Relational Database Programming:
Naming, Typing and Binding *

Joachim W. Schmidt Florian Matthes

University of Hamburg
Department of CS
Schliterstrafie 70

D-2000 Hamburg 13

e-mail: schmidt@rz.informatik.uni-hamburg.dbp.de

Abstract

The DBPL language orthogonally integrates sets and first-order predicates into a strongly and
statically typed programming language, and the DBPL system supports the language with full
database functionality including persistence, query optimization and transaction management.
Modern language technology with its sound naming, typing and binding schemes applied to
database concepts results in new insights into the relationship between types and schemas,
expressions/iterators and queries, selectors and views, or functions and transactions.

1 Introduction and Overview

Data-intensive applications may be characterized by their needs to model and manipulate heavily
constrained data that are long-lived and shared by a user community. These requirements result
directly from the fact that databases serve as (partial) representations of some organizational unit
or physical structure that exist in their own constraining context and on their own time-scale
independent of any computer system. Due to the size of the target system and the level of detail
by which it is represented, such representational data may become extremely voluminous — in
current data-intensive applications up to O(10°) or even higher. In strong contrast to the need for
global management of large amounts of representational data, data-intensive applications also have
a strong demand to process small amounts of local computational data that implement individual
states or state transitions.

In essence, it is that broad spectrum of demands — the difference in purpose, size, lifetime, avail-
ability etc. of data — and the need to cope with all these demands within a single conceptual
framework that has to guide the design of integrated database programming languages.

Here we present an introduction to DBPL [?], an integrated database programming language
that addresses the need for a uniform language framework for advanced database application
programming. DBPL is a successor to Pascal/R [?] and extends Modula-2 into three dimensions:

e bulk data management through a data type set (relation);
e abstraction from bulk iteration through associative access expressions;

o database modules and transactions that abstract from persistence, sharing, concurrency con-
trol and recovery.

*This research was supported in part by the European Commission under ESPRIT BRA contract # 3070 (FIDE).



An essential guideline for the design of DBPL can be characterized by the slogan “power through
orthogonality”. Instead of designing a new language (with its own naming, binding and typing
rules) from scratch, DBPL extends an existing language and puts particular emphasis on the in-
teroperability of the database concepts with those already present in the programming language.
Furthermore, DBPL aims at a uniform treatment of volatile and persistent data, large and small
data collections and a uniform (static) compatibility check between the declaration and the uti-
lization of each name.

2 Naming, Typing and Binding in a Relational Environ-
ment

The first step towards a better integration of database concepts into a language environment is to
identify the basic database concepts and to rephrase them in terms of an appropriate vocabulary
of programming concepts. The following paragraphs illustrate how DBPL captures the main
principles of set- and predicate-oriented database systems using the well-understood notions of
naming, typing and binding in procedural programming languages.

2.1 Names and Types

Names in DBPL are arbitrarily long sequences of upper and lowercase letters and digits starting
with a letter.

DBPL is a statically and strongly typed language: every name is associated with a unique type that
is determined at compile-time. The compiler uses this information to assure that all names for
values, expressions or operations are only used in an appropriate context. The advantages of such
a typing scheme are well known: programs are less liable to errors and there are no time-consuming
dynamic type checks.

The type compatibility rules for composite types in DBPL are based on name equivalence, i.e.,
two composite objects have the same type if and only if they have been declared by using the
same type name. This should be seen in contrast to the rule of structural equivalence where two
objects are type compatible if their fully expanded definitions are the same.

DBPL inherits from Modula-2 all standard built-in types (INTEGER, BOOLEAN, CHAR, REAL, ...) and
the mechanisms to declare user-defined types and subrange types thereof. Strings are treated as
composite objects consisting of a sequence of characters. Furthermore, DBPL provides array and
record type constructors.

