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Abstract

This paper outlines the basic concepts and the system architecture of the Tycoon!
environment. Tycoon is designed for the construction of persistent object systems
intended to be available on multiple software and hardware platforms.

Tycoon’s contribution to system portability and scalability is achieved by strictly
separating concerns of data modeling, data manipulation, and data storage into
three distinct system layers each of which is based on state-of-the-art system tech-
nology (polymorphic programming languages, portable code representations, per-
sistent object stores). Much emphasis is being placed on supporting interoperability
between Tycoon applications and off-the-shelf tools and systems, such as database
systems, user interface managers, and optimizing code generators.

We illustrate how higher-order functions, polymorphic typing and transparent
persistence management reduce the amount of repetitive and type-unsafe program-
ming in typical persistent object systems.

1 Introduction and Overview

In this paper we present the concept of application frameworks in persistent higher-order
languages as a systematic approach to carry forward the conceptual and technological
achievements of fourth-generation languages (4GLs) into open, heterogeneous environ-
ments.

In a fist step (section 2), we summarize the relative merits of third-generation lan-
guages and fourth-generation languages for the development of information systems.
Based on this analysis we explain how persistent higher-order languages equipped with
well-designed polymorphic libraries make it possible to blend the advantages of 3GLs and
4GLs in a conceptually simple and linguistically integrated system environment.
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In the following sections we present Tycoon, a particular example of a persistent
higher-order language that has been developed at the University of Hamburg [MS92,
Mat93]. The Tycoon project draws heavily from practical experience gained in imple-
menting successive generations of relational database programming languages [SchT77,
KMP+83, SM92a, SMV93] and from recent research results of the Esprit Basic Research
Project FIDE (Fully Integrated Data Environments).

Section 3 sketches Tycoon’s characteristic language concepts that are required for
the definition of type-safe, high-level application frameworks. Tycoon drastically reduces
the amount of repetitive and type-unsafe programming in typical information systems
by factoring-out much of the application’s functionality into generic, extensible server
libraries.

Section 4 outlines the overall Tycoon system architecture that achieves a high degree
of portability and scalability by strictly separating concerns of data modeling, data ma-
nipulation, and data storage into three distinct system layers each of which is based on
state-of-the-art system technology (polymorphic programming languages, portable code
representations, persistent object stores).

Finally, section 5 gives an idea of the organization and functionality of the Tycoon
libraries for bulk data management. We distinguish between internal library implementa-
tions (written entirely in Tycoon) and external library implementations (imported from
external servers like SQL databases, graphical user interfaces, or operating system li-
braries). Due to the richness of Tycoon’s type system it is possible to provide application
programmers with a uniform view on both kinds of libraries.

2 Approaches to Persistent Object System Construction

We use the term persistent object systems (POS) to denote a class of software systems
that give their users a flexible, problem-oriented and safe access to large sets of long-lived
objects of various types [SM93, Mat93].

Due to technological and commercial developments there is an ever-increasing demand
for persistent object systems that handle new object types like texts (electronic mail, text
retrieval, “intelligent” text manipulation), two- and three-dimensional graphics (CAD
and geographic information systems), digitized raster images (picture and font finder, fax
manager, character recognition software), voice data, or even short, compressed image
sequences (presentation software, scene analysis). Furthermore, persistent object systems
have to be implemented in substantially different (PC-based, interactive, networked, dis-
tributed, semi-autonomous) system environments [Bla90, Cat91, BM91].

In addition to the classical problems of large-scale application development, developers

of a POS are faced with the following characteristic tasks (see, e.g., [ZM89, ABW*90,
SRL*90]):

Persistent Storage: The primary task in a persistent object system is the manipulation
of the state of long-lived data objects shared by multiple, possibly concurrently
executing applications. In many persistent object systems it is advantageous to
be able to store, share and modify also program objects (“methods”, “scripts”) as
first-class data objects.

