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Summary We describe the Tycoon persistent system architecture that achieves a
high degree of scalability and interoperability through a full integration of persistent
data, programs and threads while maintaining a strict separation of storage, ma-
nipulation, modelling and representation tasks into well-defined system layers. For
several of these layers alternative implementations with distinct operational support
are provided that can be configured dynamically to match best the requirements of
a given application. Moreover, we present Tycoon’s architectural contributions to
enable interoperability with existing generic services like databases, user-interface
toolkits and C++ program libraries.

1. Introduction and Motivation

Modern information systems provide their users with a flexible and problem-
oriented access to large repositories of complex persistent objects. The efficient
and cost-effective implementation of such information systems has to be based
on generic services provided by commercially available systems like relational or
object-oriented databases, graphical user-interface toolkits, program libraries or
standardized communication services.

The goal of the Tycoon' project carried out by our group since 1992 in the
context of the ESPRIT Basic Research Project FIDE is to improve substantially the
programmer productivity and modelling flexibility in such an open heterogeneous
system environment through contributions at two levels. First, Tycoon provides a
persistent polymorphic programming language with an elaborate higher-order type
system to uniformly describe existing generic services and to enable the consistent
integration of these services via high-level application code. This language aspect of
the Tycoon project is described in more detail in Chapter 1.1.1, [12, 17] (synopses
in Chapters 1.4.2 and 3.3.3) and [18, 14].

In this paper we focus on the second contribution of the Tycoon project, the
development of a persistent system architecture to support the Tycoon language
and a seamless generic server integration. Several innovative components of the
Tycoon system have been described already in [15, 11, 5] (synopses in Chapters
1.5.2, 2.2.4 and 2.3.5) and [8, 9]. Here we present and explain Tycoon’s overall
system architecture which excels through its scalability and interoperability.

Tycoon’s system scalability makes it possible to cover in a single linguistic
and architectural framework system implementations that range from a stand-
alone main memory Tycoon implementation on a personal computer to a large,
networked, multi-user, optimizing persistent Tycoon implementation. Contrary to
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monolithic information system architectures such as SAP/R3 or Oracle, Tycoon
applications that require only a limited system functionality can work with an ef-
ficient and lean system version that nevertheless can be scaled easily to cope with
increasing operational demands over the lifetime of the application.
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Fig. 1.1. Interoperability in the Tycoon environment

Figure 1.1 describes Tycoon’s contributions to interoperability:

— Existing and evolving generic services are integrated in a uniform manner as

polymorphic Tycoon libraries that provide type-safe access to external data
and code. Using this approach, several generic services such as window sys-
tems (OpenWindows/NeWS), user-interface management systems (StarView),
database systems (Ingres, Oracle), remote procedure call libraries (SunRPC),
authentication services (Kerberos) and information retrieval engines (Inquery)
have been integrated successfully in an add-on fashion into the Tycoon system.
Within the Tycoon language, uniform naming, typing, binding and lifetime rules
apply to screen, program and data objects (S, P, D in figure 1.1). In contrast to
closed systems like fourth generation languages, Tycoon enables programmers to
integrate also new generic services into their applications, that is, interoperability
is not limited to a fixed set of object types like tables or forms. This extensibility
is indicated by ellipses in the server icon list of figure 1.1.

Integrated services are indistinguishable from services implemented in Tycoon
itself. In particular, type safety and persistence abstraction can be obtained sys-
tematically also for external services in the context of the Tycoon system. As a
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result, many programming errors can be found by static type checking at compile-
time. This should be seen in contrast, for example, to untyped or string-oriented
bindings as found in user-interface toolkits or SQL databases. Furthermore, Ty-
coon programmers are relieved from storage management issues like garbage
collection, data transfer from and to disk, and recovery of persistent data.

— It is not only possible to integrate existing services into the Tycoon program-
ming environment, but Tycoon is designed to be itself easily integrated as a
subsystem into larger systems. For example, parts of the Tycoon compile-time
and run-time environment can be reused as servers for persistent data storage,
for portable code representation and evaluation, or for dynamic type checking.
Similarly, Tycoon application code can be called from main programs written in
C, C++, FORTRAN, COBOL etc. This interoperability aspect is indicated by
the arrows at the top of figure 1.1.
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Fig. 1.2. Overview of the Tycoon persistent system layers

Figure 1.2 provides an overview of Tycoon’s persistent system architecture that
strictly separates storage, manipulation, modelling and representation tasks into
well-defined system layers. For several of these layers, alternative implementations
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with distinct operational support are provided that can be configured dynamically
to match best the requirements of a given application.