A relation type specifies a structure consisting of elements of identical type, called the relation
element type. The number of elements, called the cardinality of the relation, is not fixed. The
declaration of the relation type specifies the relation element type and an ordered list of key
components:

TYPE SupplierRel = RELATION Num OF SupplierRec;
MadeFromRel RELATION Num OF MadeFromRec;
PartNumSet RELATION OF PartNum;

Point2DSet = RELATION OF ARRAY [1..2] OF REAL;

The relation key defines a list of components of the relation element type such that the relation
always defines a function between its key and its element type. In other words, each key value
uniquely determines (at most) one relation element. For example, the key constraint for a relation
Suppliers of type SupplierRel can be expressed by the following predicate stating that the
equality of the key component Num implies the equality of the relation elements:

ALL s1, s2 IN Suppliers (si.Num = s2.Num) => (sl = s2)



An empty key component list is a synonym for an enumeration of all components of the element
type; in this case a relation is just a set of relation elements. The example above declares two
relation types (with record elements), a set of natural numbers (PartNumSetType), and a set of
points that are represented by their coordinates in the plane.

In order to create “containers” for values of these (relation) types, it is necessary to explicitly
declare named variables.

VAR Suppliers : SupplierRel;
0ldSuppliers : SupplierRel;
MadeFrom : MadeFromRel;

2.2 Scopes, Bindings and Lifetime

The above descriptions of the naming and typing rules have to be extended by rules defining the
scope of names and the lifetime of objects denoted by these names. In order to do so we first have
to introduce the concept of a module.

A module constitutes a sequence of name definitions and statements (to be discussed later in
2.3). A typical DBPL application consists of a multiplicity of modules. DBPL supports separate
compilation, i.e. modules can be developed independently. A module can import names that are
exported from other modules that include definitions for these names or that simply import these
names from a third module. The compiler enforces the consistent use of names across module
boundaries following the typing rules above.

The scope of a name n declared in a module M extends over the whole body of M and over all
Module ¥; importing n. Names have to be unique within a scope. Modules are in turn identified
by names. In DBPL there is a single global scope for module names.

Using these rules it is straightforward to model the scoping rules of conventional relational database
systems. A database schema is simply a module that declares and exports names for types of
appropriate basic domains and declares and exports variables of relation types consisting of records
with fields from the basic types (see Fig. 1). Similarly, an application program is a module that
explicitly imports names from a database schema.

Since the import relationships between modules have to be declared statically, there is no possi-
bility for name conflicts and ambiguities at runtime.

Modules can be defined as DATABASE modules. All variables declared within such a module are
persistent, i.e. in contrast to other program variables their lifetime exceeds a single program
execution. To be precise, the lifetime of a persistent variable is longer than that of any program
importing it. Ordinary and persistent modules therefore allow the modelling of both, transient
and persistent data objects.

Persistent variables are shared objects and can thus be accessed by several programs simultane-
ously. An access to a persistent variable must be part of the execution of a transaction (see section

3.3).

2.3 Expressions and Operations

For each type constructor of DBPL (record, array, relation), there is a value constructor to create
objects of the composite type by enumerating its components:

vi:= SupplierRec{11, "John", important};
v2:= MadeFromSubRec{11, 100};
v3:= PartRec{3, "nut'", base, 300.0, 20.3, 11};

In DBPL there are three kinds of wvalue selectors for the selection of components of a struc-
tured value: Elements of an array are selected by an index value of their index type, enclosed



DATABASE DEFINITION MODULE SupplierPartDB;

TYPE
PartNum = [0..99999];
SupplierNum = [1000..9999];
SupplierStatus = (unimportant, important, veryImportant);
String = ARRAY [0..29] OF CHAR;
Dollar = REAL;
Kilo = REAL;
PartState = (base, comp);
SupplierRec = RECORD
Num : SupplierNum;
Name : String;
Status : SupplierStatus;
END;
MadeFromSubRec = RECORD
Num : PartNum;
Quantity: CARDINAL;
END;