Generic Programming: Persistent object systems are characterized by highly repeti-
tive algorithmic and structural patterns (set-oriented queries, integrity constraints,
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Figure 1: Narrow server interfaces in 3GLs

generic data structures, etc.). Therefore, many commercial tools utilize generator
techniques to derive automatically stereotyped program fragments (form definitions,
format conversions, sorting routines, iterators, etc.) from parameterized, high-level
descriptions.

External Server Integration: The buzzword “open architectures” is of particular rel-
evance for persistent object systems since it is often necessary to interact with ex-
ternal devices (screens, printers, keyboards, pointing devices, scanners, CD-ROMS,
modems, fax machines, etc.) and external servers (window libraries, RPC libraries,
directory services, etc.) for data acquisition, data presentation and data transfer.

In the following, we first sketch how these requirements are met partially by third-
and fourth-generation languages, respectively, and we then develop the idea of application
frameworks in persistent higher-order languages which can be understood as a synthesis

of the 3GL and 4GL approach.

2.1 Low-Level Server Access from 3GLs

The majority of today’s information systems is implemented in third-generation lan-
guages (COBOL, FORTRAN, C, Pascal). A severe limitation of these languages is their
inability to capture correctly the generity inherent even in simple persistent object mod-
els. For example, the relational data model supports the definition of unary, binary,
ternary, ... relations over various domains and it includes generic operations over rela-
tion variables. These operations cannot be captured adequately by any of the commercial
programming languages mentioned above [BHR82].

As a consequence of this conceptual limitation, developers of database programming
interfaces like Embedded SQL [Ing90] restrict themselves to the least common denom-
inator of all 3GLs and handle any information interchange via strings, addresses and
untyped byte arrays that are transferred at the smallest possible granularity (attribute-
wise) between application programs and the database systems. A similar situation can be
observed at the interface between programming languages and (graphical) user interfaces.
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Figure 2: Server integration in proprietary 4GLs

The resulting POS scenario using 3GLs is depicted in Fig. 1: The overall functionality
of a particular POS is provided by a coordinated manipulation of numerous heteroge-
neous objects on different media (D: database objects, P: program objects, S: screen
objects, etc.). Objects on different servers are subject to server-specific naming, typing,
lifetime, and binding rules (indicated by different line styles in Fig. 1) while inter-server
communication takes place at a low level of abstraction using simple, machine-oriented
protocols.

A crucial advantage of such a loose server coupling is the openness of the application
development environment. If required, new servers can be integrated freely as libraries
into existing persistent object systems. Furthermore, call interfaces provide a minimal
common ground for data exchange between independently developed services and they
also constitute a starting point for data abstraction and component exchangeability.

2.2 Server Integration in 4GLs

Fourth-generation languages recognize the need for a uniform, safe and application-
oriented development environment across a variety of servers and above the minimal
interoperation level of strings and cursors. As depicted in Fig. 2, a well-designed 4GL
provides high-level naming, typing and binding mechanisms for objects on different me-
dia (on disk, in memory, and on screen) and thereby eliminates a substantial amount of
the low-level, repetitive data conversion and data transfer code found in 3GL applica-
tions. 4GLs are tailored to the specific requirements of traditional, commercial database
applications:

Functional requirements: record- and set-oriented data modeling, data manipulation,
data storage and data display; generic operations (search, iterate, insert, delete,
update, format, display, validate, ... ) applicable uniformly to record and set objects
of different component structure.

Operational requirements: persistent storage of data, application code, integrity con-
straints and user interface definitions; efficient manipulation of data on secondary
storage; integration into transactional multi-user systems.



Modal requirements: interactive user-interfaces, access to precompiled queries and up-
date transactions; support for incremental system evolution (e.g. schema changes);
provision for ad-hoc queries.