In this paper we discuss these layers of the Tycoon system environment in a
bottom-up fashion: As described in section 2, full persistence abstraction for data
and code is achieved already at the lowest layer of the Tycoon system defined
by the Tycoon Store Protocol (TSP). The Tycoon Virtual Machine (TVM) pre-
sented in section 3 provides a platform-independent higher-order execution model
that also supports calls, callbacks and exception handling involving external code
written in other languages. In addition to executable TVM code, our persistent
system architecture relies heavily on a persistent intermediate code representation
(Tycoon Machine Language, TML) presented in section 4 which is used for static
and reflective run-time code analysis and optimization. Since TML is an untyped
language it is possible to implement multiple (polymorphically-typed) languages
using a common TML intermediate representation. In Section 5 we highlight how
modern language features like dynamic typing and reflection are supported by Ty-
coon’s persistent system architecture. The wide range of services to be integrated
into the Tycoon languages calls for a syntactic flexibility supported by the con-
cept of extensible grammars as described in section 6. In section 7 we sketch how
the Tycoon system components are integrated into a self-contained persistent pro-
gramming environment including mechanisms for separate compilation and global
optimization. The paper ends with a short summary of our experience using the
Tycoon environment.

2. The Tycoon Store Protocol (TSP)

The Tycoon Store Protocol defines a uniform data-model-independent call-level
interface to multiple (commercially distributed) persistent object stores. TSP is
defined as an ANSI C header file which fully abstracts from implementation details
of the underlying persistent stores. TSP is discussed in detail in [11] (see Chapter
2.2.4).

A) TSP client can switch freely from one store implementation to another and
work with more than one persistent store at once, but references between stores
are not supported. Furthermore, TSP defines a portable linear data representation
(TXR) to achieve store-level interoperability between all TSP server implemen-
tations. TSP concentrates on that subset of store functions that is provided by
existing, widely used commercial and public-domain persistent object stores. TSP
has a slight bias towards the needs of clients that have to implement persistent and
possibly distributed programming languages.

A typical TSP server is implemented by writing a store adaptor that maps TSP
data structures and functions to data structures and operations of an existing ob-
ject store. As of today, this has been carried out for the commercial multi-user store
ObjectStore (ObjectDesign) and the research prototype FLASK (Chapter 2.3.1).
Moreover, our group has implemented two additional stand-alone TSP servers par-
ticularly well-suited for personal computers.

TSP contributes significantly to Tycoon’s system scalability since TSP clients
can choose between

— different garbage collection strategies;

— different object faulting mechanisms;

— optional error recovery, logging and persistent savepoint mechanisms;
— single-user or multi-user access;

— alternative commit protocols (for distributed systems);
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— optional security and authentication support.

At present we are investigating the orthogonal combination of these features
through a layering of (partial) TSP implementations.

As an experiment in store-level interoperability, an NFS (Network File System)
server was written that exports selected TSP store objects as files and directories.
In this way, all file-level commands are available on TSP stores, for example, cd
and Is for browsing through an object graph.

A primary design goal behind TSP has been to provide efficient data storage
as independently as possible from the data and language model supported by TSP
store clients. In particular, TSP should be capable of supporting polymorphically
typed models where the components of store objects contain values of multiple
types that cannot be fixed in a separate schema definition phase. TSP therefore
uses an untyped low-level store model, i.e., there is no separate dictionary of type
or schema information maintained by the store. Instead of this, store values are
made self-descriptive by imposing a regular object layout and a uniform tagging
scheme. As a result, TSP achieves data model independence without sacrificing the
advantages of self-descriptive statically-typed databases.
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Fig. 2.1. Accessing a persistent store via the Tycoon Store Protocol (TSP)
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The access to persistent store objects via the TSP is depicted in figure 2.1. Store
objects are identified by unique persistent object identifiers (OIDs) that are also
used to establish bindings between persistent objects. Each store has a single root
of persistence (a location that holds the OID of a distinguished root object). Every
object reachable from the root of persistence is stored persistently. Store objects can
be created through TSP operations but are never explicitly destroyed by clients.
The space of store objects that are not reachable from the persistent root object or
from a (transient) OID held outside the persistent store during a session is reclaimed
by a garbage collector. In general, all object access is performed using TSP function
calls. TSP also supports the mapping of store objects into main memory to reduce
the overhead incurred by repeated TSP calls.
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Concurrency control and recovery on TSP stores is based on a flat transaction
model. The TSP operations issued between two consecutive calls of the TSP commit
operation are regarded as a single atomic transaction. Transactions of concurrently
executing TSP clients are serialized. Furthermore, a TSP client can trigger an
explicit TSP rollback operation to undo all side-effects on a TSP store since the
last commit operation.