MadeFromSubRel = RELATION Num OF MadeFromSubRec;
PartRec = RECORD
Num : PartNum;
Name : String;
CASE State : PartState OF
base :
Cost : Dollar;
Mass : Kilo;
SuppliedBy : SupplierNum;

| comp :
MadeFrom : MadeFromSubRel;
AssemblyCost: Dollar;
END;
END;

SupplierRel = RELATION Num OF SupplierRec;
PartRel = RELATION Num OF PartRec;
VAR
Suppliers: SupplierRel;
Parts : PartRel;
END SupplierPartDB;

Figure 1: A typed relational database schema in DBPL



in square brackets (e.g., vector[7]); Fields of a record are selected by their field name (e.g.,
supplier.Name); Elements of a relation are selected by their key value, enclosed in square brack-
ets (e.g., Suppliers[7]). Variable designators of DBPL therefore consist of a name followed by a
path of value selectors.

In addition to these element-wise operations, DBPL provides specialized set-oriented query expres-

stons for relation types. There are three kinds of query expressions, namely boolean expressions,
selective and constructive expressions.

Quantified Expressions yield a boolean result (i.e. TRUE or FALSE) and may be nested:

SOME Supplier IN Suppliers (Supplier.Name = '"John")
ALL Supplier IN Suppliers (Supplier.Status = important)
ALL Part IN Parts (Part.State <> base) OR
SOME Supplier IN Suppliers (Part.SuppliedBy = Supplier.Num)

Selective Access Expressions are rules that select subrelations.
EACH Supplier IN Suppliers: Supplier.Status = important

selects all elements Supplier of the relation variable Suppliers that fulfil the selection
predicate Supplier.Status = important.

A selective access expression within a relation constructor denotes a relation of all selected
tuples:

SupplierRelType{EACH Supplier IN Suppliers: Supplier.Status = important}

Constructive Access Expressions are rules for the construction of relations based on the val-
ues of other relations:

NameRec{p.Name, s.Name} OF EACH p IN Parts, EACH s IN Suppliers:
(p.State = comp) AND (p.SuppliedBy = s.Num)

where NameRec is a record of two strings defined as RECORD Part, Supplier: String
END. The construction rule above defines how to derive the names of all base parts with their
suppliers from the two stored relations Parts and Suppliers.

The application of a relation constructor to a constructive access expression creates a re-
lation that contains the values of the target expression (preceding the keyword OF), evalu-
ated for all combinations of the element variables (p, s) that fulfil the selection expression
(p.State = comp) AND (p.SuppliedBy =s.Num):

NameRel{{p.Name, s.Name} OF EACH p IN Parts, EACH s IN Suppliers:
(p.State = comp) AND (p.SuppliedBy = s.Num)}

where the result relation type has to be defined as TYPE NameRel = RELATION OF NameRec

Note, access expressions do not denote relations; only in the context of a relation constructor
NameRel{. ..} do they evaluate to a relation. Other contexts in which access expressions can be
used are given below.

In addition to these (side-effect free) expressions, DBPL provides specialized set operators (:=,
i+, 11—, :&) for relation updates which assign, insert, delete, and update sets of relation elements:

Parts:= PartRel{};
Suppliers:- SupplierRel{EACH s IN Suppliers: s.Status=important}

The types of the expression and the variable on the left-hand side have to be compatible according
to the rules of section 2.1. As illustrated by the examples above, the nesting of DBPL expressions
captures the essence of relational query languages, namely to provide iteration abstraction by
means of high-level set-oriented selection, construction and update mechanisms.



3 Interoperability for Database Programming

The above presentation of structures, expressions and statements of DBPL departs from the main
stream of “standardized” query languages in order to achieve interoperability with strongly typed
programming languages by means of uniform naming, typing and binding mechanisms.