Examples of relational 4GLs include Ingres-4GL [Ing89], PL-SQL [Ora9l], and Informix-
4GL [Inf86]. Furthermore, several object-oriented database systems are shipped with 4GL
languages to simplify application development (e.g., O2SQL and C'O;, for O; [BDK92]).
Practical experience shows that 4GL constitute a significant advance towards achieving
faster software development, improved long-term software maintainability, better soft-
ware portability, and even enhanced execution efficiency for specialized applications (e.g.,
queries) when compared with hand-coded third-generation language solutions like C or
COBOL [MJg9].

There are, however, some severe limitations to current 4GL languages that hamper
their success in today’s open, continually evolving system environments:

o 4GLs are deeply integrated into proprietary DBMSs and it is therefore impossible to
move 4GL applications from one DBMS to another. This situation is in sharp con-
trast to 3GL applications using standardized programming and database languages

(e.g., C and OpenSQL).

e It is typically very difficult to interface 4GLs with external servers (window systems,
statistical packages, text-retrieval tools) that do not come bundled with the DBMS.

e Applications developed in 4GLs do not scale well due to a lack of appropriate typing
and modularization support as found, for example, in Ada, C+4, Modula-2 or Eiffel.

e On the system level, 4GL often incur an unnecessary system overhead since it is
impossible to “downscale” the extensive 4GL runtime support (form management,
event management, query support, report generation, transaction management, . . .)
to just the functionality needed by a particular application.

e The linguistic quality of 4GLs does not compare well with modern (object-oriented,
modular, or functional) programming languages.

2.3 Scalable Application Frameworks in Persistent Higher-Order
Languages

Most of the above 4GL limitations reflect the deficiencies of the implementation tech-
nology that is being used to construct 4GL interfaces. This technology simply does not
support the abstractions required for a more flexible, systematic 4GL service integration.
To overcome these limitations and to achieve 4GL openness and extensibility, we pro-
pose an architecture based on interacting POSs using well-organized safe libraries and an
implementation which exploits higher-order language technology. According to our un-
derstanding, an ideal POS development environment involves the following components:

1. A persistent higher-order programming language that provides just the core func-
tional, operational and modal primitives required by persistent object systems (see

Sec. 3);



2. A lean system architecture that unbundles and repackages the services found in
traditional programming languages, database systems, and operating systems to
allow scalable system implementations ranging from simple, PC-based, single-user
systems to networked, multi-user, client-server architectures (see Sec. 4).

3. A systematically designed application framework that consists of a rich and ex-
tensible set of libraries. The framework supplies application builders with prede-
fined, composable, high-level services like bulk data structures (relations, sets, lists,
graphs, etc.), iteration abstractions (queries, views, traversal patterns for recursive
data structures, etc.), and declarative integrity checking mechanisms (see Sec. 5);

The success of such a development environment crucially depends (1) on the expres-
siveness and orthogonality of the base language, (2) on the degree of interoperability with
pre-existing services and tools that can be achieved by the system architecture, and (3)
on the quality of the initial set of libraries provided by the application framework.

Fig. 3 sketches the architecture of a POS implemented in an application framework
provided by a persistent higher-order language. Similar to a 4GL, the relevant application
objects (persistent database objects, volatile program objects, virtual screen objects, etc.)
are subject to uniform naming, typing and binding rules, indicated by uniform line styles
connecting the corresponding symbols in Fig. 3. In contrast to a 4GL, most of these object
types are not built into the base language but are provided by an open set of libraries
that are an integral part of the programming environment. Some of the libraries are sim-
ply interfaces to external services (database systems, language compilers, GUI toolkits),
others libraries provide functionality that is implemented in the persistent higher-order
language itself. Furthermore, Fig. 3 indicates that access to some of the libraries may
be supported by syntax extensions to the persistent core language. The technology for
such flexible, problem-oriented syntax extensions using extensible grammars is described
in [CMA93].

In the rest of this paper we present the contributions of the Tycoon system, a particular
example of a persistent higher-order application framework, to the three areas outlined
above.

