next generation DBMSs is a controversial issue. There are a number of
documents that attempt to define alternative positions [SSU90, ABW*90, SRL*90, Sto90]

all sharing at least the following two characteristics:

e Data model extension: Future data models need to be more powerful than the
relational one, yet without compromising its advantages (data independence and
high-level query languages). When applied to more complex applications such as
CAD/CAM or software design the relational model exhibits severe limitations in
terms of complex object support, type system and rule management. To address
these issues, three important technologies, persistent polymorphic languages, object-
oriented databases and knowledge base management are currently undergoing heavy
research.

e Improved interoperability support: An expected consequence of applying database
technology to an extended range of application domains is the proliferation of differ-
ent, yet complementary, DBMSs and other generalized information services. Thus,



interoperability of such systems within a computer network becomes increasingly
important. Fully integrated data environments require significant improvements in
interoperability. In the following subsections, interoperability is addressed in more
detail showing that it is receiving increasing attention in the joint community of
databases and programming languages.

2.2 Integrated Views on Multiple Databases

As already indicated above, a multidatabase organization is an alternative to logically inte-
grated distributed databases. The fundamental difference between the two is the degree of
autonomy afforded to the component data managers at each site. While the independent
DBMSs may have, for example, facilities to execute transactions, they have no notion of
executing distributed transactions that span multiple components (i.e., they do not have
global concurrency control mechanisms or distributed commit protocol implementation).
The integration issue of multiple databases definitely deserves more space than available
in this paper. In this subsection, we concentrate on issues of global database schema
management and highlight some of the potential of object-oriented software for systems
with high autonomy .

2.2.1 Global Schema Definition and Management Issues

The arguments against full transparency gain more weight in multidatabase environments.
The additional autonomy of individual components and their potential heterogeneity make
it more difficult (some claim impossible) to support full transparency. A major difficulty
relates to the definition of a global conceptual schema (GCS) as a specification of the
structure and constraints of the global database. The definition and role of the GCS is
well understood in the case of integrated distributed database systems: it defines a logical
single image over physically distributed data. The same clear understanding does not exist
in the case of multi-DBMSs with autonomy [SY90]. One way the integration issue can
be tackled is to treat the global conceptual schema as a generalization defined over local
conceptual schemas. Studies along this line have been conducted before [MB81, DW84]
and their practical implications with respect to transparency need to be reconsidered.
Finally, there are arguments that the absence of a GCS may be a significant advantage
of multi-DBMSs over DDBMSs [LA87]. A language sufficiently powerful to access multiple
databases without defining a GCS is presented in [LA8T]. A significant research problem is
the nature of such multi-DBMS languages. Problems with languages that are as powerful
as the union of the component ones arise, as discussed in [SY90], with non-standard query
operators of component DBMSs or with component DBMSs providing different interfaces
to general-purpose programming languages. A solution may lie in extensible languages.

2.2.2 Object-Orientation and Multidatabase Interoperability

A central issue is the development of software technology that can deal inherently with
autonomous system components. A prime candidate technology is object-orientation.
Here we only comment on its role in addressing the interoperability issues. Object-oriented
systems treat the entities in their domain typically as instances of some abstract type. In
the case of database systems these entities are usually data objects. However, it is quite
common for object-oriented models to treat every entity uniformly as objects. Thus, for
example, interface definitions, user queries, or programs are considered objects in certain



object models and the technology is primarily concerned with providing the necessary
tools and methodology for the consistent management of such entities.

Applying object-orientation to interoperability leads to the systematic and abstract
treatment of autonomous DBMS components as software objects which can interoperate
only through well-defined interfaces. There has been some initial work on the requirements
of such interoperation interfaces [Man90, SY90, HZ90], an issue which clearly needs and
deserves further investigation.

2.3 Database Interoperability: Multiple Databases in Distri-
buted Environments

Finally, since multiple databases are expected to be available in distributed environments,
the two problem spaces sketched above cannot be treated independently. This subsection
outlines some of the issues raised when queries and transactions are run against multiple
databases in distributed environments and concludes with a short reference to standards
and their relevance for interacting autonomous systems.

