Chapter 1.4
Bulk Types and Iterators

Florian Matthes

Technical University Hamburg-Harburg
Harburger Schlofistrafie 20
D-21071 Hamburg, Germany

A bulk type describes a homogeneous collection of values. These values are
described by another type which is given as a parameter to the bulk type
constructor. Many bulk types such as sets, lists and relations are already fa-
miliar and widely used in data-intensive applications. Additional bulk types,
like bags and multisets, can be defined either by system providers or by ex-
pert users. Languages with multiple bulk types have a higher potential for
problem-oriented data modelling. In particular, by using bulk types to de-
scribe data that resides in legacy databases one gains access to that data in
a convenient, consistent and safe manner.

The regular structure of bulk type instances can be exploited to pro-
vide high-level iteration abstractions for declarative access to bulk data. An
important topic in database language research is the development of strongly-
typed language constructs like queries, views or iterators that generalize the
successful iteration abstractions of relational algebra, relational calculus or
SQL to other bulk types. Problem-oriented iteration abstractions not only
increase programmer productivity but they can also be exploited to increase
system performance by enabling query optimization and tailored storage al-
location schemes. Furthermore, generic bulk types and iteration abstractions
greatly simplify the construction of user-oriented tools like database browsers
or ad-hoc query interfaces.

Several members of the FIDE consortium explored alternative strategies
for the provision of bulk types. DBPL [14] (synopsis in Chapter 2.1.2), O
[5] and Fibonacci (presented in Chapter 1.1.2) are all equipped with type-
complete bulk type constructors and a rich built-in query language over com-
plex values of these bulk types. Another strategy to provide bulk types in a
programming language setting is to reduce well-known complex-object query
languages to a small set of primitive operations and iteration abstractions
expressed as first-class abstract data types with polymorphic higher-order
functions [2, 17, 7, 15, 6, 10].

Motivated by the substantial progress in programming language generic-
ity and expressiveness as well as recent advances in object store technology,
members of the FIDE consortium also investigated an extensible approach
to bulk data support [12] (synopsis in Chapter 1.2.2) and [4]. This approach
aims at generalizing the expertise in language design and database system
construction from a fixed set of bulk type constructors to larger families of
collection types and to a broader range of services attached to collection types



Florian Matthes

such as integrity checking, data visualization and viewing mechanisms. This
add-on approach to bulk type and iterator support is based on the following
architectural and conceptual separation of tasks:

— Data-model-independent object stores provide persistence, concurrency
control and recovery abstractions over relatively simple, graph-structured
data. The object store interface has to find a balance between the need for
efficient bulk data access and the desire to support the implementation of
a wide range of bulk data structures. These issues are discussed in more
detail in Chapter 2.2.1 and 2.2.2.

— Abstract machine languages implemented on top of these object stores
are used as well-defined, minimal interfaces for (bulk) data access and
data manipulation. These canonical machine languages are generated by
language-specific compilers and provide an ideal starting point for inte-
grated program and query optimization as well as multi-platform language
implementations (see also Chapter 2.1.3).

— Persistent higher-order programming languages provide a uniform, strongly-
typed programming and interactive interface to volatile and persistent,
small-scale and large-scale bulk data. As described in Chapters 1.1.1 to
1.1.3, all FIDE languages are based on a common set of design principles
like uniform naming, strong typing, flexible R-value and L-value binding,
static scoping, orthogonal persistence and type orthogonality that also ap-
ply to the design and implementation of bulk types and iteration abstrac-
tions.

— Type-safe, generic bulk type libraries implemented in the FIDE languages
provide application programmers with prefabricated software components
for bulk data storage, iteration abstraction, bulk data input, formatted
data display, searching, sorting, integrity maintenance, etc. These bulk
type libraries are typically pre-populated by the language designer or con-
structed by expert programmers. Significant effort has been devoted at
both Hamburg and Glasgow Universities to the construction of extensi-
ble, but nevertheless easily understandable and efficient bulk type libraries
[3, 13].

— Extensible grammars, as developed in [8] allow library designers to provide
tailored syntactic forms for library-defined bulk types without compromis-
ing the simplicity, optimizability and security of the core language. As
described in more detail in Chapter 3.2.3, classical data description and
data manipulation languages can then be captured directly via types, type
constructors and polymorphic (higher-order) functions exported from bulk
type libraries.

The first paper in this Chapter investigates typing issues of bulk types. The
semantics of some bulk data models involves user-defined attributes like ele-
ment equality, ordering or other domain predicates. In this paper, a statically-
decidable typechecking scheme is presented where such attributes are part of



Bulk Types and Iterators

the bulk type which makes it possible to reject semantically incorrect bulk
operations already at compile-time.

The second paper raises the language and system design question whether
there should be built-in bulk types in database programming languages at
all. Instead, one could argue that bulk types should be realized exclusively
as user-definable add-ons to unbiased core languages with appropriate prim-
itives and abstraction facilities. The advantages and disadvantages of both
approaches are presented by distinguishing between elementary and advanced
bulk type support.