The following sections illustrate the advantage, in terms of increased data manipulation, data
description and data abstraction power, that is obtained by investing language technology into
the relational data model

3.1 Computational Completeness

The main reason to couple a DBMS with an algorithmically complete programming language is to
utilize the expressive power of the language environment for arbitrary complex operations on the
data stored in the database. DBPL incorporates all data types, operations and control structures of
the system programming language Modula-2, including recursive functions and procedures, higher-
order functions and elaborately structured statements. DBPL is therefore an ideal environment
for the implementation of complex database application programs.

It should be noted that database and programming language features of a database programming
language should not simply reside side-by-side. On the contrary, one needs many interfaces to
create synergy between these features. DBPL therefore allows the orthogonal combination of the
concepts inherited from both worlds, for example:

e Relation types are allowed to appear in arbitrary contexts, i.e. not only as types for database
variables, but also as types of local variables within procedures, or as types of value- or
variable-parameters;

¢ Quantified expressions (see 2.3) can appear not only within query expressions but also in
conditionals or as termination conditions of loops;

e Relation constructors can be used freely within expressions of arbitrary types. A relation
constructor can contain function calls, arithmetic operations etc.

As it turns out, the use of a (generalized) relational calculus instead of a relational algebra facili-
tates such an approach, since predicates as boolean-valued expressions can be utilized in a broader
range of contexts than pure relation-valued algebra expressions.

3.2 Type Completeness

In addition to the concept of computational completeness, DBPL adheres to the language design
principle of type completeness, i.e. all type constructors of DBPL (relation, record, variant, array)
have equal status within the language. It is therefore possible to apply these type constructors to
arbitrary other types (e.g. to declare arrays of relations or relations of variant records containing
relations of integers). Furthermore, values of these types can be used in expressions, assignments
or as parameters in a uniform way.

Finally, DBPL provides orthogonal persistence for values of the base types and values constructed
by means of the above type constructors. The persistent variables declared within a database
module (see 2.2) are not limited to relation types. This makes it possible to declare, for example,
a persistent boolean variable within a database module.

As illustrated in the database schema of Fig. 1, the concept of type completeness therefore naturally
leads to a data model that supports the declaration of complex objects and non-first-normal-form
relations thereby breaking the restrictions of the classical relational data model that is limited to
relations of records with attributes from the basic domains.



3.3 Completeness of Abstraction Mechanisms

Up-to-date programming languages provide two important abstraction mechanisms to achieve
localization of information in large software systems. Process abstraction allows programmers
to abstract from the implementation of a subroutine and to perform complex operations simply
through reference to its name with an appropriate list of actual parameters. Type abstraction allows
programmers to abstract from the implementation of a data structure and to operate on it only
via a well-defined interface, i.e. a set of operations defined for an abstract data type.

DBPL embodies both abstraction mechanisms by means of procedures that abstract over state-
ments, functions that abstract over expressions and opaque types that abstract over type expres-
sions. In addition, DBPL provides selectors that abstract over selective access expressions and
constructors that abstract over constructive access expressions (see 2.3). These two abstractions
capture the essence of updateable and non-updateable wiews in relational databases since selector
applications can appear wherever a relation variable is expected and constructor applications can
appear wherever a relation expression is expected.

The following selector named ImportantSuppliers defines an updateable view on the supplier
relation, selecting those suppliers having important as their status (see also p. 5).

SELECTOR ImportantSuppliers: SupplierRel;
BEGIN EACH S IN Suppliers: S.Status = important END ImportantSuppliers;

The constructor SuppliersForParts (see also p. 5) names a non-updateable view that is derived
from the base relations Parts and Suppliers and that contains pairs of parts and supplier names
for all base parts with their respective suppliers.

CONSTRUCTOR SuppliersForParts: NameRel;
BEGIN
NameRec{p.Name, s.Name} OF EACH p IN Parts, EACH s IN Suppliers:
(p.State = comp) AND (p.SuppliedBy = s.Num)
END SuppliersForParts;

Without going into details it should be noted that naming (of statements, expressions etc.) natu-
rally leads to the concept of recursion. The semantics of a recursive query expression in DBPL is
not defined operationally (as it is common practice for procedures) but as a least fixed point of re-
cursive set equation [?, 7]. Thereby constructors are at least as expressive as recursive DATALOG
programs with stratification semantics.