TSP provides customization facilities to support a tight integration of TSP
servers into client systems. A TSP client can install callback functions that are
called whenever certain state transitions occur in the backend.

— If a failure occurs, a failure handler is called with an error code. Depending on
this code, the client can try to recover from the failure. This is especially useful
in handling deadlocks or commit failures.

— If garbage collection is to be performed, a garbage collection handler is called.
The client can decide to perform some additional operations (e.g.in an interactive
user mode) before the internal garbage collection is triggered.

— The garbage collector of a TSP backend calls a client-provided enumerator func-
tion that has to enumerate all store object identifiers (OIDs) which are held
outside the object store. Objects transitively reachable through these OIDs are
not garbage collected. Since some persistent stores change OIDs during garbage
collection, the client-provided enumerator function is also used to propagate OID
changes to TSP client data structures.

— To transfer arbitrarily complex object store subgraphs between multiple TSP
servers via sequential streams, a handler is needed that encapsulates the byte
stream access. In this way, the TSP implementation remains independent of file
systems, network protocols or other input/output facilities.

— TSP provides hooks to enable a portable transfer of client-specific data types
like unique symbols, floating point numbers, matrices, etc. not supported by the
predefined TSP data formats. This is accomplished by so-called extern/intern
handlers that are called on data export and on data import via sequential byte
streams.

3. The Tycoon Virtual Machine (TVM)

The Tycoon Store Protocol defines a passive data repository that is independent of
a particular evaluation model. Executable code is stored as persistent data by the
store manager. The store manager is thus independent of code representations that
can be tailored to specific application purposes.

The Tycoon Virtual Machine (TVM) is an abstract call interface above the
TSP layer that defines a bytecoded instruction set based on a higher-order, func-
tional execution model. TVM bytecode is either interpreted by a virtual machine
or is compiled on the fly into target machine code. The TVM interpreter and its
associated run-time system are written in ANSI-C and have been ported to SunOS
4.1.x, Solaris 2.x, Linux, Windows-NT' and MacOS.

The platform-independence of the TVM model makes it possible to dynami-
cally transfer portable bytecode between heterogeneous nodes in a distributed pro-
gramming environment without recompilation. Utilizing TSP’s linear external data
representation (TXR), it is also possible to migrate a persistent thread (code in
the process of being executed) across system boundaries [8, 9, 15]. A thread is
represented as an object graph describing bindings between code and data objects.

In addition to the interpreter vs. compiler alternative, scalability at the TVM
level is achieved by switching between single-threaded and multi-threaded TVM
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implementations or between TVM implementations that support first-class persis-
tent threads or transient evaluation contexts only. The set of TVM instructions can
also be extended with new instructions to meet the needs of specific application
domains like floating-point-intensive simulation software.

Individual TVM instructions are guaranteed execution atomically w.r.t. their
effects on TSP stores. This property can be implemented rather efficiently at the
TVM level and simplifies the implementation of higher system layers in a multi-
threaded and multi-user persistent system scenario.

To enable interoperability with existing and future libraries written in other
programming languages, TVM includes a portable and efficient mechanism to access
functions stored in statically or dynamically bound object libraries. This mechanism
is also exploited heavily in the Tycoon architecture to support an open set of “base”
types like fixed point and floating point numbers of different precisions, date and
time values, etc.

In the TVM bytecode there is no distinction between calls to static and dynamic
libraries so the TVM code remains independent of the binding mechanism employed
by a particular TVM implementation. The name of the external library and the
symbol name (the name of the function to be called) are specified as run-time values
along with a description of the function argument values and types. The interpreter
maintains a list of statically bound libraries and symbols that is searched first. If
no matching static library is found, a dynamic binding via the dynamic linker of
the underlying operating system is attempted. On platforms that do not support
dynamic linking, all required external servers (like window libraries or databases)
have to be bound statically to the TVM. This requires only the insertion of the
library name and the exported symbol names into a table in the source code of a
distinguished TVM module. Then the TVM has to be rebuilt, compiling this module
and relinking the executable. Again, these binding mechanisms are motivated by
the desire to support a scalable system architecture.

