Towards a framework for managing architectural design
decisions

Manoj Bhat
Technische Universitidt Miinchen
Boltzmannstr. 3
Garching, Germany 85748
manoj.mahabaleshwar@tum.de

ABSTRACT

Software architecture is considered as a set of architectural design
decisions. The recent trends, both in research and industry, call for
improved tool support for software architects and developers to
manage architectural design decisions and its associated concepts.
As part of our ongoing work, we propose a framework for managing
architectural design decisions in large software-intensive projects.
Each component within this framework addresses specific use cases
including (a) extraction and classification of design decisions from
issue management systems, (b) annotation of architectural elements,
(c) recommendation of alternative decision options, (d) reasoning
about decisions’ rationale, and (e) recommendation of experts for
addressing design decisions. These components are planned to be
iteratively realized and evaluated using the design science research
approach. We believe that the realization of such a framework will
allow an architectural knowledge management systems to integrate
with the design, development, and maintenance phases to support
stakeholders not only to document design decisions but also to
learn from decisions made in the past projects.

CCS CONCEPTS

« Software and its engineering — Software architectures; De-
signing software; « Information systems — Decision support
systems;

KEYWORDS

Architectural design decisions, Software architecture, Framework

ACM Reference format:

Manoj Bhat, Klym Shumaiev, and Florian Matthes. 2017. Towards a frame-
work for managing architectural design decisions. In Proceedings of Euro-
pean Conference on Software Architecture, Canterbury, UK, September 2017
(ECSA’17), 4 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Over the past decade, there has been a paradigm shift in the rep-
resentation of software architecture. Instead of focusing on the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ECSA’17, September 2017, Canterbury, UK

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-x-XxxXX-XXXX-X/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Klym Shumaiev
Technische Universitidt Miinchen
Boltzmannstr. 3
Garching, Germany 85748
klym.shumaiev@tum.de

Florian Matthes
Technische Universitat Miinchen
Boltzmannstr. 3
Garching, Germany 85748
matthes@tum.de

result of the design process, that is, software design as an arti-
fact, software architecture is considered as a set of architectural
design decisions (ADDs) [6, 18] which leads to the creation of a
software design. This perspective can be considered as one of the
key advancements in software architecture research because design
decisions represent the rationale that motivates the selection of
architectural elements within the software design [8]. The repre-
sentation of design decision as a first-class entity in the software
architecture meta-model and realizing the fact that software design
is a complex decision-making process has engaged researchers in
borrowing and incorporating ideas related to how people make de-
cisions from philosophy, cognitive science, and sociology. There
has been a significant effort in understanding the decision-making
process in software architecture (How design decisions are made?)
which includes addressing research questions such as What is a
design decision?, Why was a design decision made?, When is a design
decision taken? and Who makes a design decision? [9, 25]. Further-
more, there have been noteworthy tool-support contributions for
systematically capturing design decisions to enable use cases such
as reuse, reasoning, and recommendations related to design de-
cisions [2, 7]. However, research addressing this topic is still in
the early phase of supporting software architects and developers
during the design decision-making process [9, 22, 26].

In this research endeavor, we aim to address some of the afore-
mentioned challenges related to ADDs by providing tool support
that could be integrated within software architects’ and developers’
working environment to (a) extract and reuse knowledge related
to similar design decisions made in past projects, (b) recommend
alternative architectural solutions that could be considered while
making design decisions, (c) highlight and reason about the ratio-
nale behind design decisions, and (d) recommend experts to address
specific design decisions. In this paper, we present how these use
cases can be addressed by realizing the independent components
within the proposed framework.

Since a major focus of our work lies in building components that
learn from design decisions made in past projects for providing
automation support, we emphasize on medium- and realization-
level decisions (cf. ADDs are made at different abstraction levels [11,
23]). These design decisions are less likely to be influenced by
projects’ business and political aspects and are typically captured
in disparate agile project management systems. Furthermore, we
make the following assumptions based on the past empirical studies:

(1) Software architects (SAs) do not take a rationalistic approach
but favor a naturalistic approach to decision making [22, 25].

(2) SAs make architectural decisions based on their expertise
and past experiences [22, 24].


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ECSA’17, September 2017, Canterbury, UK

(3) ADDs can be associated with quantifiable attributes such as
risk, cost, and time [12].

