A Stack-Based Approach to Query Languages*

Kazimierz Subieta”™ Catriel Beeri® Florian Matthes® Joachim W. Schmidt®

*) Institute of Computer Science *) Hebrew University ¢) University of Hamburg
Polish Academy of Sciences Institute of Computer Science Department of Computer Science
Ordona 21 Givat Ram, Vogt-Kolln-Strafie 30
01-237 Warszawa, Poland Jerusalem 91904, Israel D-22527 Hamburg, Germany
subieta@wars.ipipan.war.pl beeri@cs.huji.ac.il matthes@dbisl.informatik.uni-hamburg.de
Abstract

Scoping, naming and binding are central concepts in the definition and understanding of program-
ming languages. With the introduction of sophisticated data models, these issues become important
for query languages as well. Additionally, the goal of integrating query and programming languages
requires a common basis for their operational semantics. We offer here an approach to the definition
of the operational semantics of query languages based on an abstract machine, in which names, their
bindings, and scopes defined by query and data structure are central. The machine has own simple
data model for its store, and has a stack for dealing with scopes. We argue for the generality of the
approach and illustrate it by defining the semantics of many query language primitives. Finally, we
briefly consider how assignment and procedures can be neatly added.

1 Introduction

A major theme of database research in the last decade is the relationship between declarative, high
level query languages and procedural, general purpose programming languages. The standard solution,
namely embedding a query language (typically SQL) in the programming language suffers from problems
that have been amply recorded in the literature and collectively called impedance mismatch. Alternative
approaches that have been proposed and extensively investigated include persistent programming lan-
guages and database programming languages such as Pascal/R [13], Galileo [1], DBPL [14, 7], Napier88
[8], Machiavelli [12], Taxis [10], and O2C [11]. The emergence of object-oriented databases is also due, in
part, to the feeling that classical database systems do not provide the functionality desired and required
for data intensive application development.

Despite their limited algorithmic expressive power, query languages are one of the major achievements
of the database domain [2, 15, 16]. This is not only because they are the means for ad hoc interactive
querying and updating of a database, but rather because they are the basis for high level, declarative, data
independent data definition and manipulation. In data manipulation, declarative queries are much easier
to optimize than procedural programs. Queries are also potentially parallelizable. The use of queries
and set-oriented updates increases programmers’ productivity, and program reliability, readability and
modifiability. In data definition, queries are used to express integrity constraints, access restrictions,
views, snapshots, database procedures, and active rules. However, despite contiuous advances in research
and development of database languages and object-oriented database systems, the ideal of “seamless
integration” of a programming language with a query language is still elusive.

A primary goal of this paper is to contribute to the understanding of the relationship between query
and general programming languages. A major thread in the development of programming languages
concerns facilities for modularity, as expressed, e.g., in procedural abstraction in the form of functions and
procedures, and data abstraction in the form of ADT’s and objects. The use of such facilities emphasizes
the relationships between names used in a program, their scope of definition, and the bindings they receive
at compile and run-time. We believe that the study of names, scopes, and bindings is also important
for the design and use of query languages. Understanding of the relevant issues is a crucial step towards

*Work partially supported by a grant from the German-Israel Foundation for Scientific Research and Development.
Draft, February 24, 1994

the successful integration of query and programming languages. The issue is important even if one is
interested in query languages only for the relational model, since a query may use a relation name or an
attribute more than once with different meanings. However, in the last decade many query languages
for more sophisticated models have been defined and studied. In such models, the meaning of a name
depends both on where it is defined and where it is used.

This paper proposes an approach to the definition of the operational semantics of query languages
centered around the naming-scoping-binding theme. Specifically, we present an abstract machine that
we claim to be suitable for the definition of program data bindings. An important component of the
machine, that distinguishes it from other machines, is its store, modelling the database as a collection of
related entities associated with names to which they can be bound. The store can also contain volatile
objects. It is defined in terms of a simple object model. We argue that the simplicity of the model makes
our work applicable to a variety of current data models.

The actual binding of names appearing in queries to store objects is achieved by the use of environ-
ments, where an environment is a collection of local scopes and rules used for associating names with
programming objects. The common approach, which we follow here, is that the scopes are organized
in a stack, with the “search from the top” rule. Some extensions to the structure of stacks used in the
definition and interpretation of programming languages are necessary to accommodate, e.g., the fact that
in a database we have bulk data structures, hence possibly multiple simultaneous bindings for a name.
This environment stack, and a procedure for evaluation of queries, are the backbone of our approach.
An important aspect of the evaluation is parallelism which is inherent in many query primitives, and
important for proper definition of update semantics.

