
Investigating the Adoption and Application of
Large-Scale Scrum at a German Automobile

Manufacturer
Ömer Uludağ*, Martin Kleehaus*, Niklas Dreymann*, Christian Kabelin†, Florian Matthes*

*Chair for Informatics 19, Technische Universität München (TUM), D-85748, Garching
Email:{oemer.uludag,martin.kleehaus,niklas.dreymann,matthes}@tum.de

†Ventum Consulting, D-80797, München
Email:{christian.kabelin}@ventum.de

Abstract—Over the last two decades, agile methods have been
adopted by an increasing number of organizations to improve
their software development processes. In contrast to traditional
methods, agile methods place more emphasis on flexible processes
than on detailed upfront plans and heavy documentation. Since
agile methods have proved to be successful at the team level,
large organizations are now aiming to scale agile methods to the
enterprise level by adopting and applying so-called scaling agile
frameworks such as Large-Scale Scrum (LeSS) or Scaled Agile
Framework (SAFe). Although there is a growing body of liter-
ature on large-scale agile development, literature documenting
actual experiences related to scaling agile frameworks is still
scarce. This paper aims to fill this gap by providing a case
study on the adoption and application of LeSS in four different
products of a German automobile manufacturer. Based on seven
interviews, we present how the organization adopted and applied
LeSS, and discuss related challenges and success factors. The
comparison of the products indicates that transparency, training
courses and workshops, and change management are crucial for
a successful adoption.

Index Terms—large-scale agile development, scaling agile
frameworks, large-scale scrum, case study

I. INTRODUCTION

Emerging in the 1990s, agile software development methods
such as Extreme Programming [1] and Scrum [2] have trans-
formed and brought unprecedented advancements to software
development practice by emphasizing change tolerance, team
collaboration, and customer involvement [3], [4]. With these
methods, small, co-located, self-organizing teams work closely
with the business customer on a single-project context, max-
imizing customer value and software product quality through
rapid iterations and frequent feedback loops [3]. Since agile
methods have proved to be successful at the team level, large
organizations are now aiming to scale agile methods to the
enterprise level [5]. Version One’s 12th survey on the state
of agile [6] also reflects this industry trend towards adopting
agile methods in-the-large. The survey shows that 52% of the
1492 respondents work in companies where the majority of
teams are agile. However, the adoption entails new challenges,
such as inter-team coordination, dependencies to other existing
environments or general resistances to changes [7], [8]. Mainly
promoted by consultants, scaling agile frameworks such as the
Scaled Agile Framework (SAFe), Disciplined Agile Delivery

(DAD), and Large-Scale Scrum (LeSS) [4], [5] pledge to
resolve the aforementioned issues. Although the number of
organizations using scaling agile frameworks is increasing,
scientific literature providing in-depth case studies on the
adoption and application is still scarce [6], [7]. We aim to
fill this gap by presenting a case study on the adoption and
application of LeSS in four different products of a German
automobile manufacturer. Based on these objectives, our two
research questions are:

• Research Question 1 (RQ 1): How has LeSS been adopted
in different products?

• Research Question 2 (RQ 2): How is LeSS applied in
different products?

The remainder of this paper is structured as follows. In Section
II, we present the background of our paper and provide an
overview of related works. In Section III, we present the
research approach of this paper. We briefly describe the case
organization and present the results of our case study in
Section IV. We discuss the main findings in Section V before
concluding the paper with a summary of our results and
remarks on future research in Section VI.

II. BACKGROUND AND RELATED WORK

A. Large-Scale Scrum

The LeSS framework (see Figure I) was released in 2008
based on the experiences of Craig Larman and Bas Vodde [9].
It extends Scrum with scaling rules and guidelines without
losing sight of Scrum’s original goals. Unlike traditional
Scrum, LeSS specifies organizational changes. Furthermore, it
aims to facilitate coordination between multiple Scrum teams
by having a product owner (PO) responsible for a central
backlog and several teams. Coordination between teams is
done similarly to Scrum where they perform a sprint planning
and sprint review. For smaller products, all product members
join the same sprint planning and review. For bigger products,
a team representative should be sent to the meetings. Although
LeSS aims to solely work on principles, it still comprises the
following four components [10]:

• Rules: Rules define the foundation of LeSS. Similar to
Scrum, the focus lies on the structure of teams, roles

Fig. I: Overview of the LeSS framework [10].

within the team, definition of the requirements of the
product, and the development process.