2.3.1 Query Processing

The autonomy and potential heterogeneity of component systems create problems in query
processing and optimization. A fundamental difficulty is global optimization when local
cost functions are not known and local cost values cannot be communicated. Proposals
have been made to concentrate on semantic optimization based only on qualitative infor-
mation [SY90], however, semantic query processing is not fully understood either. There
seems to be a great potential for hierarchical query optimizers which perform some global
query optimization and leave it to each local system to perform further optimization on
the localized subquery. Although this partitioning may not lead to optimal solutions, it
will improve the tractability of the optimization problem. The emerging standards may
also make it easier to define global cost models as well as share cost information.

2.3.2 Transaction Processing

For transaction processing in autonomous multi-DBMSs, the following consensus on a
global transaction execution model seems to emerge: Each component DBMS has its
own transaction processing services (i.e., transaction manager, scheduler, recovery man-
ager) and is capable of accepting local transactions and running them to completion. In
addition, the multi-DBMS layer has its own transaction processing components (global
transaction manager, global scheduler) in charge of accepting global transactions accessing
multiple databases and coordinating their execution.

Autonomy requires that global transaction management be performed on top of the ex-
isting local transaction execution functions. Heterogeneity has the additional implication
that the transaction processing components involved may employ different concurrency
control, commit, and recovery protocols and the coexistence of local and global trans-
action further complicates scheduling [BS88]. If serializability is used as the correctness
criterion, it has to be ensured that the serialization order of global transactions at each site
are the same. Some solutions use global serializability of transactions as their correctness
criteria (see, e.g., [Geo91, BS88]) while others relax serializability (e.g., [DE89, Bar90]).

A turther difficulty is the development of reliability and recovery protocols for multi-
DBMSs and their integration with concurrency control mechanisms. Even though the



topic has been discussed in some recent works [BO91, Geo90, WV90], these approaches
are initial engineering solutions.

2.3.3 Autonomy and Standards

Probably one of the fundamental impediments to further development of distributed mul-
tidatabase systems is the lack of understanding of the nature of autonomy. An initial
characterization that has been made identifies three different forms of autonomy: design
autonomy, communication autonomy, and execution autonomy. Other characterizations
have also been proposed [GMKS88]. Furthermore, most researchers treat autonomy as if
it were an all-or-nothing criterion and not as a range of possibilities. It seems essential to
precisely

e isolate a range of autonomy levels
o identify, on each level, the appropriate degrees of database consistency
e define transaction models appropriate for different levels of autonomy.

This might lead to a layered interoperability architecture for autonomous and possibly
heterogeneous DBMSs, similar to ISO Open System Interconnection. Some work along
this line is already under way within the Remote Data Access (RDA) standard, possibly
improving substantially the development of practical solutions to DB interoperability.

3 Towards Fully Integrated Data Environments

Generalizing from database applications leads to the conclusion that application devel-
opment benefits greatly from an integrated technology which supports modularized per-
sistent systems and generalized module definition and management. In this section we
present a higher-order core language which, essentially by modularizing name and binding
spaces, supports module definition and interaction in the presence of module persistence.
Reference is made to Modula-2 [Wir85], to DBPL [SM91, MRSS92a], a modular Database
Programming Language with persistence, and to Tycoon [MS92, Mat93], which is used
as a conceptual basis for our core language.

3.1 Modularity: The Basis for Interoperability

Based on the experience with Modula-2, the Database Programming Language DBPL ex-
ploits the power of modular programming and module management for data-intensive and
long-lived applications. DBPL programs are structured into modules with well-defined
import /export relationships. Definition modules provide signatures for type, value and
location? bindings defined in implementation modules. Program modules export a single,
parameterless function value, the main program.