The machine and the semantics of a query language are derived from a language implemented in
the system LOQIS [17]. However, majority of constructs that we considered exists also in other query
languages. In the paper we illustrate how the machine can be used to provide a precise definition of
the semantics of some query constructs. (A more comprehensive presentation can be found in [18]). We
also illustrate the design of a query language that is directly influenced by the stack-based discipline of
scoping and binding. Finally, we briefly consider updates and procedures, thus supporting our claim that
this approach facilitates the integration of declarative and procedural constructs.

The rest of the paper is organized as follows. In Section 2 we discuss the abstract store model and
present preliminary formal definitions. In Section 3 we discuss the abstract machine model, introducing
details of the operational semantics used for the specification of language constructs. In Section 4 we
present and discuss various query constructs. In Section 5 we discuss updates and procedures. Section 6
concludes.

2 An Abstract Store Model

The store is the component of the abstract machine that models the database. The operational semantics
of queries is defined to a large extent in terms of accesses and manipulations of its elements. The store
model and its relationship to other data models are described below.

2.1 The Goals

The primary goal is to serve as a basis for defining the operational semantics of query languages. The
model does not include details of physical data organization, indices, storage hierarchies, and buffer
management. We view a database as a large collection of (possibly interrelated) entities, as it can be
found in modern persistent object stores [9, 3]. The store may contain both persistent and volatile
entities; we strive to treat them uniformly.

Current implemented or proposed data models include a large variety of features: data types such
as records and arrays; bulk data types such as sets, bags, lists, maps and trees; object features such
as identity, is-a relationships, methods and encapsulation. We want our approach to semantics to be
applicable to a wide range of query languages. One possible approach to addressing this diversity of
concepts is to define a rich model that contains “all” features. We have chosen the opposite approach of
a very simple model, where various conceptual models, from value-based to object-based, can easily be
mapped to it. Semantics for a specific query language over a given model can be defined by a mapping
to our model, and by providing the semantics in our model. Although some features found in existing
models have no direct mapping to our model, it covers a large variety of features and can be easily

extended. The approach presented in this paper can also be adapted directly (without translation) as
another data model.

The ideas treated in the paper do not require a specific (monomorphic, polymorphic) type discipline
nor precise data representation details. Types are very important for enforcing static constraints on the
use of queries and procedures; however, they are irrelevant to the goals of this paper, hence are not
discussed.

2.2 The Model

Intuitively, a stored database (at a given point of time) consists of a collection of stored entities which
we call store objects'. There are three components in a store object: (1) its location; (2) the name that
can be used to denote it; (3) the value stored there, i.e., its content. As we are not interested in physical
organization, we represent locations abstractly, using the concept of I-value from programming language
semantics. Atomic values, records, components of records, conceptual objects, are all store objects: each
one of them resides somewhere in memory and needs location for internal identification, in order to be
retrieved, updated or deleted. For us, these locations have no structure or meaning, except that they can
be used to access objects; queries do not refer to them or use their values in any way. In the sequel, to
emphasize their abstract nature, locations are called identifiers.

Names are among the basic building blocks of queries and, in general, of program expressions. Their
bindings are an important component of semantics, and a central topic in this paper. While for general
programming languages names used in a program are normally defined in the program itself, most of the
names used in queries are defined in the database. That is, we are dealing with persistent data where
names are an inherent part.

The contents (i.e., the r-value) can be an atomic or complex value, or a location. As for the names,
we assume that each store object contains one value. As seen below, more than one value associated with
an object is modelled by creating many objects.

Formally, let I be a set of identifiers, N be a set of names, and V be a set of atomic values. We
make no assumption about V; it may contain numerals, strings, graphics, compiled procedures, and so
on. Atomicity of the elements of V' means that we do not assume the existence of operations that refer
to their parts. We assume I N (V U N) = 0; however, N and V are not required to be disjoint. It is
possible, even common, that programs compute values, then use them as names; e.g., integers are used as
array indices. Generally, some stored values can be used as names of store objects; this property supports
genericity of programming. In many languages, for example Ingres/Windows 4GL [4], LOQIS [17] and
F-logic [6], data names are first-class citizens.