3 Language Concepts for High-Quality Information Systems

In this section we highlight some of Tycoon’s higher-order language concepts. By treating
functions and types as first-class language objects, it becomes possible to write generic
libraries and generators without leaving Tycoon’s language framework. This fact is ex-
ploited extensively in the Tycoon libraries and tools (see Sec. 5) to provide 4GL function-
ality without resorting to inflexible, monolithic built-in solutions.

3.1 Values, Types, Bindings and Signatures

The semantic model of Tycoon is based on higher-order type theories [MLT75, CHS85,
Car88]. The core semantic entities of Tycoon are values, types, bindings and signatures
[BL84, Car89]. Values and types can be named in bindings for identification purposes and
to introduce shared or recursive structures at the value and the type level. Signatures act
as (partial) specifications of static and dynamic bindings. Bindings are embedded into
the syntax of values, i.e. they can be named, passed as parameters, etc. Accordingly,
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Figure 3: Scalable application frameworks in persistent higher-order languages

signatures appear in the syntax of types to describe these aggregated bindings. The
mutual dependencies are illustrated best by the following excerpt from Tycoon’s recursive
language syntax. Further examples and explanations are given below.

Type::= Ide | Ok | Nok | Fun(Signatures):Type | Tuple Signatures end
| Type(Bindings) | Oper(Signatures)Type

Signatures::= {I'ypeSignature | ValueSignature | LocationSignature}

TypeSignature::= Ide <:Type

ValueSignature::= Ide : Type

LocationSignature::= var Name :Type

Value::= Literal | Ide | ok | fun(Signatures)Value | tuple Bindings end | Value(Bindings)

Bindings::= { TypeBinding | ValueBinding | LocationBinding}

TypeBinding::= Let Ide=Type | :Type

ValueBinding::= let Ide=Value | Value

LocationBinding::= let var Ide=Value | var Value

Types are partial specifications of values. Here are some examples of types (compare
with the type syntax above):

Int, Real, String library-defined type names
Age, IntPair user-defined type names
Ok, Nok top type and bottom type
Fun(x :Int) :Int function type

Tuple fst :Int snd :Int end aggregate type

There is no syntactic distinction between library-defined base type names and user-
defined type names. The predefined type Ok represents the weakest type specification.
The predefined type Nok represents the strongest (non-satisfiable) type specification. In
Tycoon there is a partial order on types based on their degree of precision: A <:B (“A is
subtype of B”) iff type A is more precise than type B. The order <: is defined inductively
and Tycoon’s type system contains the subsumption rule: if a value a has type A and
A<:B then a has also the weaker supertype B. For any type A, Nok <:A <:Ok holds.



Function types are used to describe the signatures of parameterized objects like func-
tions, procedures, methods, generators or relational queries. Aggregate types are used
to describe the signatures of language entities like records, tuples, structures, modules,
object definitions, or database definitions,.

For each type constructor there exist corresponding value constructors, for example:

3, 3.4, 7XY” literal values

ok, raise abort top value and exception generator
true, false, pi library-defined value identifiers

+, —, *, sin, abs library-defined function identifiers
fun(x :Int) x+1 user-defined function value

tuple let fst=3 let snd=4 end aggregate value

The builtin value ok has type Ok. This value is returned by expressions that are not
intended to produce a useful value and that only perform side-effects like assignments.
There is no value that has type Nok. Type Nok is assigned by the compiler to expressions
whose evaluation does not terminate, like statement sequences that raise an exception.
Bindings are ordered sequences of value, type and location bindings, for example:

let pi = 3.1415 value binding

let succ = fun(x:Int) x+1 function value binding
Let IntPair=Tuple fst:Int snd:Int end type binding

let var age = 20 location binding

A type binding defines a name for a type. A value binding defines a name for a (constant)
value. A location binding defines a name for an anonymous location that in turn contains
a value. Value, type and location bindings in Tycoon are immutable, i.e., it is not possible
to destructively update bindings once they are established. Assignments can be performed
only on the contents of locations (age:=age+1).