An interface and a skeleton DBPL module exporting basic data types and values to
handle telephone numbers would look as follows:

2Locations are the conceptual basis for sharing and updates. In this paper, however, we do not discuss
the subtle type issues related to location bindings. The interested reader is referred to [SM93].



implementation module Phone;

procedure operator(prefix :Number) :Number;
begin ... return ... end operator;

begin (* module initialization: *)

definition module Phone;
type Number = array [0..20] of char;
var localPrefix, myNr :Number;

Pl‘((;cle;zlure operator(prefix:Number):Number; local Prefix:= “4940”;
en one. myNr:=concat(localPrefix, “85312” );
end Phone.

During type checking of these compilation units, the DBPL compiler extracts type and
value signatures from the definition module and verifies that the bindings defined in the
implementation module match their corresponding signatures. In the next section we
introduce a conceptual model that allows us to explain this process and the compila-
tion of client modules against a compiled interface in more detail. This level of detail
is required to generalize the simple Modula-2 module mechanism to distributed, multi-
language database environments (see Sec. 4).

3.2 A Core Language for Fully Integrated Data Environments

In this section we introduce (informally) a model to describe the naming, typing and
binding concepts involved in Persistent Object System interoperability. The model itself
(subsequently referred to as the Tycoon POS model) is based on concepts of higher-order
type systems and is sufficiently expressive to serve as a language-independent framework
for program translation, generation and binding. The presentation of the actual DBPL
system and its gateways in the following sections makes use of a limited subset of the
Tycoon POS model. The potential of the full model is discussed in [MS93].

The Tycoon POS model is based on the notion of types, signatures, values and bind-
ings. Types are understood as (partial) specifications of values. Values and types can be
named in bindings for identification purposes and to introduce shared or recursive struc-
tures at the value and the type level. Signatures act as (partial) specifications of static
and dynamic bindings. Bindings are embedded into the syntax of values, i.e. they can be
named, passed as parameters, etc.

The syntax for types includes a set of base types B; (Int, Real, String, ...), a type
constant Any (the trivial type), user-defined type variables, function types, aggregated
signatures, parameterized type expressions (type operator definitions) and type operator
applications:

Type::= B; | Any | TypeName | Fun(Signatures) Type | Sig(Signatures) |
Oper(Signatures) Type | Type(Bindings)

Function types are used to describe the signatures of parameterized objects like functions,
procedures, methods, generators or relational queries. Aggregated signatures are used to
describe the signatures of language entities like records, tuples, structures, modules, object
definitions, database definitions, or object files.

Type operators denote parameterized type expressions that map types or type opera-
tors to types or type operators. Many programming languages have built-in type operators
that map types to types (Array, List, File, Pointer, ... ).

Signatures are sequences of value, location or type signatures. A value signature
associates a value name with a type (peter :Student). A type signature associates a type
name with a supertype specification (Student <:Person).



Signatures::= {TypeSig | ValueSig | LocationSig}
TypeSig::= Name <:Type ValueSig::= Name :Type LocationSig::= var Name :Type

Aggregated signatures are used to describe named declarations as they occur in function
headings, module signatures, external declarations in C programs or in database schema
definitions.

Signatures specify invariants on bindings and allow the verification of the correctness
of (value or type) expressions depending on names without having access to the actual
binding in which the name is defined. For example, based on the signature age :Int, the
type-correctness of the expression age + I can be verified without having access to the
actual value bound to age. Signatures therefore play a central role in type-safe module

systems.
The syntax for values includes base values b;; : B;, like 0, 3.4, “xyz”, true, a canonical
value of the type Any, function values including built-in functions like +, —, * of type

Fun(x Int y: Int) Int and user-defined functions and aggregated bindings:
Value::= b;; | any | fun(Signatures)Expr | bnd(Bindings)

The syntax bnd(Bindings) defines that aggregated value and type bindings are first-class
values, generalizing classical concepts like value, function and type aggregation in records,
structures, abstract data types or modules. The syntax of expressions in functions is
deliberately not specified here in order to be able to describe POS involving multiple
languages.