A store object is a triple < #,n,¥ >, where 1 € I,n € N, and ¢ are its identifier, name, and value,
respectively. We say that i identifies this object. The value ¥ can be one of the following:

e An atomic value from V.

e An identifier from I. This identifier, as the value of the store object, serves as a (logical) pointer
to another store object.

e A set of objects.

We refer to these three types of objects as value-objects, pointer-objects, and set-objects, respectively.
Objects of the first two types are called atomic, those of the third type are called complez. Nesting of
set-objects allows us to represent arbitrarily complex objects with hierarchical structure. Below is an
example of a complex object, consisting of three atomic objects.

< i, EMP,{< is;, NAME, Smith >, < iss, SAL, 2000 >, < is3, WORKS_IN,ig >} >

In the following, “object” always means store object, unless specifically noted otherwise.

A store is a set S of store objects, and set R of identifiers of designated root objects. We make no
assumption that elements of R refer to the top hierarchy level of store objects: sometimes elements of R
refer to objects nested in other objects. We assume that S satisfies the obvious constraints: An element
1 € I is used in it at most once as an identifier; that is, there is a one-to-one correspondence between the
set of identifiers used in a database, and the set of objects in it. If an identifier is used as a pointer, then

1 These should not be confused with the conceptual objects of object-oriented models.

it is also used as an identifier (referential integrity). We also assume that each root identifier actually
identifies an object in S. By definition, objects inaccessible from R (directly or indirectly) do not exist.
As we will see later, we build over the set R some structure which we will call environment stack. The
persistence status of objects is irrelevant in our approach; indeed, there is no essential semantic property
that can make distinction between querying persistent and volatile data. (The orthogonality of types,
queries and persistence is assumed in many modern DBPLs [1, 7, 8, 12, 14, 17].)

We re-emphasize that the identifiers are internal — they are not used in queries or programs, and
are not printable. A one-to-one mapping of all identifiers to another collection of identifiers cannot be
recognized from the outside. The names are external in the sense that they are used in queries — they are
part of the users’ model.

Example 2.1 The following is an example store. The root objects are {iy,1s, ig, 113,117}

MyDatabase:
<1, EMP, {< 12, NAME, Brown >,< i3, SAL,2500 >, < 14, WORKS_IN, 115 >} >
<is, FEMP, {< 16, NAME, Smith >, < 17, SAL, 2000 >, < ig, WORKS_IN i17 >} >
<19, FEMP, {< 110, NAME, Jones >, < 111, SAL, 1500 >, < 112, WORKS_IN, i17 >} >
<113, DEPT, {<i14,DNAME, Toy >, < i15,LOC, Paris >, < 116, LOC, London >} >

<117, DEPT, {<i1s, DNAME, Sales >,< i19,LOC, Berlin >} >

Note that an object WORKS_IN stores an identifier of a department object. If instead it contained, say,
a department name, the example would be value-based. If additionally we disallow multiple LOC objects
for a department, we obtain a relational database. a

In examples we also use the schema presented in Fig.1. It has redundancy allowing us to demonstrate
different styles of querying, e.g. relational and navigational. Arrows denote pointers, and symbols 1 and
n denote a 1:n relationship. For example, EMPLOYS denotes pointer-objects inside DEPT objects; a

DEPT objects can contain many EMPLOYS objects. Similarly, LOC and PREV_JOB are multi-valued
attributes.

DEPT
1 1 1
(%] = @
5 o u
: | |2
o <
w S g
n n 1
EMP

PREV_JOB

Figure 1: A database schema used in examples

2.3 Discussion

Having defined the model, let us now consider how databases given in one of the common conceptual
models can be represented in it. In the relational model, to represent information about employees, we

may use a relation, i.e., a set of tuples, called EMP. Considering the execution of the query select SAL
from EMP, we can see that the name EMP gets bound to each tuple of the relation. As we are interested
in names in the context of binding, in our model the name EMP is associated not with the relation,
but rather with each of its tuples. This holds in general for any named set: in our model the name is
associated with each of the elements of the set; see, e.g., LOC of DEPT in MyDatabase.