(4) The current state of the project and past project artifacts are
observable given a predefined domain model [3].

The contribution of our work will aid software architects and
developers (trainees, junior and newly recruited architects) in the
industry, first, to get accustomed to the assigned long-running soft-
ware projects by exploring and understanding design decisions that
were already made to address specific quality concerns, second, to
learn from design decisions that were made by other architects in
similar past projects, and finally, to encourage the culture of explic-
itly documenting or even labeling design decisions by highlighting
its benefits with regards to traceability and impact analysis during
the development and maintenance of software systems.

2 RESEARCH METHODOLOGY AND
OBJECTIVES

The long-term objective of this work is to develop a framework
that tracks the current state of a project, extracts information from
past project artifacts, and recommends stakeholders on how to
address specific architectural concerns. Each component within the
framework that addresses specific research problems follows the
three Design Science Research Cycles proposed by Hevner [10]. As
part of the relevance cycle, the requirements for each component
is derived from interactions with our industry partner’s software
architects in a large (approximately 20-30 architects) Architecture
Definition and Management group as well as from the use cases
and future research directions prescribed in literature (for e.g., [7]
and [15]). Furthermore, we conduct the evaluation of each of the
components by integrating them within an architecture knowl-
edge management (AKM) system named Architecture Management
Enabler for Leading Industrial softwarE (AMELIE)!. Research as-
sociates and students studying computer science in our research
department implement each component within the framework (de-
sign cycle). During the design cycle, we ground our design artifacts
on well-established meta-models (for e.g., [1], [27], and [14]) and
successfully implemented and tested technological concepts (for
e.g., [19]) and share the lessons learned with the software architec-
ture research community as part of the rigor cycle. The high-level
overview of the framework is shown in Figure 1. We briefly describe
the components within this framework in the following subsections.

2.1 AKM system

Understandably, the core of the framework is an AKM system that
allows architects to manage the different categories (context, de-
sign, general, and reasoning) of AK in software-intensive projects
(cf. [21] and [3]). In particular, we prescribe the use of a meta-model
based AKM system that provides the flexibility to configure the
domain models at runtime to meet the dynamic needs of diverse
projects in different organizations in order to capture the static
and dynamic aspects of AK. To this end, we have proposed a meta-
model based AKM system named AMELIE that not only allows
architects to capture AK but also provides reasoning capabilities
using a model-based expression language. The detailed description

AMELIE is currently being iteratively developed and evaluated by our industry
partner’s business units.

Manoj Bhat, Klym Shumaiev, and Florian Matthes

along with the need for a meta-model, the configurable domain
models and the support for domain-specific rules has been elabo-
rated in [3]. Furthermore, in this work, we have demonstrated how
to link the peripheral concepts related to ADDs including require-
ments, stakeholders, and architectural elements using a domain
model. The extensible architecture of this system allows us to realize
the components including decision classifier, document annotator,
and recommendation engine as external reusable services.

2.2 SyncPipes

Empirical studies indicate that even though design decisions are
not explicitly documented, they are implicitly captured in different
systems including project management, issue management, source
code version management, and meeting recording systems [16, 23].
The AKM system under consideration must be able to monitor and
integrate with systems that are used by architects and developers to
manage their day-to-day activities and hence seamlessly integrate
within the working environment of stakeholders. To address this
challenge, we developed a software platform - SyncPipes? — to
extract and synchronize information from disparate systems that
maintain project related information into the knowledge base (KB)
of the AKM system. This research project was carried out as part
of a Bachelor’s Thesis and the research questions, the approach,
and the evaluation are elaborated in [13]. SyncPipes is analogous
to a “bot” with sensors and actuators wherein the sensors monitor
the current state of the project and actuators keep the information
within the KB synchronized. The current version of SyncPipes
supports the integration of projects’ artifacts captured in Excel, MS
Project, Enterprise Architect, and JIRA with the AKM system.