It is sometimes desirable to omit identifiers from bindings and to write anonymous
bindings, like succ(3) or tuple 3 4 end instead of succ(let x=3) and tuple let fst=3
let snd=41 end, respectively. There are type rules that govern the compatibility between
anonymous bindings and named signatures in Tycoon.

Signatures classity bindings like types classify values. Signatures are ordered sequences
of value, location or type signatures, for example:

pi :Real value signature

succ :Fun(x:Int) :Int function value signature
IntPair <:Tuple fst:Int snd :Int end type signature

var age :Int location signature

Signatures specify invariants on bindings and allow the verification of the correctness
of (value or type) expressions depending on names without having access to the actual
binding in which the name is defined. For example, based on the signature var age :Int,
the type correctness of the expression age:=age+1 can be verified without having access
to the actual value bound to age. Signatures therefore play a central role in type-safe
application frameworks that require separate compilation.



3.2 Higher-Order Functions

In Tycoon, functions are first-class typed values. The following examples illustrate three
powerful proramming patterns that are based on the use of first-class functions. It should
be noted that today’s 3GLs and 4GLs impose restrictions on the use of functions that
essentially rule out these programming patterns for all “interesting” cases, e.g., if functions
contain references to non-local variables, if functions are to be stored persistently, or if
functions are to be passed between programs running on different hardware architectures.

Function aggregation allows programmers to build complex data structures (“objects”)
that contain function values. A particular form of function aggregation underlies the
modular and object-oriented programming style where aggregated functions are used to
perform operations on encapsulated state variables:

let object = tuple let print = fun() begin...end let copy = fun() begin. .. end end

The selection of function components in aggregates is achieved via the usual dot notation
(object.print(), object.copy()).

Function parameterization allows programmers to pass functions dynamically as argu-
ments to other functions. For example, the higher-order function twice takes a function
argument and an integer argument and applies its fist argument twice to its second argu-
ment:

let twice = fun(f :Fun(x:Int):Int a:Int) f(f(a))
twice(succ 3) = 5

The capability to pass functions as arguments to other functions is exploited heavily in
the Tycoon framework to factor-out application-dependent functionality from otherwise
re-usable library code.

Finally, function generation allows programmers to return functions as the result of
other functions. For example, the function makelnc returns a function that adds a fixed
value to its argument. The increment step is determined by an argument to the function
makelnc:

let makelnc = fun(step :Int) fun(x :Int) x + step
let incl = makelnc(1) let incl0 = makelnc(10)
incl(3) = 4  incl0(3) = 13

Technically speaking, each invocation of makelnc returns a fixed piece of code (x+step)
with a different static environment that assigns values, types and locations to the global
variables (step in this example).

3.3 Higher-Order Type Operators

Type operators denote parameterized type expressions that map types or type operators
to types or type operators. For example, the type operator Pair takes any type X that is
a subtype of the trivial type Ok and returns a tuple type with two fields of type X:

Let Pair=Oper(X <:0k) Tuple fst:X snd:X end type operator binding
Pair(Int), Pair(String), Pair(Pair(Int)) type operator applications



Many programming languages have built-in type operators that map types to types (Ar-
ray, List, File, Pointer, ... ); some languages have support for user-defined type operators
that map types to types (e.g., type definitions in ML [MTH90] and Haskell [HW86]); very
few languages support higher-order type operators (Quest [Car89], Tycoon [MS92]).

The ability to introduce new type operators is required to supply generic data struc-
tures like relations, indices, stacks in the application framework. These generic types
can later be instantiated with type parameters to construct application-specific types like
“supplier relations”, “student indices” or “integer stacks”.

The syntax for type operator definitions and type operator applications in Tycoon
emphasizes the analogy between the concept of (higher-order) functions, mapping (func-
tion) values to (function) values, and the concept of (higher-order) type operators. In
particular, it is possible to perform type operator aggregation, type operator parameter-
ization, and type operator generation in analogy to the functional concepts outlined in
the previous section.