The last paper in this Chapter presents viewing mechanisms on type-
complete database objects and compares their semantics with object exten-
sion and role manipulation operations. All of these operations are identity-
preserving. The ability to provide multiple views on a database object and to
modify the structure of an object without invalidating its identity is crucial
to the management of bulk class extents and of class relationships [1]. This
work is also related to the concept of viewers developed in the FIDE project
and presented in [16].

Finally, several other papers in this collection should be referenced that
also make contributions to the research topic of bulk types and iterators.

The paper [9] (summarized in Chapter 1.1.3) investigates which sub-
typing rules should apply to bulk type constructors. For example, under
which circumstances is it safe to treat the type List(Student) as a subtype of
List(Person), assuming that Student is a subtype of Person?

Chapter 1.2.1 includes an explanation is given on how to implement type-
dependent bulk operations like the relational natural join using type-directed
reflective programming techniques.

Query optimization techniques for database programming languages where
bulk expressions can be nested and mixed freely with application code are
presented in Chapter 2.3.4 and Chapter 2.3.5 (synopsis of [11]), respectively.

Finally, the integration of legacy bulk data maintained outside the scope
of integrated database languages (in files or commercial databases) as typed
bulk data with iteration abstractions is described in Chapter 3.3.1 and 3.3.2.

References

1. A. Albano, G. Ghelli, and R. Orsini. A relationship mechanism for a strongly
typed object-oriented database programming language. In Proceedings of the
Seventeenth International Conference on Very Large Databases, pages 565-575,
1991.

2. M. Atkinson, P. Richard, and P. Trinder. Bulk types for large scale program-
ming. In Proceedings of the Kiev East/West Workshop on Next Generation
Database Technology, volume 504 of Lecture Notes in Computer Science, April
1991.



10.

11.

12.

13.

14.

15.

16.

17.

Florian Matthes

M.P. Atkinson, P.J. Bailey, D. Christie, K. Cropper, and P.C. Philbrow. Towards
bulk type libraries for Napier88. FIDE Technical Report Series FIDE/93/78,
FIDE Project Coordinator, Department of Computing Sciences, University of
Glasgow, Glasgow G128QQ, 1993.

M.P. Atkinson, P.W. Trinder, and D.A. Watt. Bulk type constructors. FIDE
Technical Report Series FIDE/93/61, FIDE Project Coordinator, Department
of Computing Sciences, University of Glasgow, Glasgow G128QQ, 1993.

. F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented

Database System: The Story of O2. Morgan Kaufmann Publishers, 1992.

. C. Beeri and P. Ta-Shma. Bulk data types, a theoretical approach. In C. Beeri,

A. Ohori, and D.E. Shasha, editors, Proceedings of the Fourth International
Workshop on Database Programming Languages, Manhatten, New York, Work-
shops in Computing. Springer-Verlag, February 1994.

. V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural recursion as a query

language. In Database Programming Languages: Bulk Types and Persistent
Data. Morgan Kaufmann Publishers, September 1991.

. L. Cardelli, F. Matthes, and M. Abadi. Extensible grammars for language

specialization. In C. Beeri, A. Ohori, and D.E. Shasha, editors, Proceedings
of the Fourth International Workshop on Database Programming Languages,
Manhatten, New York, Workshops in Computing, pages 11-31. Springer-Verlag,
February 1994.

. R. Connor, D. McNally, and R. Morrison. Subtyping and assignment in database

programming languages. In Database Programming Languages: Bulk Types and
Persistent Data, pages 363-382. Morgan Kaufmann Publishers, 1991.

L. Fegaras. Efficient optimization of iterative queries. In C. Beeri, A. Ohori,
and D.E. Shasha, editors, Database Programming Languages, New York Clity,
1993, Workshops in Computing, pages 200-225, 1994.

A. Gawecki and F. Matthes. Exploiting persistent intermediate code represen-
tations in open database environments. In Proceedings of the Fifth Conference
on Fxtending Database Technology, EDBT’96, volume 1057 of Lecture Notes in
Computer Science, Avignon, France, March 1996. Springer-Verlag.

F. Matthes and J.W. Schmidt. Bulk types: Built-in or add-on? In Database
Programming Languages: Bulk Types and Persistent Data. Morgan Kaufmann
Publishers, September 1991.

F. Matthes and J.W. Schmidt. System construction in the Tycoon environment:
Architectures, interfaces and gateways. In P.P. Spies, editor, Proceedings of
Euro-Arch’93 Congress, pages 301-317. Springer-Verlag, October 1993.

J.W. Schmidt and F. Matthes. The DBPL project: Advances in modular
database programming. Information Systems, 19(2):121-140, 1994.

D. Stemple and T. Sheard. A recursive base for database programming prim-
itives. In Proceedings of the Kiev East/West Workshop on Next Generation
Database Technology, volume 504 of Lecture Notes in Computer Science, April
1991.

K. Subieta, F. Matthes, A. Rudloff, J.W. Schmidt, and I. Wetzel. Viewers: A
data-world analogue of procedure calls. In Proceedings of the Nineteenth Inter-
national Conference on Very Large Databases, Dublin, Ireland, August 1993.
P. Trinder. Comprehensions, a query notation for DBPLs. In Database Pro-
gramming Languages: Bulk Types and Persistent Data. Morgan Kaufmann Pub-
lishers, September 1991.