Bindings are sequences of type, value and location bindings. A type binding Age=Int
defines a name for a type. A value binding pi=3.1415 defines a name for a value.

Bindings::= {TypeBnd | ValueBnd | LocBnd}
TypeBnd::= Name=Type ValueBnd::= Name=Value LocBnd::= Name=var(«;) Value

Bindings model type, constant, variable and function declarations in programming lan-
guages and instances of database schemas in database systems.

As usual, types are intended to classify values, and signatures are to classify bindings.
Moreover, it is possible to define generic functions (functions that take type bindings as
arguments), value-dependent type operators, abstract data types (bindings that contain
partially-specified type components and operations on that type). The formal type rules
for this model (defining well-formed types, the types of values, the subtype relationship
between types and the signatures of bindings) become therefore quite subtle.

In traditional systems, types and signatures are handled exclusively at compile-time,
while values and bindings only appear at run-time. In persistent systems, the distinction
between compile-time and run-time blurs, and it becomes possible, for example, to inspect
value and type bindings at compile-time, giving rise to powerful reflective algorithms
[SSST92].

We now return to the DBPL example presented in section 3.1 and demonstrate how
its modules are modelled in the Tycoon POS model:

CompileEnv = Sig(Phone <:Sig(Number <:array...
var localPrefix :Number var myNr :Number operator :Fun(prefix :Number) Number)
linkPhone :Fun(imports :Sig()) Phone)

The definition module is represented as a type signature which associates the interface
name Phone (understood as a type variable) with a supertype that is an aggregate of all



types and values signatures exported by the interface. The implementation module is rep-
resented as a single function, linkPhone, that takes an aggregated binding of all imported
module values (in this case an empty binding) and returns a binding that conforms to the
interface signature Phone.?

The signatures of Phone and linkPhone are both elements of a flat name space mod-
elled by a signature bound to the type variable CompileEnv. In a typical DBPL system
implementation, this name space is managed implicitly via search paths to look up com-
piled interfaces, called “symbol files”.

The code generated for the implementation module Phone is stored as a named binding
in a flat name space that collects all compiled modules. This name space is represented
in the Tycoon POS model as a named value linkEnv whose type matches the signatures
specified by CompileEnv:

linkEnv = bnd(linkPhone=fun(imports :Sig()) ...)

This name space is also utilized by the DBPL linker to compose all module initialization
functions that make up an executable application program. The main module

module Main import Phone; ... end Main.

is represented by the following link function:

linkMain :Fun(imports :Sig(phone :Phone)) Main

It leads to the following module initialization sequence:

initEnv=bnd/()
phoneE=init EnvU{phone=linkEnv.linkPhone(initEnv)}
mainE=phoneEnvU{main=linkEnv.linkMain(phoneE)}

3.3 The Potential of Persistent Objects

This section demonstrates how the concept of orthogonal persistence [AB87] as found in
DBPL extends the potential for interoperability along two new dimensions: sharing over
time and sharing between multiple users.

DBPL introduces the notion of a persistent module (database module) to define per-
sistent location bindings in a strongly-typed programming environment. For example, the
following local changes marked by underscores are sufficient to turn localPrefix and myNr
into persistent variables (compare Sec. 3.1).

database definition module Phone; implementation module Phone;
.. (*see Sec. 3.1 %) ... (*see Sec. 3.1 %)
end Phone. database definition begin

localPrefix:=“4940”;
myNr:=concat(localPrefix, “85312” );
end Phone.

3As we will see later, we would lose some modelling precision if we were to treat the implementation
module as a simple binding of type Phone.



The compilation of these modules defines a collection of signatures that is identical to
the non-persistent environment CompileEnv defined in Sec. 3.2. The import semantics
of persistent modules differ from volatile modules: the link-time execution of the module
initialization code linkPhone of a persistent module does not return a new set of bindings
to newly created process-local locations (copy semantics), but returns bindings to loca-
tions that are shared between all programs importing the persistent module (reference
semantics). Therefore, side effects created by one application on persistent variables are
visible to other applications importing the same persistent module:

module Mainl import Phone;
begin Phone.localPrefix:= “004940” end Mainl.

module Main2; import Phone;
begin Phone.localPrefix:=concat(Phone.localPrefix, “-”) end Main2.