Speaking in terms of programming languages, a tuple defines a local environment: each attribute is
a name that, in the context of this tuple, can be bound to the associated object — attribute value. Note
that we do not have tuple as a data structure in our model — as just seen, a tuple is represented by the
set of its named components. Also note that the identifier of the object representing the tuple is internal
and has nothing to do with the conceptual model, in which this tuple is a value, not an object. It is
just an abstract representation of the fact that the tuple is an identifiable store object. (Many relational
systems indeed use tuple-id’s internally.)

Names can be numbers. For example,

<11, A,{<iy,1, Monday >, < i3,2, Thuesday >, ..., < ig, 7, Sunday >} >

represents an array. Thus, tuples and arrays have essentially the same representation. Indeed, both are
essentially local environments, and the differences have to do only with the type and generation of the
names that can be used in the environment. As already noted, names used in arrays are also values, and
can be calculated during run-time.

We do not impose constraints requiring that objects with the same name should have the same
structure. This allows us to represent wvariants, as in the following database fragment:

< i1, EMP,{< iy, NAME, Brown >, < i3, SAL,2500 >} >
< ig, EMP,{< iz, NAME, Smith >, < iy, IS.STUDENT,TRUE >} >

Similarly, we can represent null values, when they mean lack of stored information. Since the definition
of a store does not include any concept of format, a null value is represented simply by the absence of a
binding. For example, in the database fragment above, the SAL field for Smith is null-valued. We do not
associate any semantics with this absence. As far as we are concerned, Smith may have no salary, or his
salary may be unknown, or it may be determined in another way, e.g., by using the information that he
is a student. The interpretation of the absence of information is part of the semantics of the data, but 1s
outside of the scope of our model. Of course, we need the ability to test for the lack of a stored object
with a given name, so that the query evaluator can interpret this and apply the appropriate semantics.

To generalize to the nested relational, or complex object models, we need to be able to represent
sets, and obviously we have that in the model. We can also represent bags. For example, the object
< i1, N,{<is, M5 >, < iz, M,5 >} > represents the bag {5,5}. Similarly one can represent lists, trees,
and generally, instances of recursively defined data types.

Let us now consider a conceptual object. It has an identity, and an updatable state. The mapping
is straightforward — an object is represented as a store object. Object sharing and relationships between
objects can be easily mapped by using internal object identifiers as values of pointer sub-objects, as seen
in MyDatabase above.

In summary, this simple model allows one to represent a variety of data structures and concepts, and
their combinations, including tuples, arrays, sets, bags and lists, variants, null values; objects, object
sharing, and instances of recursive types. For object-oriented models some simple extensions are needed;
we discuss them in [18]. However, we believe that the simplicity of the model is an advantage: it allows
us to explain the meaning of query constructs without having to deal with a variety of special cases.

3 An Abstract Machine Model

In this section we present an abstract machine model, on which query language expressions can be
evaluated. A component of a state of the machine is a store, as described above. Other components
include an environment stack and a result stack for the store of intermediate results. We discuss some
commands of the machine, and its facility for parallel execution.

3.1 The Environment Stack

The atomic components of queries are the names and constants. The evaluation of names means binding
them to data units, depending on the context. Consider, for example, a query in a relational database
that asks for the names of employees satisfying some condition:
select NAME from EMP where ...

The evaluation of the query involves finding a set of bindings for EMP, then removing some of them
which do not satisfy a predicate after where. Each binding for NAME is then determined in a context
associated with one of the bindings to EMP; it is bound to the appropriate N AM E sub-object inside an
EMP object.

3.1.1 Stack Organization

While bindings for simple relational queries, such as the one above, seem to be well understood, this is
not the case for more complex queries. For example, in a query that selects the salaries of employees
that earn more than their managers, SAL is used three times, and there is a need to define how each
occurrence is bound. The problem is aggravated in models that admit deeply nested structures, possibly,
with repeated (sub) attributes. The binding of a name to its meaning may then depend both on the
positions of the name in the data structure, and its use in the query.

To deal with this issue, we propose a well known concept of environment. Abstractly, an environment
is an association of names and objects. It is constructed incrementally, by accumulating local scopes and
the scope added last is the first to be visited in a search. Thus, the environment is subdivided into parts,
called sections, which form the environment stack, denoted ES.