Much care has been devoted in addition to support callbacks from external
code to TVM byte code through a binding mechanism that exports an arbitrary
TVM function object (closure) as an external function pointer. This is achieved by
a generic wrapper function that takes a TVM argument type descriptor list and a
function closure and dynamically generates a wrapper function that maps external
function arguments to TVM function arguments.

The parameters that can be transferred between the TVM and external lan-
guages are limited to unstructured values, i.e. numbers, strings, words (including
pointers and OIDs). Structured values have to be handled by wrapper functions
written in C or in TVM code that construct and decompose these values.

To ensure a seamless interoperability at higher system layers, the external call
and callback interface has to ensure that TVM exceptions are propagated correctly
across language boundaries even in multi-threaded TVM applications.

A non-trivial problem arises if persistent TVM programs and threads work with
pointers to data structures outside TSP stores. The lifetime of such data structures
is limited to the lifetime of a single operating system process. Therefore, TVM offers
mechanisms to log the construction and destructtion of these volatile values so that
these values can be reconstructed automatically if a persistent thread is resumed.
The log is essentially a list of TVM constructor and destructor functions stored
persistently. As a result, it is possible, for example, to open and close windows in a
windowing system, commit a state of the store, and to have the the windows that
existed in the committed state automatically recreated on startup of the store. Note
that this feature does not assume that the window system or other external libraries
have been prepared specifically for usage in a persistent system architecture but
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that this persistence support is added independently by the TVM layer. This is
discussed in more detail in [7].

4. The Tycoon Machine Language (TML)

While TVM code is designed for efficient executability on multiple platforms, our
persistent system architecture relies heavily on an additional persistent intermediate
code representation (Tycoon Machine Language, TML) to unify static compile-time
and reflective run-time code analysis and optimization. TML is an untyped language
that is used for the implementation of multiple (polymorphically-typed) languages
using a common TML intermediate representation. A detailed description of the
syntax and semantics of TML and of the TML optimization algorithms can be
found in [5] (a synopsis appears in Chapter 2.3.5).

A TVM bytecode sequence is generated for a given TML term by a compiler
backend written in TL, the Tycoon Language. TML is a Continuation Passing Style
(CPS) program representation that is well-suited for standard code optimizations
and for algebraic query optimizations.

TML is a powerful yet simple program representation technique. The advantage
of TML lies in the dramatic reduction of the number of program constructs that
have to be handled by an optimizer, namely variable access, function abstraction,
function application and primitive function application only. TML is particularly
well-suited for control and data flow analysis by making the flow of control explicit
through the uniform use of one language construct: the function application. Since
TML does not have implicit function returns this language construct can be viewed
as a generalized goto with parameter passing.

TML has a simple and clean semantics based on the A-calculus. It is effectively
a call-by-value A-calculus with store semantics. By representing programs in TML,
many well-known optimization techniques become special cases of a few simple
and general A-calculus transformations. Due to certain syntactical restrictions on
TML trees, these transformations can be applied freely even in the presence of
side-effecting calls to primitive functions.

Primitive functions (such as: conditional operations, integer arithmetic, object
store access) encapsulate most of the semantics of a specific application program-
ming language and operate on an implicit, hidden store. This separation between
generic CPS functionality and specific application language functionality is also re-
flected by the implementation of the TML optimizers where all information about
primitive procedures (meta evaluation function, cost attributes, target code gen-
eration function, etc.) is factored-out from the generic TML analysis and rewrite
algorithms.

The TML optimizers and the TML to TVM translator do not perform checks
on TML trees to test their well-formedness, e.g. whether a function receives more
or different parameters than expected. This is the responsibility of the clients of
these tools, 1.e. of a frontend for a specific application programming language.

5. The Tycoon High-Level Languages

As depicted in figure 1.2, the task of the Tycoon high-level languages (like TL and
TooL) is to support flexible high-level modelling of data, programs and threads
independent of execution and storage details.
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Again, scalability is achieved by supporting multiple high-level languages within
the Tycoon architecture. The implementation of a particular high-level language is
encapsulated by a tailored compiler function that takes typed data structures (an
abstract syntax tree of the program to be compiled and a compile-time environ-
ment) as its input and returns typed data structures (a TML tree and a possibly
extended compile-time environment) as its result. Target code generation and code
optimization are performed in a second phase based on the returned TML tree.
The TML tree may contain bindings to arbitrary store values like string literals or
function closures that are preserved by all rewriting and code generation steps of
the backend. The possibility of passing typed persistent bindings from the source
code through to the executable code is exploited, for example, in persistent hyper-
programming systems like the one described in [6].