An example of a higher-order type operator is Twice which takes a type operator F
and returns the result of applying F twice to a given type A:

Let Twice=Oper(F <:Oper(X<:0k)<:0Ok A<:0k) F(F(A))
Twice(Pair Int)

For example, Twice(Pair Int) is equivalent to Pair(Pair(Int)). More useful examples of
higher-order type operators require substantially more complex type expressions as they
appear in interface specifications of large libraries.

3.4 Type Quantification in Signatures

The parameterization concepts on the value and type level outlined in the previous two
secions are complemented in Tycoon by the concept of type quantification in signatures.
Type identifiers introduced in a type signature can appear in subsequent type, value and
location signatures. This makes it possible to express two kinds of dependencies on type
variables':

FExistential Quantification: Type components embedded in the signature of an aggre-
gate type allow to model type abstraction as found in modular programming languages:

Let ADT = Tuple T <:0k zero :T succ(:T):T end
let nat =tuple Let T=Int let zero=0 let succ=fun(x :Int) x+1 end
let one = nat.succ(nat.zero)

Intuitively, the existential quantification inside of an aggregate type gives extra flexibility
to the service provider, in this case the implementor of the value nat of type ADT, since
he can choose the representation type for T freely, as long as the constraints of the other
signatures are met:

let nat =tuple Let T=String let zero=“" let succ=fun(x :String) concat(x “1”) end

Universal Quantification: Type components embedded in the signature of a function
type lead to the well-known concept of (bounded) parametric polymorphism [CW85]:

1To a limited extent it is also possible to define type dependencies on value identifiers (dependent types

[Mac86]).



Let Sort = Fun(X <:0k x :Array(X) {<}:Fun(a:X b:X):0k):Ok

let quickSort = fun(X <:0k x :Array(X) {<}:Fun(a:X b:X):Ok) begin. .. end
quickSort(:Int IntArray {<})

quickSort(:Person PersonArray fun(a,b:Person) string.<(a.name b.name))

Sort describes the type of generic sort functions that work uniformly for all types X and
that take an array x with elements of type X and a function < to compare two elements
of type X.

Intuitively, the universal quantification inherent in generic function types gives extra
flexibility to the service consumer, in this case the caller of the function quickSort, since
he can apply the function to a wider range of arguments.

Another example of a universally quantified type expression is the type of the assign-

«, __»,

ment function
Let Assign = Fun(X <:Ok var lhs :X rhs :X):0k

This signature expresses the fact that the assignment operation works uniformly over
all subtypes X of Ok and takes a location of type X and a value of type X as its left-
hand-side and right-hand-side argument. Since the type of “:=" is fully representable in
the Tycoon type system, it is also possible to export alternative implementations of the
assignment function in the Tycoon libraries, e.g. to perform concurency control, integrity
checking or recovery operations in addition to the plain assignment operation.

4 The Scalable Tycoon System Architecture

It should be clear from the language overview in the previous section that Tycoon does
not attempt to achieve expressiveness by an extensive list of featuers but by generalization
and orthogonal combination of relatively few basic concepts. This minimalistic approach
also simplifies the implementation of the supporting Tycoon system architecture that is
sketched in this section.

The complexity of relational database systems (and recent OODBMS) results essen-
tially from the fact that they are monolithic servers that bundle a large number of tightly
coupled services like memory management, concurrency control, recovery, data structur-
ing, access control, etc. Moreover, access to these services is only granted via a narrow
database language interface that severely restricts access to individual services.

The Tycoon system attempts to unbundle the above DBMS and 4GL services by
strictly separating data modeling, data manipulation and data storage issues. Horizontal
bars in Fig. 4 indicate the three central Tycoon system abstractions: TL, TML and TSP.

TL (Tycoon Language) is the strongly-typed higher-order polymorphic programming
language presented in Sec. 3 [MS92]. TL serves as a uniform application and system
programming language and therefore has to support both, programming using high-level
problem-specific data models (like entities and relationships) as well as the implementation
of these data models in terms of system-oriented data structures (like hash tables, B-trees,
or linear lists).