We assume that each section of E'S stores identifiers of store objects. Given an identifier, the complete
object can be retrieved. In particular, the name stored in the object can be retrieved, to be compared
with the name for which a binding is requested. Thus, storing identifiers suffices for establishing bindings.

In a (run-time) stack in programming languages a stack section typically contains local data such as
parameters and local variables of a procedure. Such local data lives on the stack. In contrast, we are
dealing here with global data, that live in the database, and continue to exist not only when a stack section
is removed, but also when query evaluation has terminated and the complete stack has disappeared. Thus
the objects themselves will be stored in the store, and their identifiers stored in the appropriate stack
section(s). This scheme allows the same object to be referenced from several sections (in contrast to the
run-time stack where an object occurs in precisely one section). The semantics we are going to deal with
depends on this property. Note that in a run-time stack a name occuring in a program is bound to one
object. In contrast, we allow a section in ES to associate several objects with a name, as e.g. for the
EMP name.

In summary, our proposal generalizes the environment stack as used in programming languages in two
major ways: (1) The stack contains identifiers of both persistent and volatile store objects, which exist
outside the stack; (2) Binding is a multi-valued, rather than a single-valued. This is intimately related
to the set orientation and parallelism inherent in query semantics.

In an implementation based on our semantics many optimizations are possible, such as storing names
with the identifiers in sections, avoiding long lists of identifiers of objects having the same name, and
performing some bindings during compilation. Some of these optimisations are implemented in LOQIS;
they are not discussed here.

We assume that at the beginning of the evaluation of a query the environment stack consists of one
section containing identifiers of all persistent root database objects, such as the EM P and DEPT objects
in MyDatabase.

3.1.2 Binding via Stack Operations

Binding a name n is performed by a search for one or more objects associated with that name in the
environment stack. The search follows scope rules. The simplest rule is to strictly follow the structure
of the stack, from the top down towards the bottom. The search terminates when it finds a section that
contains one or more bindings for the given name. In that case, the set of all objects associated with
the name in that section is returned as the result of the search. The result we denote by search(n). If
no section with bindings for the given name exists, the search terminates at the bottom of the stack,
returning an empty set. This simple search strategy will be changed to accommodate more sophisticated
scope rules, e.g., skipping irrelevant stack sections for binding names used inside a procedure.

Changes to the environment have to update the stack by adding or removing sections at its top, using
the traditional operations push and pop. These operations correspond to opening a new scope and closing
a scope, respectively.

In programming languages, opening a new scope corresponds to an activation of a block or a procedure.
In a query language, it corresponds also to the evaluation of a query component in a context determined
by another component. In the general case, this operation depends on both the structure of the query
and the structure of the data. Consider, for example, the query DEPT.LOC. Each possible binding
for LOC' is determined by a binding for DEPT. That is, first DEPT is bound, in general to many
identifiers 41, s, ..., % (one for each department). Each identifier i; identifies a department object, and
this object defines a scope in which names such as DNO, DNAME, MGR, LOC are associated with the
objects that make up the department object. The semantics of the dot operation is that bindings for
LOC are determined in each of these scopes.

Let o =< i,n,v > be an object, with identifier i. We denote by nested(i) the following set of
identifiers: If o is a set object, then nested(i) is the set v; if o is a pointer object < i,n,j >, then
nested(i) = {j}; if o is a value object, v € V, then nested(i) = (). For uniformity, we extend the function
nested for values v € V: nested(v) = . Then we extend the function to sequences of identifiers and
values by defining the result to be the union of the value of the function on the components. For example
(c.f. MyDatabase), nested(iy) = {ia, 13,14}, nested(ia) = {i13}, nested(is) = nested(1800) = 0, and
nested(< 11,113 >) = {i2, 13, 14,214, 215, i16}.

Going back to the evaluation of DEPT.LOC, we see that for a given binding ¢ for DEPT'| the scope
in which it makes sense to look for a binding for LOC' is nested(7). If this set is pushed as a new scope
on the stack then the search for bindings for LOC will find the objects representing the location(s) of the
given department, as required. As will be shown, this approach is a core of the definiton of many query
operators, including where, dot, join, and quantifiers.