Based on the backend functionality provided by TML, TVM and TSP, and by
utilizing the generic frontend functionality provided by extensible grammars (see
section 6), a special-purpose database language L can be implemented rather rapidly
in the Tycoon persistent system architecture. A tailored compilation function for
L can check the static semantics of L (scoping and typing rules) by a recursive
traversal of the abstract syntax tree and can realize the dynamic semantics of L
by a structure-directed mapping of language terms into TML terms. If necessary,
language-specific TML primitives (e.g., method-lookup) and run-time support li-
braries (e.g., implementing operations on bulk data structures like relations) can be
utilized to extend the higher-order TML core execution model by semantic primi-
tives required by L.

Our group in Hamburg has implemented two high-level languages based on
expressive polymorphic type systems. As discussed, for example, in [1] and [12, 17]
(synopses in Chapters 1.4.2 and 3.3.3) such languages can serve as meta models to
describe and integrate existing relational, functional and object-oriented database
models.

— The Tycoon Language (TL, [13, 10]) excels by its very expressive type system
based on existential and universal type quantification, recursive types and struc-
tural subtyping similar to the type system of the experimental polymorphic pro-
gramming language Quest [2]. Contrary to Quest which is based on the notion of
values, types and kinds (types of types), TL has a full higher-order type system
where type quantification and subtyping applies uniformly to types, type oper-
ators and higher-order type operators, eliminating the need for a separate kind
level.

In addition to very few built-in types like Int, String or Bool, TL defines a small
set of data type constructors: Tuples aggregate a fixed number of value and type
bindings, arrays aggregate a flexible number of value bindings with homogeneous
signatures, variant records define types that consist of a finite union of tuple
types distinguished by a discriminator. The orthogonal combination of these type
constructors along with recursive type definitions and (recursive) type operators
covers virtually all data structures that appear in persistent programming.

The TL execution model is mainly imperative and includes updatable locations.
Since functions and types are first-class language objects, powerful generic higher-
order functions can be written. To cope with run-time errors, exceptions and ex-
ception handlers are supported. Furthermore, TL includes mechanisms for reflec-
tive programming, dynamic typing and external language bindings as described
in the remainder of this section.

— The Tycoon object-oriented language (TooL) is organized around (parameter-
ized) classes and message passing. The type system of TooL captures much of
the flavor of Smalltalk within a safe static typing discipline. Following the spirit
of Smalltalk that provides a highly flexible and extensible programming envi-
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ronment based on a small set of expressive language primitives, Tool provides
only a few built-in type concepts with rich semantics that achieve power through
systematic use and orthogonality. Tool integrates type concepts that are well
understood in isolation like object types, subtyping, type matching and type
quantification into a practical database programming language.

In the following subsections we point out some innovative language implementation
techniques that are utilized in our Tycoon language processors and that are also
relevant for other high-level persistent language implementations.

5.1 Dynamic Types

In long-lived and distributed applications there are situations where type check-
ing cannot be performed completely at compile-time. For example, if values are
transmitted (via files or communication channels) between independently devel-
oped applications, there is no common scope in which a static type check could be
performed to guarantee compatibility between data and programs.

For such situations, the Tycoon languages provide dynamically-typed values. A
dynamic value is a pair of value v and run-time type representation ¢ that describes
the type of v. A type representation is created automatically by the compiler when-
ever a dynamic value is created. If a value component v is extracted at run-time
from a dynamic value, its associated type representation ¢ can be inspected. Most
languages that support dynamic types limit this inspection to a simple boolean
subtype test: is t subtype of a given supertype T defined at compile-time? Tycoon
provides a much richer set of strongly-typed functions for the algorithmic inspection
of dynamic values, for example, to iterate over the attribute values and attribute
types of a tuple or to construct a tuple from a list of typed bindings.

Another application area for dynamic types is the implementation of generic
functions with type-dependent behavior. These functions take a type representation,
usually along with a value of this type, analyze the type and exhibit different
behavior depending on the type. An example is a generic persistent store browser
that is capable of displaying and manipulating values of any type.