• Principles: Principles provide answers on how to apply
LeSS in specific enterprise contexts.

• Guides: Guides support the adaptation of the rules and
a subset of the experiments by providing tips and best
practices.

• Experiments: LeSS encourages teams to experiment,
fail, and learn new concepts.

When organizations aim to scale over eight teams, LeSS Huge
should be used. LeSS Huge introduces additional elements
that are necessary to manage hundreds of people, such as
the concept of requirements areas (RAs). RAs are organized
around customer-centric requirements. All RAs follow the
same sprint cadence and aim for continuous integration across
the entire product. An area PO (APO) focuses on one RA and
is responsible for an area product backlog (APB). The APO
acts essentially the same way as the PO would in the smaller
LeSS framework.

B. Related Work

According to Version One’s 12th survey on the state of
agile, 29% of 1,492 respondents reported using SAFe and
5% LeSS. Although the number of organizations using scaling
agile frameworks is increasing, there exists only a handful of
papers documenting reported usages [7]. However, some liter-
ature reviews have been conducted by academics for studying
scaling agile frameworks scientifically. For instance, Alqudah
and Razalo [5] provide a literature review on scaling agile
frameworks. Therein, they compare seven identified scaling
agile frameworks such as DAD, LeSS, Nexus, SAFe, and Spo-
tify based on five criteria: team size, training and certification,
adopted methods and practices, required technical practices,
and organization type. Based on a structured literature review,
Uludağ et al. [11] give a primary analysis of 20 identified
scaling agile frameworks such as DAD, Enterprise Scrum,
LeSS, Nexus, SAFe, Scrum at Scale, and Spotify. Last but
not least, Putta et al. [12] provide a multivocal literature
review, which includes both peer-reviewed and non-peer re-
viewed case studies and experience reports on organizations
that have adopted SAFe. Besides these secondary studies,
some researchers also present primary studies in the form
of case studies on the adoption of scaling agile frameworks.

For example, Pries-Heje and Krohn [13] describe a case
study from the financial software company SimCorp on how
they adopted SAFe. Further, Paasivaara [14] provides a case
study highlighting success factors and challenges of the SAFe
adoption in the globally distributed software development
company Comptel. Moreover, Paasivaara and Lassenius [15],
[16] describe a case-study on scaling Scrum in a large globally
distributed software development project at the global telecom-
munications company Nokia. Therein, the authors describe
significant challenges the project faced when applying LeSS.
Last, Uludağ et al. [17] present a case study from a large
insurance company on how they combined domain-driven
design with LeSS to support a large-scale agile development
program with three agile teams. Although there are some
primary and secondary studies, they merely mention LeSS in
passing. To the best of our knowledge, literature documenting
in-depth case studies on the adoption and application of LeSS
in a real-life context is still scarce.