The sequential execution of Mainl and Main2 would lead to the following location bind-
ings:

bnd(localPrefix=var(a; ) “004940-” myNr=var(«a;)“494085312”
operator=fun(prefix :Number)...)

The statement sequence marked by the keywords database definition begin is executed
only once during the lifetime of the database module Phone, namely before it is imported
for the first time into a DBPL application program.

The main advantages of persistent modules lie in overcoming the naming, typing and
genericity problems associated with file-based solutions [SM93] without introducing ad-
ditional linguistic complexity in the programming environment. Since the name space
populated by database modules is not only persistent but also shared between several
programs, it is necessary to ensure that destructive updates of persistent data struc-
tures performed by concurrent applications are performed atomically to handle system
and program failures graciously. Therefore, DBPL supports user-defined (parameterized)
transactions to handle the concurrency-control, recovery and integrity issues based on
standard database transaction models.

4 DBPL: An Interoperable Database Programming Environ-
ment

A modular environment with persistence and sharing is particularly suited to support
long-lived applications which need large collections of data. Since, over time, such appli-
cations have a strong tendency to extend functionality and to proliferate information, they
also require scalability into open and distributed environments. In this section we out-
line FIDE results in functionality extension and in interoperability support. We present
interoperability examples across database servers, programming languages and system
platforms.

4.1 Service Extension: Bulk Types in DBPL

In the process of building a POS, it is often necessary to handle large, dynamic homoge-
neous collections of objects (e.g., class extents). Furthermore, it is necessary to represent



relationships between object collections and to perform efficient, set-oriented update and
retrieval operations. Database systems have been designed to provide specific modelling
and system support for these tasks. Expanding on our running example, let us assume
that there is a need to register variable amounts of telephone entries composed of person
names and telephone numbers. This kind of information is adequately described by the
following relational database definition:

createdb SQLPhoneDB ...
create table register (name char(50), num char(21))

The language SQL provides simple, efficient, declarative read and write access to the
information held in the database (insert into table, delete from table, select ... from
...where ...). However, it turns out to be surprisingly difficult to access SQL databases
from application programs, e.g., to use the Fax service to send a message to every person
named “Smith”. We do not want to go into the detailed problems of SQL host language
embedding, but there arise numerous difficulties due to the differences in naming, typing
and binding between SQL and host languages such as C, Cobol or Ada (see [SM93] for
details).

DBPL overcomes these difficulties by using the persistence and modularization con-
cepts described in Sec. 3.1 in addition to extending the language by a generic bulk types
operator relation and predefined polymorphic operations on values of type relation. Due
to the orthogonality of the DBPL type system, it is possible to define a richer set of data
structures than it is possible in the classical relational model, however, this flexibility
is not required here [SM91]. The SQL database schema is represented by the following
persistent DBPL module:

database definition module PhoneDB; import Phone;
type Entry = record name :String num :Phone.Number end;
type Register = relation name of Entry;

var register :Register;

end PhoneDB.

Names have been assigned to all types to be re-usable in application programs importing
PhoneDB. 1t is worth noting that, of course, more than one database module can be
defined in a DBPL application, thus realizing the concept of multi-databases discussed in
Sec. 2.2. DBPL also provides a rich set of set-oriented update operators and an extended
relational calculus including recursion based on fixed-point semantics to express bulk

operations [ERMS91]:

register:+ Register{{ “John”, “2497}};
print(Register{each n in register:n.num> “240"});

DBPL has special (generic) type rules for the built-in relation operators, e.g., to capture
the fact that the set-oriented insertion operator “:+” can be applied to relations of arbi-
trary element type, as long as the right-hand side expression is also a relation of the same
element type. In [SM93] it is demonstrated how type operators of the Tycoon POS can be
used to capture accurately these built-in type rules for relation types. This formalization
is a only a first step towards a generalized type-safe handling of user-defined bulk data
types [MS91, MS93].