Large TL programs are typically divided into modules, interfaces and hierachically
nested libraries. The Tycoon language processors support separate compilation and dy-
namic linking. Furthermore, it is possible to evaluate TL expressions interactively, e.g.,
to perform ad-hoc queries. Scanning, parsing, type checking, code generation, linking and
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Figure 4: The Tycoon system architecture

execution is then performed immediately, giving the user the illusion of interpretative exe-
cution. Since expressions entered interactively may refer to precompiled TL modules, this
interactive interface constitutes also a convenient programming development environment.

TML (Tycoon Machine Language) is a minimal intermediate language based on an
untyped lambda calculus extended with imperative constructs that serves as a low-level,
portable TL program representation in distributed heterogeneous environments. TML
was designed to support efficient host-specific target code generation as well as dynamic
optimizations analogous to query and transaction rewriting in database systems.

The ability to inspect abstract program representations at run-time, to generate new
executable code from program representations, and to link newly created code to “live”
systems is a key technology for generic system construction. This functionality has to be
emulated in third- and fourth-generation languages either by resorting to interpretation
techniques or to non-portable, ad-hoc binding mechanisms.

Currently, there exist two different TML evaluators: a compact, portable interpreter,
immediately executable on a wide range of hardware-platforms and an optimizing code
generator. The latter uses proprietary C compilers as portable target machine code gener-
ators. The current version of the Tycoon system runs on Sun Sparc, DEC Mips, and IBM
Power architectures. We intend to make Tycoon also available on IBM PC and Apple
Macintosh systems.

TSP (Tycoon Store Protocol) is a data-model-independent object store protocol based
on the notion of a persistent heap that shields TML evaluators (and TL programmers) from
operational aspects of the underlying persistent store like access optimization, storage
reclamation, concurrency or recovery. By forcing all higher levels of the system to use the
TSP (software) protocol, it provides an ideal starting point to add system functionality
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at the store-level (e.g. distribution transparency or access-control).

A key contribution of the TSP to the overall Tycoon system functionality is support
for orthogonal persistence [AB87]: data of any type (including functions) can exist as long
or as short as required by the application. Programmers do not need to write explicit
code to move data between persistent and volatile store.

Currently, there exist three different TSP implementations that can be combined freely
with the existing TML evaluators: a compact, paged main memory store implementation
with a simple file-based persistence mechanism [MMS92]; an interface to the Napier per-
sistent object store [BMM™*91] that provides an efficient single-user stable store with
recovery mechanisms based on shadow copying exploiting low-level memory manageme-
ment hardware support; and a gateway to the object-oriented database system Object-
Store [LLOW92] supporting recoverable multi-user access to shared databases in client-
server architectures. All store implementations feature automatic garbage collection and
portable data import and export to files.

To summarize, this layered protocol-oriented architecture aims at system scalability
and portability by de-emphasizing operational aspects of the protocol implementations
and focussing on the core requirements of persistent object systems.

5 An Application Framework for Bulk Data Management

As explained in Sec. 2.3, application programmers do not use the bare Tycoon language TL
but implement substantial parts of the overall application functionality by instantiating
generic library code supplied by an application framework. In this section we give a brief
overview of an application framework that is being developed at the University of Hamburg
to meet the specific demands of data-intensive applications. One should note that there
may be multiple application frameworks supported by the same core language and system
architecture. For example, [SM92b] describes a Tycoon application framework for the
construction of language processors, exporting scanner, parser and unparser generators
as well as utility modules for source code, error log and cross-reference management.
Fig. 5 gives an idea of the organization of the main components of the Tycoon ap-



plication framework for bulk data management which provides services at several levels
of abstraction. For simple applications that only need to print, display and possibly edit
(persistent) bulk data, the modules Browser, Fmt, Sink and Writer provide pre-packaged
program patterns that bundle the necessary data retrieval and data formatting code.