III. CASE STUDY DESIGN

A case study is a suitable research methodology for this
paper as we aim to study a contemporary unexplored phe-
nomenon, namely the adoption and application of LeSS, in a
complex, real life context [18]. We followed the guidelines
described by Runeson and Höst [18] for the case study
research process.
Case study design: The main objective of this paper is
to study the adoption and application of LeSS in a large
IT organization. Based on stated objective, we defined two
research questions (see Section I). Our single-case study is of
exploratory nature as we analyze an unexplored phenomenon
[18]. The case organization was purposefully selected as it
provides a unique opportunity to compare different occur-
rences of LeSS inside a single company and as it represents
an information-rich case [19]. Our units of analysis are four
products at the car manufacturer’s IT department which use
LeSS to develop complex software.
Preparation for data collection: We focused on first degree
data collection techniques according to Lethbridge et al. [20].
Hence, we collected data by conducting seven semi-structured
interviews with one feature team (FT) member, one PO, one
agile coach (AC), one scrum master (SM), and three different
architects (EA - enterprise architect, SA - solution architect
and IA - IT enterprise architect) in four different products of
which all adopted and applied the LeSS framework (see Table
I). All interviews lasted between 45 minutes to one hour each.
The interviews followed a semi-structured questionnaire and
were rather conversational in nature to maintain adaptability
to the roles and individual experiences of the interviewees. We
interviewed seven different roles from four different products
to enable triangulation of data sources [18].
Analysis of collected data: All interviews were transcribed
and coded using open coding as suggested by Miles et al. [21].
After creating preliminary codes, we refined and consolidated
our codes by merging related ones and removing duplicates.
Based on that, we looked at groups of code phrases and merged

TABLE I: Overview of interviewed roles and their assigned
products.

Role MPN OTD PPM PFS

PO - - - 1

FT - - - 1

AC / SM 1 1 - -

EA / SA / IA - - 3 -

Total 1 1 3 2

them into concepts, which were later related to our formulated
research questions.

IV. RESULTS

A. Case Description

The case under investigation concerns a German multina-
tional company that currently manufactures luxury cars and
motorcycles and employs more than 120,000 people within
the whole organization and around 4500 people in its IT
department. In the past, the IT department focused mainly
on standardization and cost optimization of the running IT.
Driven by digitalization, the IT management saw the increase
in agility of the IT department as an essential improvement for
its performance and flexibility. At the end of 2016, the IT man-
agement decided to transform the IT department into an agile
product organization over the next two to three years following
the slogan ”100 % agile”. It committed itself to the goal of
transforming all current IT projects to agile and aligning the
IT organization completely with agile principles by the end of
2019. Contemporaneously, the autonomous driving department
of the case organization chose LeSS as its new working
model with the aim of achieving easier communication and
coordination, more transparency and shorter decision-making
paths throughout the entire department. Success stories of the
autonomous driving department with LeSS reached the IT
department. In parallel the IT management allowed individual
IT projects to choose an appropriate scaling agile framework
for themselves, which is why many IT projects decided to
adopt LeSS at the beginning of 2017. Still, a large part
of software development activities is outsourced to external
partners working partly plan-driven.
The four investigated IT projects (from now on products):
”Material Part Number” (MPN), ”Order-to-Delivery” (OTD),
”Product & Price Master Data” (PPM), and ”Price Finding
Service” (PFS) also decided to adopt LeSS for their product
development (see Figure II). MPN aimed to replace the case
organization’s old legacy system for managing and storing its
bills of materials. OTD developed, maintained, and improved
IT systems for the case organization’s intra-plant logistics.
PPM was responsible for the sustainable design of the case
organization’s master data application. PFS was responsible
for the development of a new pricing software.

B. LeSS Adoption

We used exploratory questions for the following categories:
(1) timing and duration, (2) reasons and to-be-addressed
problems, (3) combined frameworks, (4) training, (5)
adaptations, (6) challenges, and (7) lessons learned to
evaluate the adoption of the framework.
All four products had recently adopted LeSS for no longer
than two years. However, the duration of the adoptions
varied between three months to one year because of different
complexities. LeSS was introduced to handle inter-team
coordination and to balance the limitations of Scrum in
large-scale projects. Additional reasons were its moderate
degree of complexity while maintaining sufficient guidance
for the coordination of multiple agile teams working on the
same product. Before the adoption, the products had problems
with synchronizing teams, managing their dependencies, and
information loss between teams. LeSS was also selected
to enable the transition from traditional project thinking
to product and customer orientation. During the adoption,
LeSS was combined with preexisting lean and agile methods
such as Kanban and DevOps. For instance, MPN and PPM
adopted LeSS in combination with Kanban to manage epics
and features and to track the progress of tasks using Kanban
boards. In all products, the adoption was accompanied by a
comprehensive training of all employees which range from
one single presentation by the SM / AM to a two-days
individually adjusted workshop with external experts since
employees possess varying levels of prior knowledge in agile
software development. The adoption of LeSS in each product
led to individual adjustments, e.g., all products extended
LeSS by a domain level with a superordinate portfolio layer
to coordinate all products within the IT department and align
them with the organization’s strategic objectives. A so-called
”one-calendar” approach, centrally managed by the sub-units
of the IT department, eased the adoption by enabling common
sprint cadences across products. Although this approach was
perceived as contradicting agile values, especially in terms of
self-organization, one interviewee stressed its importance:

“Actually, it’s about self-organization in agile. But with
a few hundred teams, it’s difficult if one has a meeting
there or the other one has the daily at other time. Somehow
they have to synchronize. Then this one-calendar was our
approach to bring structure into it.”

— SM, OTD

We identified four common problems during the adoption
of LeSS. First, although LeSS is minimalist and tries to
define roles, artifacts, or processes that are at least needed for
large-scale agile development [10], the products had concerns
regarding numerous coordination meetings. The SM of OTD
described the problem as follows:

“Many people are simply arrested in thousands of other
meetings and if the PO is missing at a meeting such as sprint
planning, this is quite sub-optimal.”

TABLE II: Overview of interviewed products and general information.

MPN OTD PPM PFS

Start of Adoption April 2017 Early 2017 End 2017 March 2018

Number of involved Employees ∼600 ∼70 ∼90 ∼40

Sites Germany Germany,
South Africa

Germany, Poland,
Portugal, Russia

Germany, Portugal,
Russia

Number of Feature Teams 15 5 6 3

Sprint Lengths (in weeks) 3 3 3 3

LeSS Adoption LeSS LeSS LeSS Huge LeSS

— SM, OTD

Having too many meetings can reduce the productivity of the
employees:

“The PO attends so many meetings that he doesn’t have time
to write user stories himself. . . . And if you haven’t written
them yourself, it’s incredibly difficult to accept them.”

— PO, PFS

Second, due to the currently organizational structure, each
product had two POs, one from the specialist department and
one from the IT department, which led to the so-called ”dual
leadership” (see Section IV-C). Third, the employees feared
losing status and power. This problem affected primarily
middle management employees that were partly retrained to
POs during the adoption. Fourth, the adoption was hampered
by the lack of agile mindset and understanding about LeSS.
Last but not least, we asked all interviewees about lessons
learned. Ex post, clear communication of the big picture
of the adoption can increase transparency and sharpen
awareness of involved stakeholders. In addition, one FT
member mentioned that practical exercises in training courses
can ease the adoption:

“At first glance, it makes the adoption of LeSS easier
when practicing and understanding the theory in small
projects, preferably in a playful way.”

— FT, PFS

A summarizing comparison of the four LeSS adoptions can
be found in Table III.

C. LeSS Application

We asked the interviewees how their products applied:
roles, artifacts, and processes.
Roles: All three standard roles, namely FT, PO, and SM are
included in the respective products (see Table IV). In contrast
to Scrum, the number of FTs (development teams in Scrum)
is two to eight within LeSS. In LeSS Huge, this number
can be scaled even higher. Although MPN has 15 FTs, it
decided to use multiple LeSS implementations because the
subordinate products do not have an overarching product
character. FTs of OTD, PPM, and PFS were spread across

the world. According to the SM in OTD, one problem was
that FTs were still too heavily controlled by external factors
and therefore were not entirely self-organized. For PPM, it
appeared to be less of a problem. PFS’ FTs were already 90
– 95% self-organized. For this reason, there is great potential
for improvement by allowing FTs to act as self-organized
units. As already indicated in Section IV-B, the role of the PO
was shared by several persons, i.e., one PO was responsible
for the business side and one for the IT side. This arose
from the fact that one person alone did not have the required
knowledge to manage the product properly, so the products
decided to split the responsibilities. The ”dual leadership”
created difficulties in coordination for external and internal
teams.

“. . . there still exists one PO on the business and one
PO one the IT side but then in the form of a dual leader. If
you look at LeSS or Scrum then I have to say having a dual
leader is the worst thing to do.”