Another important abstraction mechanism of DBPL is the transaction that allows database pro-
grammers to abstract from concurrency and recovery issues when accessing persistent and shared
database variables. Transactions can be regarded as atomic with respect to their effects on the
database. In particular, the implementation of DBPL guarantees that concurrent transactions will
be executed in a serializable schedule.

TRANSACTION DeleteSuppliers(Suppliers: SupplierRel): BOOLEAN;
(* returns TRUE on success *)
BEGIN
IF SOME bp IN Parts (bp.State = base) AND
SOME s IN Suppliers (bp.SuppliedBy = s.Num) THEN
RETURN FALSE; (* referential integrity violated *)
ELSE
SupplierRel:— Suppliers;
RETURN TRUE
END;
END DeleteSuppliers;



3.4 External Interfaces

Even in a sound, computationally-complete and self-contained language like DBPL, there are sit-
uations that demand communication with external components like user interface management
systems (such as Motif or Open Look), network services, or simply with existing software compo-
nents coded in other standard programming languages like Pascal, C or COBOL.

The challenge to integrate database programming languages into an open system architecture is
mainly a technological problem and not a language design task. The current implementation of
DBPL [?, ?] (running under VAX/VMS) takes the following approach to interoperability in a
heterogeneous multi-language environment:

There is a special class of modules (called FOREIGN DEFINITION MODULES) that contain signatures
of procedures coded outside the scope of the DBPL compiler. The use of these procedures is
analogous (w.r.t. naming, type checking and binding) to ordinary DBPL procedure declarations.

The DBPL compiler generates for every DBPL module an object code file in the standard VAX-
VMS linker format. The linker is therefore capable of linking DBPL modules with object code
generated by virtually all VAX/VMS compilers.

Procedures and variables declared within individual DBPL modules can be used from other lan-
guages, as long as they do not contain relation, selector or constructor types.

The DBPL compiler generates debugger tables that can be interpreted by the standard VAX/VMS
multi-language debugger. This makes it possible to set breakpoints as well as display and modify
individual variables during the execution of compiled DBPL programs.

The need for an ad-hoc query interface is addressed in DBPL by means of a language-sensitive
editor that was constructed using a powerful system for the generation of language-sensitive tools.
The main idea is to simplify the task of an end-user that wants to query a database not by an
ad-hoc restriction of the language to a subset of DBPL, but by providing immediate feedback (e.g.
on undeclared names or type mismatches) during textual or form-oriented query input following
the paradigm of direct manipulation.

4 Summary and Conclusion

Practical experience with the use of DBPL in lab classes demonstrates that students quite will-
ingly accept the clear and improved interaction of a database model in form of “typed relational
sets” and “declarative set expressions” with other concepts needed and found in procedural lan-
guages, like strong typing, fine-grained scoping and dynamic parameterization. However, while
set-oriented expressions are readily used for the more standard data retrieval and manipulation
tasks, experience also seems to indicate that there is a tendency to fall back to procedural solutions
for more complex tasks, e.g. by embedding set expressions into iterators or recursive procedures.

The reason behind such user behavior may originate from the fact that simple query expressions
can still be understood by refering back to an operational semantics in terms of set construction
by loops, conditionals and assignments. However, this view becomes less appropriate for complex
queries such as recursive ones that require a more abstract understanding in terms of model-theory
and fixpoint semantics.

For designers and teachers it is definitely quite a challenge to reconcile this kind of “abstraction
mismatch” inside their languages, a problem hard to overcome without leaving the framework of
traditional computer languages (and definitly ruling out the “PL1 4+ SQL + ”*” ”-approach). We
are convinced that only advanced language technology with higher-order and polymorphic func-
tions, taxonomic typing systems and reflection will form the appropriate basis for next-generation
database programming languages [7, 7, ?].