In the Tycoon scenario where the compile-time and run-time environment reside
in the same persistent store, it is advantageous to use the same type representation
at compile-time and at run-time. A dynamic type representation is a compile-time
value (a run-time value of the compiler) that is stored persistently until the run-
time of the application. More generally, the Tycoon compilers provide a binding
mechanism for making arbitrary compile-time values accessible to the generated
code. Furthermore, the functions to inspect, check and create type representations
are shared (as persistent store objects) between the compile-time type checker and
the run-time environment.

The higher-order Tycoon language TL provides a limited form of dependent
types, i.e. TL type expressions may depend on value identifiers. For example, an
abstract data type depends on a specific implementation represented as a tuple
value with functional components. Dynamic type representations for such depen-
dent types involve bindings to run-time values. Therefore, the concept of compile-
time name equivalence has to be mapped to the concept of run-time value equiv-
alence (e.g., based on OIDs) and type representations may need to be constructed
dynamically, depending on the result of value computations.

5.2 Compile-Time and Run-Time Reflection

The Tycoon languages TL and Tool are implemented using a compiler boot-
strapped in the Tycoon language TL. In many Tycoon applications the compiler is
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used as a black box to develop a self-contained stand-alone application program. Ad-
vanced Tycoon applications like object-oriented database systems, programmable
simulators or compilers for high-level languages can also access the functionality
offered by the Tycoon compiler in a structured way. This is called compile-time
or run-time reflection depending on the point in time the compiler functionality is
used [19] (see Chapter 1.2.1).

Compile-time reflection is achieved by executing user-definable code during the
compilation process if so-called reflective expressions appear in the source code
of a program being compiled. This makes it possible to write code that depends
on information that is known statically at compile-time, maybe inferred by the
compiler. For example, generic code to traverse recursively defined data structures
that depend on statically inferred type information can be written using compile-
time reflection.

Run-time reflection is achieved by making typed bindings to compiler subcom-
ponents (parser, type checker, code generator, evaluator, module manager, ...)
available to applications at run-time. In this case, code is evaluated or even gen-
erated depending on run-time (computed) values that are not known statically at
compile-time. Note that this kind of reflection, although very flexible, may lead to
unexpected run-time type checking errors during reflective compiler calls.

Full type safety even in the presence of run-time and compile-time reflection is
guaranteed by the consistent use of dynamic types in the Tycoon compile-time and
run-time environment.

5.3 Typing of External Bindings

The flexible but untyped TVM mechanisms described in section 3 to establish
bindings from TVM code to external, dynamically-bound library functions is the
basis for high-level data and code interoperability of the Tycoon languages with an
open set of external servers.

External functions are inherently type unsafe since neither object files nor linked
libraries contain type information. This type information is available in the sources
of the generating languages but is lost after compilation. This means that Tycoon
cannot automatically check the parameters of function calls to external libraries.
However, the correctness of calls to these functions can be enforced by the Tycoon
programmer who binds the external libraries into the Tycoon system by assigning
appropriate Tycoon signatures to these external functions.

The following example shows the binding of a function int_add that takes two
integers and returns an integer stored in an external library math to the Tycoon
identifier intAdd with the function type Fun(:Int :Int):Int.

let intAdd = bind(:Fun(:Int :Int):Int “math” ”int_add” ”iii”
let sum = intAdd(12 23)

The string value ”iii” specifies the low-level parameter-passing conventions to be

used at the TVM level (here: call-by-value with two integers and return by value
of an integer). All subsequent applications of intAdd, like intAdd(12 23), can be
checked for type correctness assuming that the binding has been typed correctly.
Note that an external function like intAdd has true first-class status in Tycoon,
for example, it can be passed as a parameter or can be stored persistently without
restrictions.

As a more elaborate example of strongly-typed access to external functions,
the following excerpt of the TL interface SQL exports polymorphic functions to
perform dynamic SQL database access from Tycoon applications:
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interface SQL import ... export
error :Exception with sqlFError:String end
Table(E <:Tuple end) <:Ok

openTable(Dyn E <:Ok tableName :String) :Table(E)

insertTuple(E <:Ok table :Table(E) tup:E) :Ok
end
In the Tycoon libraries there exist two distinct modules ingresSQL and oracleSQL
that implement this interface with bindings to the dynamic SQL call interfaces of
these relational database systems. The unary type operator Table(E) exported from
the interface describes the type of SQL tables with element type E. For example,
a value of type oracleSQL.Table(Person) is an Oracle table with rows that have
attributes as defined by the Tycoon tuple type Person.