— EA, PPM

The suggested improvement was to remove dual leadership
by bundling responsibilities into one PO. The EA of PPM
suggested that the IT PO should work more with FTs and
act as a substituting PO where he could collect valuable
insights. In addition, PPM had six product owners who were
responsible for subareas, representing APOs as suggested by
LeSS Huge [10]. Last but not least, all products introduced
the role of the Domain PO (DPO) with more traditional
project management functions. Their responsibility included
synchronization of the FTs and planning the budget and
capacities. They also took overall responsibility for the
products and coordinated at portfolio level with each other.

“They [DPOs] are actually only responsible for the budget
and capacities and should not be involved in the actual
work.”

— EA, PPM

Figure II provides an overview of the different PO roles in
the respective products. In OTD, the role of the SM did not
exist per se, but instead the role of the agile master (AM).
The AM of OTD was not only responsible for helping FTs

TABLE III: Comparison of the LeSS adoptions in the four products.

MPN OTD PPM PFS

Reasons for
Adoption

• Simplicity of LeSS
• Optimizing product cut
• Dealing with high

project complexity
• Enabling change from

project to product

• System optimization
goals from LeSS

• Success stories of the
autonomous driving
department

• Three-day introduction
to LeSS by Craig Larman

• Enabling change from
project to product

• Dealing with high
project complexity

• Enabling change from
project to product

• Reducing dependencies
between agile teams

• Minimizing loss of infor-
mation between agile teams

• Handling inter-team
coordination

Combined
Frameworks

• Combined LeSS with SAFe
to have a superordinate
portfolio level

• Combined LeSS with Kanban
to manage epics and features

• Combined LeSS with
DevOps so that FTs
have the required skill-
set and the full respon-
sibility to release software

• Combined LeSS Huge
with Kanban to track and
monitor the progress
of tasks

–

LeSS
Training

• 2-day training program
for each employee
extended with LeSS

• SM coaching
• External agile coaches

train internal employees
who in-turn coach FTs

• 2-day training program
for each employee
extended with LeSS Huge

• External agile coaches
train internal employees

• External agile coaches
train internal employees

Adaptations

• LeSS extended by
a domain level

• Common sprint cadences
are facilitated by a
one-calendar approach

• LeSS extended by
a domain level

• Common sprint cadences
are facilitated by a
one-calendar approach

• LeSS Huge extended by
a domain level

• LeSS extended by
a domain level

Challenges

• Sharing a common vision
• Fear of losing power
• Communication gaps

between products
• High complexity

of the product
• Correct product cuts
• Balancing up-front plan-

ning vs. emergent design
• Dual leadership

of the PO role

• Numerous coordination
meetings

• High complexity due to
the number of FTs

• Low prior knowledge
of agile methods

• Traditional line respon-
sibilities of employees
complicate their focus on
agile working

• Dual leadership
of the PO role

• Numerous coordination
meetings

• Splitting large requirements
into smaller requirements

• APOs keeping own APBs
• Synchronizing APBs
• Dealing with cultural

differences between FTs
• Missing transparency

regarding roles
and responsibilities

• Dual leadership
of the PO role

• Numerous coordination
meetings

• Fear of losing power
• Specialist departments have

low knowledge of LeSS
• Establishing agile mindset
• Changing roles and

responsibilities due to
agile working

• Dual leadership
of the PO role

Lessons
Learned

• Communicating the big
picture of the adoption
to obtain the commitment
of all stakeholders

• Performing Inspect and
Adapt at regular intervals

• Performing Inspect and
Adapt at regular intervals

• Reducing responsibilities
to a few people to increase
decision-making speed

• Practical exercises in
training courses deepen the
understanding of LeSS

TABLE IV: Identified results for the application of roles within
the products.

Role MPN OTD PPM PFS

FT 3 3 3 3

PO 3 3 3 3

SM 3 3 3 3

Additional Roles 3 3 3 3

to apply LeSS and self-organize, but also for the change
management and people management:

“The agile master is responsible for the methodology,
i.e., method training, shielding the team from stakeholders
who want something, eliminating impediments, and organizing
events.”