4.2 The DBPL/SQL Gateway

The DBPL language and system supports bindings to external persistent objects in addi-
tion to internal persistent DBPL objects [MRSS92b]. For example, the following modifi-
cation of the header of module PhoneDB binds the location variable register to an external

SQL relation register defined in an Ingres database named SQLPhoneDB:

database definition for Ingres module PhoneDB;
import Phone; ... var register :Register; end PhoneDB.

All DBPL statements and expressions referring to external relation variables are translated
fully transparently into SQL update and selection expressions submitted to the Ingres SQL
database management system. These SQL expressions typically take DBPL program
variables (value and location bindings) as arguments and return (set) values that are
converted appropriately for further processing within DBPL. For example, the query

if all n in register n.phone > x then ... end

is translated into a select from where SQL expression that uses the actual value stored
in the DBPL location x of type String. Depending on the cardinality of the set-valued
result, a boolean value is then returned to the compiled DBPL code.

It should be noted that DBPL can handle arbitrarily nested (possibly recursive) query
expressions that mix volatile relations, persistent DBPL relations residing in local or
remote databases and SQL database relations. Therefore, much care has been devoted
to develop evaluation heuristics that minimize data transfer and make best use of index
information available for individual relations. Evaluation strategies are not determined
at compile-time but depend on cardinality and index information available at run-time.

Again, a conceptually simple generalization of an existing programming language con-
cept suffices to overcome the interoperability deficiencies of todays database programming
interfaces that have developed in a system-driven, bottom-up fashion.

Although the system details of the DBPL/SQL gateway are quite delicate and often
require ad-hoc case analysis to achieve good system performance, this specific gateway
implementation follows a more general pattern that directly reflects the model of typed
programming languages in terms of types, signatures, values and bindings presented in
Sec. 3.2. Our general experience in extending a language L;,: by generic gateways to an
external language L., (i.e., to embed L., as a sublanguage of L;,;) is described in more
detail in [SM93]. Specific requirements can be stated on the type and expression syntax of
Ly and L.,y as well as on the tools for mapping signatures and bindings between L;,; and
Ly In the DBPL/SQL scenario this is achieved by using DynamicSQL, a set of library
routines shipped with the Ingres DBMS to create cursors and communication buffers to
convert Ingres values (element-by-element, attribute-by-attribute according to their type
structure) to DBPL values and to pass arguments (of scalar types) to SQL query strings.

Our work on gateway construction can be summarized by the experience that the task
is simplified considerably if the external functionality is provided through well-structured
libraries with abstract and “minimal” signatures, and not through extensive, “verbose”
(SQL-like) and informally described interfaces.

4.3 Cross-Language Interoperability

The most primitive (but also most common) form of cross-language interoperability is
achieved by having a standardized, language-independent link format (e.g., COFF of Unix



System V) that allows static bindings in a language L;,, to bind to values or locations
defined in another language L.;,. In this setting, L;,, is able to import from L.;,. The
next step is to define standardized, language-independent parameters passing conventions
that allow argument values or argument locations defined in L;,,, to be bound dynamically
to function parameters defined in L.;,. If the roles of L;,,, and L.;, can be interchanged,
full cross-language interoperability (including “call-back” mechanisms) is supported.

Since this interoperability takes place at the value, location and binding level only,
all naming and typing consistency control enforced by the use of type names, types and
signatures in compilers is effectively lost in this scenario.

The DBPL compilers for VAX, Sparc and Motorola architectures attack this problem
by providing the DBPL programmer with a mechanism to recover type and signature
information for external bindings via so-called foreign definition modules. For example,
the interface of the Fax module defined in Section 4.4 could be revised as follows to define
a FAX service implemented in the programming language C:

definition for C module Fax;
import Phone;

type Status = (error, busy, done); . ..
end Fax.