The polymorphic function openTable opens an existing named table for further
processing and takes a dynamic type variable E as its first argument to ensure that
the database table structure matches the Tycoon type information. If a schema
mismatch is detected, the Tycoon exception error is raised at run-time. All other
operations of the SQL interface (queries, table updates) can be checked statically
by the Tycoon compiler based on the polymorphic signatures assigned to the SQL
functions. For example, the signature of the function insertTuple expresses the type

constraint that into a table of type Table(E) only tuples of a matching type E can
be inserted.

6. Extensible Grammars

The high-level Tycoon languages described in the previous section aim at mini-
mality and orthogonality of concepts. The definition and implementation of these
languages is based on a restricted abstract syntaz represented by typed data struc-
tures in a Tycoon store. The mapping of a concrete syntax (a linear source text
or a two-dimensional graphical notation) to an abstract syntax is not part of the
language definition proper.

Most programming languages provide a fixed mapping from concrete syntax to
abstract syntax. For convenience, several syntactic variants are often provided for
the same construct of the abstract syntax. For example, the TL abstract syntax
provides only one iteration construct (loop ...exit ...end). Other common loop
constructs (while, repeat, for) can be expressed using loop in combination with
if.

For languages like TL and Tool. that have to support a wide spectrum of data
and execution models, it is desirable to keep the concrete syntax adaptable to the
needs of a particular application domain (see also Chapter 3.2.3). For example,
declarative bulk data access can be supported by a tailored query language syntax
(relational calculus, SQL, comprehensions notation) and parallel programming can
be supported by tailored control structures (par, alt, ...).

The Tycoon technology of extensible grammars [3, 4] makes it possible to pro-
vide syntactic support for such add-on data and control abstractions.

Extensible grammars are implemented as a library of compiler tools written in
TL. They were used to define the core syntax of TL and Tool. thereby supporting
the syntactic extension of both languages in a uniform way. Extensible grammars
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are parameterized by the abstract syntax tree constructors of the respective high-
level Tycoon language.

The extensible grammar library also defines an abstract syntax for the dy-
namic definition and extension of grammars. Grammars describe the concrete syn-
tax (EBNF notation) and the translation into abstract syntax trees using typed
term constructors. Checks at grammar-definition time ensure that only well-formed
abstract syntax trees are generated and that no syntactic ambiguities arise during
grammar extension.

In a first step, the TL extensible grammar library is applied reflectively to define
an initial concrete syntax for the definition of grammars using term constructors of
the grammar library itself. In a second step, this grammar is used for the definition
of a core programming language (e.g., TL or TooL abstract syntax). Although this
initial syntax would be sufficient to express any well-typed program, it is not user-
friendly. Thus, the initial version of the programming language syntax is used in
further redefinitions, for example, to provide while, repeat and for loops and
higher-level abstractions like select from where queries implemented on top of a
bulk type library.

7. Integrated Persistent Programming Environment

In this section we sketch how the building blocks of the Tycoon persistent system
architecture described in the previous sections are fully integrated into a persis-
tent programming workbench to support the development of large data-intensive
applications by teams of cooperating programmers. Since computer-aided software
engineering itself is a data-intensive task, it is natural to implement a Tycoon work-
bench in one of the Tycoon languages exploiting orthogonal persistence, reflection,
and dynamic typing (see also figure 1.2).

The interactive top level of the current TL workbench gives access to all tools in
the environment via a command-line interpreter. A graphical workbench based on
the concept of direct manipulation of persistent data and code is under construction.
Separate compilation and incremental linking is currently built into the workbench,
but we are implementing a generic separate compilation manager that exploits
dynamic types, first-class environments, generic dependency checking and version
management.

The development of large applications requires separate compilation. This fa-
cilitates teamwork by dividing the problem into manageable parts and eases the
re-use of software components. Furthermore, type correctness of software compo-
nents can be verified based on explicit assumptions about the interfaces of other
software components.

TL supports separate compilation through three language constructs, namely,
interface, module and library. A library defines a scope for nested module, interface
and library declarations. An interface is syntactic sugar for a type- and value-
parameterized tuple type definition. A module is syntactic sugar for a type- and
value-parameterized link function that computes a tuple value as defined by the
type of the module interface. The TL module manager tracks the dependencies
between modules, interfaces and libraries and controls automatic recompilation
and incremental linking based on these dependencies.