— SM, OTD

All products involved additional roles which go beyond
LeSS. For instance, PFS included the role of the PO support,
who was responsible for creating user stories, as the PO
had no time for this. PFS also introduced the business
analyst (BA) role, who was responsible for dealing with
the problems and requirements of FTs. He was also the
first point of contact for external parties. Each product was

Do
m

ai
n

Le
ve

l
Pr

od
uc

t L
ev

el

Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

MPN

Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

OTD

Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

PFS

Domain PO

Product
Backlog

IT POBusiness
PO

PPM

Su
b

Pr
od

uc
t L

ev
el

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Fig. II: Overview of the different PO roles in the four products.

accompanied by different types of architects, such as IT
architects, enterprise architects, and solution architects that
mainly acted as external consultants for various architectural
topics. Such topics include: showing the positioning of the
product in the overall organization context, guiding FTs in
the realization of the to-be architecture of the product, and
ensuring that FTs adhere to architectural standards. In this
context, the EA of PPM also stated that:

“My personal opinion is that when somebody does not
know how to continue they call the architects. They are really
just ad-hoc fire extinguishers, who have to come quickly.”

— EA, PPM

Artifacts: Table V provides an overview of used artifacts.
In general, there existed a product backlog for all products.
The main difference was that MPN, OTD, and PFS had one
product backlog, whereas PPM had one common and six RA-
specific product backlogs, so-called area product backlogs.
According to one interviewee, this caused the following
problem: if there is only one common product backlog on
product level for several sub areas, the sole prioritization
based on importance becomes difficult, as it cannot generally
be said that one sub product is more important than another
one. In general, all products had a sprint backlog, sprint
goal, and product increments as artifacts. The definition of
done (DoD) was implemented by all products and has been
discussed at a great deal as they were not fully used. The PO
of PFS described the DoD as particularly important, since
it defines clear expectations regarding user stories towards
external partners. However, PFS was the only product that
had a finished DoD. Instead, the interviewee in MPN stated:

“Basic artifacts as the DoD do exist in every product,
however are not used.”

TABLE V: Identified results for the application of artifacts
within the products.

Artifacts MPN OTD PPM PFS

Product Backlog 3 3 3 3

Sprint Backlog 3 3 3 3

Sprint Goal 3 3 3 3

Product Increment 7 3 3 7

Definition of Done 3 3 3 3

Additional Artifacts 3 7 3 3

— AC, MPN

This was validated by the IA of PPM:

“Probably it [the DoD] was introduced once in the beginning
and now it is in some corner, somewhere in Confluence on
some subordinated page, which nobody has accessed for a
long time. This sounds very plausible to me.”

— IA, PPM

The respondents considered the lack of use of the DoD to
be problematic, as the product increment was not assessed
according to predefined criteria. OTD followed a different
approach. An external team developed a general DoD, and
then the PO adapted it for his respective features to fit
individual requirements. Some interviewees mentioned two
additional artifacts. PPM and PFS also used the definition of
entry (DoE) which was created by the PO. The DoE was used
to describe rough requirements for individual user stories. In
addition, MPN, PPM, and PFS used the definition of ready
(DoR) as the last step prior to implementation. The DoR was

utilized to describe user stories ready for implementation”.
However, one interviewee (SA) in PPM stated that the DoE
eventually vanished.

TABLE VI: Identifief results for the application of processes
within the products.

Processes MPN OTD PPM PFS

Sprint 3 3 3 3

Product Backlog Refinement 3 7 3 3

Sprint Planning (1 & 2) 3 3 3 3

Daily Scrum 3 3 3 3

Sprint Review 3 3 3 3

Retrospective (Team & Overall) 3 3 3 7

Additional Processes 3 3 3 3

Processes: In general, all LeSS events were widely adopted
in all products (see Table VI). According to the SA of
PPM, it was difficult to get all relevant people to attend
meetings. Meetings were planned in the products at the
same time (one-calendar approach), which made cooperation
and coordination between people in different meetings very
difficult. In addition, retrospectives within PFS were not
implemented yet:

“Well, we haven’t been following the retro so closely
so far, but we have decided to do more.”