2.3 Decision classifier

Design decisions are often not explicitly documented. However,
there are sources (for e.g. issues in issue management systems) that
implicitly maintain design decisions. These issues are extracted
using the SyncPipes component, which are then automatically la-
beled as design decisions and are also classified into different deci-
sion categories including structural, behavioral, and non-existence
decisions. In our recent work [5], we successfully confirmed the
feasibility of automatically detecting design decisions from issues
captured in issue management systems. We demonstrated that su-
pervised machine learning algorithms, in particular, the Support
Vector Machine (SVM) classifier can detect design decisions with a
high accuracy (F-score) of 91.29%°.

This component addresses the use case of identifying design
decisions made by architects and developers in the past as well as
in the current software-intensive projects. This component not only
allows us to capture design decisions in our AKM system to avoid
knowledge vaporization but also supports the use cases such as
building expertise profile and identifying the relationships between
design decisions discussed in the subsequent subsections.

Zhttps://wwwmatthes.in.tum.de/pages/2ghOu9d1afap/SyncPipes
31t should be noted that the observation is based on a dataset comprising of 1,571
manually labeled issues from two large open source projects.



Towards a framework for managing architectural design decisions

ECSA’17, September 2017, Canterbury, UK

ADD explorer

BN

current project

Feedback loop

Software architects

Web client / Word plugin

SyncPipes

Software developers

alternative solutions &
expert recommendations

relationships
between ADDs

current project

past projects

Meta-model based AKM system

4

% é B8 g g ; §§ ;T% ale
SyncPipes g 58 g g 2e Eg - R
i v 88 £¢ < g8 v 28 slg
oW Decision ’ AE annotator ‘ Architectural Rationale Expert
pestprolees classifier uses solutions extractor recommender
A A S recommender luses use_s
Faci_litators ML model fo.r o&%" uses ISO/' EE EXpertlse
e | Dipedia 25010 profie

Figure 1: A framework for managing architectural design decisions

2.4 Architectural elements annotator

Within this component, we address the challenge of “How to auto-
matically identify and annotate architectural elements (AE) in textual
documents?”. The AE annotator component consumes textual de-
scription (design decisions or software architecture documents)
and highlights AEs within the text. AEs include architectural styles,
methods, design patterns, and software and hardware systems. To
automatically identify AEs within the given text, we propose a
novel approach to use a publicly available cross-domain ontology
(DBpedia ontology?). In our previous work [4], we illustrated the
feasibility of identifying AEs using software architecture documents
from four large industrial projects with an accuracy (F-score) of
84%. This annotator apart from identifying AEs, also enriches them
with meta-information such as overview, programming language,
and license retrieved from the DBpedia ontology.

2.5 Architectural solutions recommender

The architectural solutions recommender component also follows
an ontology-based approach that uses the knowledge in the DBpe-
dia ontology to recommend alternative architectural solutions and
software solutions for realizing an ADD. This component executes
SPARQL queries to generate recommendations and presents the
results to architects using a web client® as well as a Microsoft Word
plug-in. It should be noted that we do not contradict the fact that
“the idea that we start out with all the alternatives and then choose
among them is wholly unrealistic [20]”. However, we believe that
by presenting even a subset of alternative solutions to architects

“http://wiki.dbpedia.org/services-resources/ontology
Shttps://amelietor-9f8c3.firebaseapp.com/

while they are documenting software architecture will encourage
architects to reason about their design decisions. This approach is
elaborately described in [4].

2.6 Rationale extractor

The focus of the rationale extractor component is to address the
aspect of “Why was a design decision made?”. This component
consumes the design decisions identified by the Decision classifier
component and then automatically maps the design decisions to
the quality concerns (ISO/IEC 25010 standard) of software systems
using natural language processing (NLP) techniques. The realization
and the evaluation of this component are currently being carried
out by a student as part of his Master’s Thesis.

2.7 Expert recommender

Through this component, we aim to address the following research
question: “Who should be involved in making a design decision?”.
Several empirical studies indicate that software architects do not
always take rationalistic approach but favor a naturalistic approach
to decision making (cf. Section 1 assumption 1). In this context, the
personal experience of architects influences the design decision-
making process (cf. Section 1 assumption 2). Based on the aforemen-
tioned assumptions, we build an expertise profile using the output
of previously discussed components namely decision classifier and
AF annotator component. We build this approach by reusing the
concepts and terminology (experience atoms and expertise profile)
proposed by Mockus and Herbsleb [17]. An expertise profile can
be imagined as a matrix where rows correspond to architects and
columns capture AEs. The cells within this matrix contain integer
values that represent the architectural experience of an architect,



ECSA’17, September 2017, Canterbury, UK

which is computed by analyzing the design decisions that were
addressed by the respective architect. Such an expertise profile
allows us to quantitatively measure the experience of architects.
Therefore, for a new design decision identified by the decision clas-
sifier component, first, the AEs within the text are extracted by the
AFEs annotator component to generate a concept vector. Second, the
concept vector is compared against the expertise profile to identify
those architects who have addressed similar design decisions in the
past. This component is currently being integrated with the AKM
system to evaluate it with our industry partner.