3.2 The Query Result Stack

In addition to the environment stack ES, we also need a place for intermediate query results. These are
kept on another stack, called the query result stack (QRES). In particular, at the end of evaluation its
top holds the answer to the query. We assume that an intermediate result is always a table, where a table
is a multi-set (bag) of rows, all of the same width. Rows may contain atomic values or identifiers, i.e.
their elements belong to V' U I. For uniformity, we represent single values or identifiers as tables having
one row and one column (1 x 1 tables), and do not distinguish between such a table and the element in
it. An example table, referring to MyDatabase, is presented below; it may represent an answer to the
query “Get employee names, their department’s names, and 10% of their salary”.

19 114 250
16 118 200
ilO ilg 150

A table is not in the form we want to see for printed query results. We assume, however, that the
visualisation of it, if necessary, can be done by a some procedure (e.g. display) taking the table as an
argument.

3.3 Set Orientation and Parallelism

The query DEPT.LOC illustrates an important characteristic of queries, namely parallelism. The bind-
ings for LOC are to be performed for each binding found for DE PT'. In principle, choosing a binding for
DEPT and then searching for bindings for LOC' can be done in any order, even in parallel. For queries,
there is no difference between a parallel or a sequential execution in some arbitrary order; however, there
is a significant difference when updates are considered. Consider, for example, the update ‘increase the
salary of each employee by 10% if smaller than the average of the employees’ salaries.” In a parallel
execution, the average is the same for all updates. In a sequential execution, each update changes the
average and thus may influence the next update. To precisely define the semantics of a bulk updates,
parallelism is a very useful notion, even if the real implementation will be sequential.

We assume that our machine has sequencing, denoted by ;’, parallel loops denoted by foreach ¢ in C
do wn parallel. . .end foreach, and regular sequential loops denoted similarly, without “in parallel’.” The
degree of parallelism is determined by a specified collection: each element 7 in the collection corresponds

to, or generates an evaluation stream. The element 7 is available for use, as a parameter, in the stream.
We assume that when a parallel loop is started, a separate processor is allocated to each stream. Each
processor has its own stacks: QRES is initially empty, and ES is a copy of the common stack. Each
branch of the parallel loop continues as a process running one of these processors, and the processors
execute concurrently and asynchronously. The streams merge into one stream when they terminate. The
store is shared among the parallel streams.

There are issues that we need to worry about in this idealized parallel execution. One is how these
streams are merged when they terminate. We assume that when a branch terminates, E'S returns to its
state at the time just before the loop started; thus, at the end environment stacks are identical for all
streams. Considering QRES, when a parallel stream executes, it does not change any part of the stack
below the level at the starting time, and that at the end the local stack contains one cell storing the
partial result. When the parallel branches merge, these tables are merged, forming one table at the top
of the common QRFES. The merge function depends in general on on the query operator being actually
evaluated. &

4 The Language SBQL

In this section we illustrate how the semantics of query language primitives, and hence also complete
query languages, can be defined on our machine. We sketch here the definition of an untyped language,
called SBQL (Stack-Based Query Language). For lack of space, we present only some of the constructs.
A few update and procedural constructs are presented in the next section.

4.1 The General Framework

The structure of the language is simple: Any constant or name is an atomic query. From such queries
we build complex queries by applying unary or binary operators. For example, EM P, SAL, 1800 and 2
are queries, from which we can build such queries as EM P where (SAL > 1800) and 2 * 2. With the
exception of typing constraints (e.g., one cannot multiply two sets of strings), we assume full orthogonality
of operators. Parentheses are allowed, precedence rules are not discussed here.

To define the semantics of the language, we introduce a recursive procedure eval that maps a syn-
tactically correct query and a machine state to a result. The state consists of a store and a state of the
environment stack. The procedure is defined by cases, one for each operator. It may change the environ-
ment stack; however, the state of the stack after evaluation is always the same as before evaluation. The
result of a query is left as a new cell at the top of QRES.

4.2 Atomic Queries

We start with atomic queries, namely constants and names. We assume that constants that denote some
elements of V' are available in the language. For the query ¢, where ¢ is a constant, eval(c) leaves the
1 x 1 table {c} at the top of QRES. For the query n,where n is a name, eval(n) searches for bindings for
n is ES, and leaves the result, search(n), at the top of QRES. For example, the query EM P, applied
to MyDatabase, returns a single-column table containing identifiers i1, ¢5, ig.