— FT, PFS

All products organized communities of practices (CoPs)
for collaboration and information exchange within technical
and business domains across products. One interviewee also
added that:

“Communities of practices are very helpful for the
coordination of processes, methods, and tools as well
as for comprehensive harmonization and standardization.”

— SM, OTD

The architecture CoP was the most outstanding CoP within
all products as they were implemented by all products. There,
architects and other stakeholders discuss architecture-related
topics, make decisions, and design architecture guidelines
which also affect FTs:

“There is an architecture community that not only discusses,
but can also make decisions. . . . You have to be able to
provide input to the teams, but ideally through a community
approach and not through strong external roles.”

— AC, MPN

Additional CoPs were organized for POs and SMs as well as
for the testing domain. The former enables DPOs and POs
to coordinate and to find a common direction on enterprise
level. At regular intervals, MPN and OTD also have organized

inspect and adapt events to check where they are in the
adoption process, what to improve, and how to adjust their
behavior respectively. Last but not least, PPM and PPM
organized big events that took place once or twice a year in
one of the sites to facilitate team coherence and trust.

V. DISCUSSION

A. Key findings

We now discuss the main outcomes of our findings.
Key findings RQ1: After analyzing different adoptions of
LeSS in four products, we identified following five success
factors. First, the adoption must be 100% transparent as higher
transparency incentivizes FTs to deliver software in higher
quality.

Second, comprehensive training courses and workshops
ease the adoption since they provide a shared understanding
of new practices, roles, and responsibilities. Third, employees
should be involved as early as possible in order to minimize
change resistance. Fourth, managers should be aware of
dissatisfied employees to retain their status and power.
Accordingly, managers should raise awareness regarding the
value of change to the organization. Fifth, the motivation
behind LeSS should be properly promoted, advertised, and
communicated.
Key findings RQ2: Based on the four LeSS applications,
the following six key findings emerge. First, although the
self-organization of FTs were acknowledged within the
organization, sprint cadences were centrally organized using a
so-called ”one-calendar” approach. Second, all four products
were extended by a domain level and supported by a DPO
as the products were not necessarily independent from each
other. Third, due to the present organization structure, the
role of the PO was shared by two or three people resulting
in the so-called ”dual or even triple leadership”. Many
interviewees complained about this situation since it slowed
down processes and hampered what LeSS wants to achieve:
fast and agile decisions. Fourth, all products extended LeSS
by involving additional roles such as BAs, PO support,
shared services, and solution and enterprise architects.
Fifth, all four products extended LeSS with additional
processes to facilitate the exchange of shared knowledge
between the products. These events included various types
of communities of practices such as architecture, SM &
PO or testing communities. Sixth, the interviewed products
organized large team-building events that took place once
or twice a year in one of the sites. With those, they aimed
at building trust between FTs and overcoming cultural barriers.

B. Threats to validity

We discuss potential threats to validity along with an assess-
ment scheme as suggested by Runeson and Höst [18]. First,
we address construct validity by interviewing multiple roles
across four different products. We also transcribed, coded,
and analyzed the interviews. Second, internal validity is not
relevant, as this research was neither explanatory nor causal

[18]. Third, we address external validity by providing a
detailed description of the case and focusing on analytical
generalization [18]. This paper provides empirical insights
that allow for a profound understanding of the adoption and
application of LeSS. The presented findings should be viewed
as valuable insights for other organizations that aim to adopt
and apply LeSS. Last, we ensure the reliability of our results
by using a case study protocol with detailed procedures for
data collection and analysis. We also collected data from
different sources by multiple interviewers to allow data and
observer triangulation [18].