Other modules (Iter, IC, Reader) export query constructs (like select, project, join, ag-
gregate, sort, or group by), loop statements and predicative integrity control mechanisms.
These modules utilize higher-order functions, polymorphic functions and user-defined type
operators to make their functionality applicable uniformly to a wide range of bulk data
structures. These query constructs are fully integrated into the Tycoon language TL, i.e.,
they can be nested, named, parameterized, or stored persistently.

The declarative and set-oriented services of the modules Iter, IC and rReader are
based on abstract collection type definitions (Relation, Table, Sequence). An abstract
collection is represented as an object with a hidden state and a set of functions (size,
member, insert, delete, get, set, ...) that modify or inspect the hidden state.

For each abstract collection type (e.g., Relation) there exist alternative collection type
implementations. Some of these implementations are written in TL (e.g., LinkedList,
BTree, Array, HashTable), others are imported from external servers (e.g. SQL Tables).
All of these implementations are polymorphic, that is, they can be instantiated with dif-
ferent element types. For example, the following (simplified) interface SQL taken from the
current Tycoon libraries describes the signatures of the polymorphic functions exported

by the a SQL server:

interface SQL export
Table <:Oper(E<:Tuple end)<:0k
openTable:Fun(Dyn E<:Ok name:String): Table(E)
insert:Fun(E<:Ok table:Table(E) tuple:E):Ok
insert All: Fun(E<:Ok table: Table(E) tuples:Table(E)):Ok
delete:Fun(E<:Ok table:Table(E) where:Fun(e:E):Bool): Ok

end

This interface exports an abstract type operator Table that maps a tuple type E (any
subtype of the empty tuple type) to a hidden type (an arbitrary subtype of the type
Ok). This parameterized hidden type describes the type of SQL tables with elements
of type E. The type operator Table is used in subsequent function signatures of this
interface, capturing the fact that the only way to manipulate SQL tables is via these
generic functions. There may be several modules implementing this interface, i.e. defining
type, value and location bindings that match the specified signatures. Currently, there
exist a Tycoon/Ingres and a Tycoon/Oracle gateway that both have the interface SQL.

The following interface imports the type operator Table from the module ingres with
interface SQL to define a application-specific database schema that declares two relation
variables (register, fees).

interface PhoneDB import ingres export
Let Entry=Tuple name:String num:String end
Let Fee = Tuple prefix :String cost :Int end
var register :ingres. Table(Entry)
var fees :ingres.Table(Fee)
end



The binding to the external Ingres relation variables is established in the corresponding
implementation module:

module phoneDB import ingres export
let var register=ingres.openTable( “register”)
let var fees=ingres.openTable(“fees”)

end

A main program may use the bindings provided by the phone database as arguments to
the SQL interface functions:

module main import ingres phoneDB export
ingres.insert(phoneDB.register tuple “Peter” “249” end)
ingres.delete(phoneDB.fees fun(f:Fee) f.prefix>=“800”)
end

This example illustrates how higher-order type systems contribute to lean languages and
open system architectures. All the code necessary to implement the SQL gateway is
encapsulated in a library that has to be imported only by those applications that actually
need this service. Furthermore, the “type rules” which ensure that clients make proper
use of this service are also encapsulated by the library interface signatures and do not
need to be hard-wired into the language or its runtime system.

6 Concluding Remarks

Application frameworks in persistent higher-order languages provide the functionality of
4GLs for a much broader class of object types than the classical set- and record-oriented
data structures. By a strict separation of data modeling, data manipulation and data
storage issues into three distinct system layers, this generalization on the language level
can be achieved in a relatively small, scalable and portable system environment with
substantially improved interoperability.

Our current work in the Tycoon project aims at integrating further relevant generic
servers (e.g., authentication, directory and RPC servers) into the Tycoon POS environ-
ment and to lift their services using state-of-the-art language technology.
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