2.8 ADD explorer

The focus of this component is to extract and visualize the relation-
ships between design decisions that are automatically classified by
the decision classifier component. To represent the relationships
between design decisions, we plan to use the formal model of de-
sign decisions proposed by Zimmermann et al. [27] within our
meta-model based AKM system. These relationships for instance
include decomposesInto, isCompatibleWith, and islnCompatibleWith
relations. Instantiating this model using data from past projects
will allow us to explore the peripheral aspects of design decisions
including traceability and complexity (based on assumption 3 in
Section 1) for addressing similar design decisions.

3 CONCLUSION AND OUTLOOK

In this paper, we have presented our ongoing research and our
vision of a framework for supporting architects during the decision-
making process. Even though we have realized and partially evalu-
ated some of the components including a meta-model based AKM
system, Decision classier, AE annotator, and Architectural solution
recommender within our framework, we are still in the initial it-
erative phase of design science cycle for the Rationale extractor,
Expert recommender, and ADD explorer components.

One of the main factors that differentiate the proposed frame-
work from the existing AKM tools [7] is that the existing AKM tools
follow a top-down approach, that is, they expect domain experts to
manually capture data within AKM tools to support use cases such
as traceability and reasoning. Whereas, the proposed framework
follows a bottom-up approach, wherein, the AKM system learns
from design decisions made in the past by extracting information
from tools (for e.g., MS Project, Enterprise Architect, and JIRA) and
uses the knowledge captured in cross-domain ontologies without
explicitly depending on the need to populate the knowledge base
to generate recommendations. These recommendations are pre-
sented within tools (for e.g., Microsoft Word) that architects use for
managing their day-to-day activities. We believe that integrating
the AKM services into the software development and agile project
management systems is critical for the improved adoption of AKM
systems and also for encouraging stakeholders to reason and docu-
ment their design decisions. Such a system realized based on the
proposed framework will not only provide automation and tool
support for AKM but will also allow us to quantitatively address
research questions including “Who should make design decisions?”,
“Why and what design decisions were made in the past?” and “What
is the complexity of realizing a design decision?”.

Manoj Bhat, Klym Shumaiev, and Florian Matthes

REFERENCES

[1] 2011. ISO/IEC/IEEE Systems and software engineering — Architecture description.
ISO/IEC/IEEE 42010:2011(E) (Dec 2011), 1-46. https://doi.org/10.1109/IEEESTD.
2011.6129467

[2] Muhammad Ali Babar, Torgeir Dingseyr, Patricia Lago, and Hans van Vliet. 2009.

Software architecture knowledge management. Springer.

Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, Michael Hassel,

and Florian Matthes. 2016. Meta-model based framework for architectural knowl-

edge management. In Proc. of the 10th European Conf. on Software Architecture

Workshops. ACM, 12.

[4] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, Michael Hassel,
and Florian Matthes. 2017. An ontology-based approach for software architec-
ture recommendations. In 23rd Americas Conf. on Information Systems, AMCIS
2017, Boston, MA, USA, August 10-12, 2017. http://aisel.aisnet.org/amcis2017/
SemanticsIS/Presentations/7

[5] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, and Florian
Matthes. 2017. Automatic extraction of design decisions from issue management
systems: a machine learning based approach. In Proc. of the 11th European Conf.
on Software Architecture Workshops. ACM.

[6] Jan Bosch. 2004. Software architecture: The next step. In European Workshop on
Software Architecture. Springer, 194-199.

[7] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali
Babar. 2016. 10 years of software architecture knowledge management: Practice
and future. Journal of Systems and Software 116 (2016), 191-205.