VI. CONCLUSION AND FUTURE WORK

The success of agile methods for small teams inspired
large organization to apply them at large-scale by using
scaling agile frameworks [4], [5]. Although the number of
organizations using these frameworks is increasing, scientific
literature providing in-depth analysis is still scarce [6], [7]. We
aimed to fill this gap by providing a case study regarding the
adoption and application of LeSS in four different products
of a German automobile manufacturer. Our findings indicate
that a transparent adoption incentivizes teams to deliver high-
quality software and that comprehensive training courses and
workshops ease the adoption. We also found out that the
case organization extended LeSS with additional roles and
processes to facilitate the exchange of shared knowledge
between products, to build trust between teams, and to adapt
it to the current organizational structure.
While we are confident that our findings will contribute
to the existing body of knowledge on actual experiences
related to LeSS, we encourage other researchers to conduct
further in-depth case studies on LeSS and other scaling agile
frameworks. For instance, it would be interesting to study
to what extent companies have to adapt their organizational
structures and processes in order to use LeSS. In future
studies, researchers should also conduct cross-case analyses
with the goal to compare the adoption and application of
LeSS in different types of organizations, e.g., digital natives
vs. traditional companies.

REFERENCES

[1] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley, 2000.

[2] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum.org, Tech.
Rep., 2017.

[3] P. Kettunen, “Extending software project agility with new product
development enterprise agility,” Software Process: Improvement and
Practice, vol. 12, no. 6, pp. 541–548, 2007.

[4] T. Dingsøyr and N. B. Moe, “Towards principles of large-scale agile
development,” in Agile Methods. Large-Scale Development, Refactoring,
Testing, and Estimation, T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell,
C. Gencel, and K. Petersen, Eds. Springer, 2014, pp. 1–8.

[5] M. Alqudah and R. Razali, “A review of scaling agile methods in large
software development,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 6, no. 6, pp. 828–837,
2016.

[6] VersionOne, “12th annual state of agile report,” VersionOne, Tech. Rep.,
2018.

[7] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87–108, 2016.

[8] Ö. Uludağ, M. Kleehaus, C. Caprano, and F. Matthes, “Identifying
and structuring challenges in large-scale agile development based on
a structured literature review,” in 22nd International Conference on
Enterprise Distributed Object Computing Conference (EDOC). IEEE,
2018, pp. 191–197.

[9] C. Larman and B. Vodde, Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum. Addison-Wesley,
2008.

[10] ——, Large-Scale Scrum: More with LeSS. Addison-Wesley, 2016.
[11] Ö. Uludağ, M. Kleehaus, X. Xu, and F. Matthes, “Investigating the

role of architects in scaling agile frameworks,” in 21st International
Conference on Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 2017, pp. 123–132.

[12] A. Putta, M. Paasivaara, and C. Lassenius, “Benefits and challenges of
adopting the scaled agile framework (safe): Preliminary results from a
multivocal literature review,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2018, pp. 334–351.

[13] J. Pries-Heje and M. M. Krohn, “The safe way to the agile organization,”
in Proceedings of the XP2017 Scientific Workshops. ACM, 2017, p. 18.

[14] M. Paasivaara, “Adopting safe to scale agile in a globally distributed or-
ganization,” in IEEE 12th International Conference on Global Software
Engineering. IEEE, 2017, pp. 36–40.

[15] M. Paasivaara and C. Lassenius, “Scaling scrum in a large distributed
project,” in International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2011, pp. 363–367.

[16] ——, “Scaling scrum in a large globally distributed organization: A
case study,” in 11th International Conference on Global Software
Engineering (ICGSE). IEEE, 2016, pp. 74–83.

[17] Ö. Uludağ, M. Hauder, M. Kleehaus, C. Schimpfle, and F. Matthes,
“Supporting large-scale agile development with domain-driven design,”
in International Conference on Agile Software Development. Springer,
2018, pp. 232–247.

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, 2009.

[19] M. Q. Patton, Qualitative evaluation and research methods. SAGE
Publications, 1990.

[20] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engi-
neers: Data collection techniques for software field studies,” Empirical
Software Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[21] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative Data
Analysis: A Methods Sourcebook. SAGE Publications, 2014.