The compiler will enforce the consistent use of the bindings exported by the external Fax
package in all importing DBPL programs. For example, it would catch the following type
error in the application of the function Fax.dial that attempts to pass an integer value as
a string argument:

module SendFax; import Phone, Fax;
begin Fax.dial(853228);Fax.send(“Sample fax.” );Fax.hangup(); end SendFax;

The skeleton of a C-program to provide value bindings matching the signatures Fax looks
as follows.

typedef char* Phone_Number

typedef int Status

#define error ((Status) 0)

#define busy ((Status) 1) ...

Status Fax_dial(char® number){ ... }

Status Fax_send(char* text) { ... return done; ... }
void Fax_hangup() { ... }

Since relation types and relation operations are fully integrated into the DBPL language,
they can be freely combined with the cross-language binding mechanisms:

for each b in register :contains(n.name, “Smith”) do Fax.dial(n.num); end

It is also possible to call DBPL transactions on bulk objects from C.

4.4 Cross-Platform Interoperability
The distributed version of DBPL [JGL*88, JLRS88] exploits the basic module concepts

to add an additional layer of type-safety to standard remote procedure call mechanisms
(RPC) in federated client-server programming models.



To give access to a local fax service at a site called “CentralOffice”, this site would
compile the following remote definition module and then export the compiled description
(typically together with its source text for documentation purposes) only to those clients
on the network who are to be authorized to use the service.

remote definition module Fax for “CentralOffice”;
import Phone;

type Status = (error, busy, done);

procedure dial(number :Phone.Number) :Status;
procedure send(text :array of char) :Status;
procedure hangup();

end Fax.

In this scenario, signatures of compiled definition modules accumulated in the compila-
tion environment serve as protocol specifications. Frequently clients require distribution
transparency. In this case it is of considerable advantage if a main program

module SendFax; import Phone, Fax;
begin Fax.dial(“853228”); Fax.send( “Sample fax.” );Fax.hangup(); end SendFax;

stays textually unchanged whether it uses a local definition module Fax or the above
remote definition module Fax for “Central Office” offered by a server somewhere in the
network. This distribution transparency is achieved as usual by a client stub and a server
stub that marshal and unmarshal the arguments and results supplied to functions defined
in the remote definition module.

In terms of the Tycoon POS model, RPC-based communication mechanisms are an
implementation technology that enables the creation of function value bindings between
names in a client program and function values in a server program. Using plain RPC mech-
anisms it is not possible to directly define location bindings spanning machine boundaries.
In particular, we would have to revise the module interface Phone not to directly export
the locations localPrefix and myNr. However, using the concept of persistent variables
introduced in section 3.3 these restrictions are lifted in DBPL by the provision of truly
distributed persistent variables.

The crucial feature of DBPL is to retain (static) type safety across machine bound-
aries by maintaining a distributed compilation environment that allows local and remote
modules to share signatures for type checking purposes and to share module bindings for
transparent connection establishment.

5 Concluding Remarks

After seven years of development, the DBPL system has now reached a level of maturity
and interoperability that makes its linguistic abstractions readily available for implemen-
tors of non-trivial Persistent Object Systems on several hardware-platforms.*

From a research point of view, an interesting side-effect of this DBPL implementation
effort is an insight into repeating patterns of language and system extension requirements,
some of which are outlined in Sec. 4. Consequently, our current work in the Tycoon
project [Mat93, MS91, MS92] investigates languages and architectures that facilitate such
incremental, problem-specific extensions in a type-safe environment.

4The DBPL system is distributed by Hamburg University.



In contrast to DBPL, Tycoon takes a rather radical approach by not maintaining up-
ward compatibility with existing programming languages (Modula-2) and data models

(extended relational models). Also its internal protocols for store access, program rep-
resentation and linkage do not adhere to pre-existing standards. The rationale behind
the design of Tycoon is to provide a lean language and system environment that provides
just the kernel services and abstractions needed to define higher-level, problem-oriented
“languages” and “data models” and provide an “ideal” basis for systems extensibility and
interoperability.
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