[8] Juan C Duenas and Rafael Capilla. 2005. The decision view of software architec-
ture. In European Workshop on Software Architecture. Springer, 222-230.

[9] Stephen T Hassard, Ann Blandford, and Anna L Cox. 2009. Analogies in design
decision-making. In Proc. of the 23rd British HCI group annual conf. on people and
computers: celebrating people and technology. British Computer Society, 140-148.

[10] Alan R Hevner. 2007. A three cycle view of design science research. Scandinavian

Jjournal of information systems 19, 2 (2007), 4.

[11] Anton Jansen. 2008. Architectural design decisions. Ph.D. Dissertation.

[12] Rick Kazman, Mark Klein, and Paul Clements. 2000. ATAM: Method for architecture

evaluation. Technical Report. DTIC Document.

[13] Frido Koch. 2016. REST-based data integration services for software engineering

domain. Master’s thesis. Technische Universitiat Miinchen.

Philippe Kruchten. 2004. An ontology of architectural design decisions in soft-

ware intensive systems. In 2nd Groningen workshop on software variability. Gronin-

gen, The Netherlands, 54-61.

[15] Peng Liang and Paris Avgeriou. 2009. Tools and technologies for architec-

ture knowledge management. In Software Architecture Knowledge Management.

Springer, 91-111.

Cornelia Miesbauer and Rainer Weinreich. 2013. Classification of design

decisions—an expert survey in practice. In European Conf. on Software Archi-

tecture. Springer, 130-145.

Audris Mockus and James D Herbsleb. 2002. Expertise browser: a quantitative

approach to identifying expertise. In Proc. of the 24th ICSE. ACM, 503-512.

Dewayne E Perry and Alexander L Wolf. 1992. Foundations for the study of

software architecture. ACM SIGSOFT Software Engineering Notes 17, 4 (1992),

40-52.

Thomas Reschenhofer, Manoj Bhat, Adrian Hernandez-Mendez, and Florian

Matthes. 2016. Lessons learned in aligning data and model evolution in collabo-

rative information systems. In Proc. of the 38th ICSE Companion. ACM, 132-141.

Herbert A Simon. 1998. What we know about learning. Journal of Engineering

Education 87, 4 (1998), 343.

Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali

Babar. 2010. A comparative study of architecture knowledge management tools.

Journal of Systems and Software 83, 3 (2010), 352-370.

Antony Tang, Maryam Razavian, Barbara Paech, and Tom-Michael Hesse. 2017.

Human aspects in software architecture decision making: a literature review. In

Software Architecture (ICSA), 2017 IEEE Int. Conf. on. IEEE, 107-116.

Jan Salvador van der Ven and Jan Bosch. 2013. Making the right decision: Sup-

porting architects with design decision data. In European Conf. on Software

Architecture. Springer, 176-183.

[24] Hans van Vliet and Antony Tang. 2016. Decision making in software architecture.

Journal of Systems and Software 117 (2016), 638-644.

Carmen Zannier, Mike Chiasson, and Frank Maurer. 2007. A model of design

decision making based on empirical results of interviews with software designers.

Information and Software Technology 49, 6 (2007), 637-653.

Carmen Zannier and Frank Maurer. 2007. Social factors relevant to capturing

design decisions. In Proc. of the 2nd Workshop on SHAring and Reusing architectural

Knowledge Architecture, Rationale, and Design Intent. IEEE Computer Society, 1.

Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly Schus-

ter. 2009. Managing architectural decision models with dependency relations,

integrity constraints, and production rules. Journal of Systems and Software 82, 8

(2009), 1249-1267.

[3

=
et

=
&

(17

[18

[19

[20

[21

~
5,

[23

[25

[26

[27


https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/IEEESTD.2011.6129467
http://aisel.aisnet.org/amcis2017/SemanticsIS/Presentations/7
http://aisel.aisnet.org/amcis2017/SemanticsIS/Presentations/7

	Abstract
	1 Introduction
	2 Research Methodology and Objectives
	2.1 AKM system
	2.2 SyncPipes
	2.3 Decision classifier
	2.4 Architectural elements annotator
	2.5 Architectural solutions recommender
	2.6 Rationale extractor
	2.7 Expert recommender
	2.8 ADD explorer

	3 Conclusion and outlook
	References