The TL programming environment has to inter-operate with commercial tools
for project management and source-code version management. For example, our
group is using SunSoft’s TeamWare to coordinate the parallel Tycoon development
by five full-time employees and approximately 35 students. Therefore, the TL work-
bench has to maintain the source code of library definitions, modules and interfaces
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as well as compiled modules and interfaces in the file system. The object store holds
linked modules and persistent data only. This makes it necessary to assign version
keys, check-sums and time stamps to source code and to compiled modules and
interfaces to inform the module manager of changes performed by external tools on
individual source or object files.

. Extensible Grammar
/( Productions » | Checker & Generator

Source Code Extensible
(Grammar, —® | parser | —® Types ——» Type Checker
TL, ToolL)
\ describe
Values ——» Value Translator — TML

Reflective
Optimizer

4

Portable —g | Interpreter
/ Bytecode
Code

Generator l I calls
\ calls
Native <¢———p External

Code Code

TML —— | Optimizer | ——

Fig. 7.1. Data flow between the language processors of the Tycoon workbench

The data flow between the components of the various Tycoon system layers de-
scribed in this paper is shown in figure 7.1. Source files or interactive user input is
parsed by the extensible parser (based on the TL or TooL syntax definition). Input
phrases that contain grammar definitions are checked for consistency by the gram-
mar checker and then transformed into parse rules for the extensible parser. Type
expressions represented as abstract syntax trees are checked by the type checker for
well-formedness according to static semantic rules of the respective Tycoon high-
level language. Values are translated into (untyped) TML terms. TML terms may
be optimized locally before they are submitted to the target code generator for the
TVM. The TVM handles transparently the switching between the interpretation of
portable bytecode and the direct execution of native machine code (external library
code or compiled TVM code).

An interesting detail in figure 7.1 is the run-time reflective code optimizer. On
request, the Tycoon target code generator augments the executable TVM code of
each function by a (persistent) binding to its abstract intermediate code represen-
tation (a TML tree). This makes it possible to inspect function implementations at
run-time. This is exploited in Tycoon to perform link-time and run-time optimiza-
tions across abstraction barriers.

To explain this form of optimization, consider the compilation of the expres-
sion stack.empty(s)in a module m. At compile-time, the only information available
about the identifier stack.empty is the signature of the function. As soon as module
m is linked, a binding to the module stack and its function empty is established. Ty-
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coon’s reflective optimizer exploits the binding information available after linking
or more generally during program execution to compose the TML trees of separate
functions into aggregated TML trees (dynamic inlining) that can then again be sub-
mitted to a (global) optimizer and code generator. The expansion and optimization
of TVM functions in the persistent store are controlled by a tagging scheme and a
cost model that avoid repeated optimizations of shared subfunctions and limit the
increase in code size resulting from inlining.

8. Concluding Remarks

We have described the layers of the Tycoon persistent system architecture that
emphasizes system scalability and interoperability with external servers. Currently,
the following set of server gateways is available as TL source code:

— NeWS window system based on display PostScript: 48 modules; 6300 lines of
code;

— StarView cross-platform user-interface toolkit: 131 modules; 6700 lines of code
generated automatically from C++ header files;

— Oracle RDBMS: 3 modules; 1300 lines of code;

— Ingres RDBMS: 3 modules; 1300 lines of code;

— Kerberos authorization and authentication server [16]: 6 modules; 1055 lines of
code;

— Inquery text retrieval engine: 3 modules; 1000 lines of code;

— RPC and socket communication: 13 modules; 1700 line of code.

An additional set of approximately 80 Tycoon modules with 29000 lines of TL code
exports reusable library code like standard data types (date, time, string), bulk data
types with uniform iteration abstractions, strongly-typed graphical data browsers
and generic compiler toolkits (scanner, parser).

Through the bootstrap of the Tycoon language processors (TML, TL and TooL)
and the implementation of an integrated object-oriented data modelling workbench
(STYLE, see Chapter 3.2.2) we already have some experience with the development
of complex Tycoon applications by cooperating teams of programmers.

system component number of modules total lines of code
TML 13 7600
TL 36 18200
TooL 22 9200
STYLE 250 41000

Since 1994, a WWW-driven information system implemented in TL has been op-
erational at Hamburg University. This server was developed in the context of the
ESPRIT Network of Excellence IDOMENEUS and utilizes Tycoon as a persistent
store for data that is supplied by WWW forms and displayed on dynamically-
generated WWW pages. Persistent TL threads are used to read, check and trans-
form the data and to emulate persistent sessions between WWW clients and the
WWW server. In particular, it is not necessary to install the Tycoon system as a
demon, but Tycoon is started dynamically on request since persistent threads lead
to very fast system startup sequences.
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