4.3 Compound Queries: Algebraic Operators

An operator is called algebraic if its effect is defined purely in terms of its argument(s), and is independent
of the environment. By convention, such an operator takes its argument(s) from QRES (popping the
cells that contain them) and pushes its result there. Examples of algebraic operators include operations
on atomic values such as arithmetic operations and comparisons, string operations, boolean operations,
and equality tests of identifiers. They also include aggregates applied to collections, and set operations
such as set union, product, tests for containment, emptiness, and so on.

The semantics of a binary algebraic operator © is defines as follows:

case query is ¢10¢, (© algebraic):
begin
eval(q1);

eval(qa);
apply(©)

end

By our assumption on the state of ES before and after a call to eval, both queries are evaluated in
the same environment. We assume that apply is defined without any use of the environment. The seman-
tics of operations such as set union or product may be defined using the same pattern. Dereferencing may
be needed, dependening on the operator being applied; for example, SAL > 2500 requires dereferencing
of an identifier returned by SAL. For the space limit we ommit further discussion.

4.4 Compound Queries: non-Algebraic Operators

The general syntax for application of a non-algebraic operators is q;©¢s, where ¢; and ¢q are (arbitrarily
complex) queries, and © is an operator. The general pattern that defines a part of the eval procedure for
queries with a non-algebraic operator is as follows.

case query is ¢10¢z (O non-algebraic):

begin
eval(q1);
for each row r in top(QRES) do in parallel
push(ES,nested(r)); (* Open a new scope on ES *)
eval(qz);

partial_result := combine(r, top(QRES), ©);
pop(ES); pop(QRES); (* Restore the state of local processors *)
end for each;
merged_result := merge(partial_results, ©);
pop(QRES); (* Remove from QRES the table created by ¢; *)
push(QRES, merged_result);

end

Before the evaluation of g5, many parallel processors are activated, one for each row r from the ta-
ble returned by ¢q;. Each processor opens an own new scope nested(r), then evaluates ¢a2. A partial result
returned by it depends on the result returned by g2, 7 and ©. Finally, partial results are merged; the
merging function depends on ©.

Note that the evaluation is not symmetric in the two subqueries, since g5 is evaluated in environments
determined by the result of q;. In the rest of the section we define and illustrate various non-algebraic
operations that exploit these environment stack dependencies.

4.5 Selection

The syntax for the selection operation is ¢q; where qo, where ¢; is any query, and ¢ is a boolean-valued
query, i.e., a condition. The semantics is defined by the scheme above, where the function combine is

defined by:
combine(r, top(QRES), where) = if top(QRES) = TRU E then return {r} else return)

The merge function is the union of partial results.

Example 4.1 (C.f. MyDatabase).

Consider EMP where (SAL > 1800) expressing the query “List employees earning more
than 1800”. We follow its execution. Initially, the environment stack contains one section containing
identifiers of all root database records:

‘ U1(EMP); U5(EMP), L9(EMP), U3(DEPT); 117(DEPT) ‘

First, eval is called with the atomic query EM P. The name EFM P is bound to three objects, whose
identifiers are put in a single-column table in QRES:

1
15
19

Each row is processed by the body of for each. For the row containing i;, we have nested(iy) = {ia,i3,4}.
This set is pushed onto E'S:

12(NAME); 13(SAL), "4(WORKS_IN)
11(EMP); I5(EMP), L9(EMP), 13(DEPT); 117(DEPT)

Now SAL > 1800 is evaluated. The predicate > is algebraic, so subqueries SAL and 1800 are evaluated
with the same environment stack. The evaluation goes through the following states of local QRES (which
is assigned to a processor processing i;):

eval(1800): Dereferencing;:
eval(SAL): 1800 1800 Comparison:

R 2500

Since the predicate returns TRU E, the row 77 is included into the result.

The same action is performed concurrently for the rows i5, for which the predicate is also TRU E, and
tg, for which the predicate returns FALSE. At the end, upon exit from the for each, the environment
stack will be the same as at the beginning. Merging individual results of parallel streams is collected at

the top of QRES as a table {iy,i5}. O

4.6 Joins

Using the product and the selection, we can define joins. Consider the query
(DEPT x EMP) where (DNO = EDNO).

As described above, the query DEPT x EMP leaves on QRES a two-column table where each row
is a pair of identifiers of DEPT and EM P objects. A stream in the evaluation of the where clause
will push onto ES nested({i,j}) for one such pair, then evaluate the condition. The top section now
contains identifiers of objects whose names are the attributes of the DEPT and EM P collections. The
condition DNQO = EDNO is evaluated on attributes of the two objects. The final result is a set of pairs
of identifiers, one from each collection, that identify pairs of objects for which the condition is true.

4.7 Projection, Navigation, Path Expressions

We need the ability to retrieve subobjects of previously identified objects. This is provided by the ‘dot’
operator. When used more than once, it allows navigation in an object graph using path expressions.
The syntax is q1.¢q2, where g1 and ¢ are queries. To avoid parenthesis in long path expressions, we assume
association to the left. The definition of the semantics is very similar to the semantics of where, except
that the combine function simply returns the table returned by ¢s.

Example 4.2
EMP.SAL

returns a single-column table, in which each row is the identifier of a SAL object nested inside some
EMP object, for example, i3.

(EMP where NAME =”Smith”) WORKS_IN.

The evaluation of the first part terminates with ES containing only the initial section, and QRES
containing the table {i5s}. Now, to evaluate the ‘WORKS_IN’ part, we push on ES the section
nested(is) = {ig,i7,ig}. The evaluation terminates with {ig} at the top of QRFES. O

To find the name of the department where Smith works, we have to write

(EMP where NAME =”Smith”)WORKS_IN.DEPT.DNAME

10

An evaluation strategy requires DE PT in the path expression to be able to access DNAME. This is a
viable option, however, it makes path expressions longer. Most languages for object-oriented databases
have chosen to interpret the “dot” operation so that EM PWORKS_IN.DNAME is a legal query.

To follow this tendency, we could introduce a new function nested, which for a pointer object returns
its r-value. However, this will make it difficult to treat updates. How do we define assignment of a new
DEPT identifier to the WORKS_IN attribute of Smith? We need the query that returns the l-value
for the assignment, which in this case is ig, but with the currently considered option the query returns
the r-value, 217. We can also consider elliptic syntax, which does not change semantics, but allows us in
some contexts to omit some elements of a full query. These issues are not considered in this paper.

Example 4.3
EMP where SAL > ((EM P where NAME =7 Smith”).SAL)

This query combines nested where clauses with ‘dot’. It expresses the query “List employees earning
more than Smith”. Note that the binding of the second occurence of EM P is performed on ES containing
two sections, e.g.

12(NAME); 13(SAL), "4(WORKS_IN)
U1(EMP); I5(EMP), Y9(EMP), U3(DEPT); 117(DEPT)

and will again return {i1, 5,49}, and binding of the second occurence of SAL is performed on the stack
containing three sections, e.g.

I6(NAME); 7(SAL); !8(WORKS_IN)
12(NAME), 13(SAL), "4(WORKS_IN)
U1(EMP); I5(EMP), '9(EMP), 13(DEPT); 117(DEPT)

and will return (in this case) i7. |

It is easy to see that ‘dot’ is an associative operation: (q1.¢2).¢s is equivalent to ¢1.(¢z2.¢3); thus,
parentheses are not needed.

Example 4.4
(EMP where NAME =7 Smith”) WORKS_IN.DEPT.EMPLOYS.EMP.(NAME x JOB)

returns a table containing (identifiers of) the name and job of the employees working in the same depart-
ment as Smith. This query illustrates the use of product for constructing multi-component target list,
which may be important in the context of multivalued attributes. a

Path expressions for navigation in object databases have been proposed in many papers, e.g. [5]. We
believe that our approach is very general, fully orthogonal to other query operators, and semantically
clean.

4.8 Navigational Join

The ‘dot’ operation allows one to ‘walk’ on a path, but the result is always the end point of the path.
Another interesting operation is navigational join, that forms pairs containing the start and end points
of a path. For example, we might want to create a set of pairs of employees and the departments they
work in. In relational systems such an operator can be defined as a product followed by a selection,
but in object-oriented systems it is often more natural to express it directly as a navigation through a
pointer-valued attribute.

The syntax is g1 < ¢2. Let ® denote the cartesian product generalized to bags. The semantics of the
operation is defined by the same scheme as above, except for the combine function, which is defined as
follows:

combine(r,top(QRES), 1) = return({r} ® top(QRES))
Thus, each row r returned by ¢; is combined with each row returned by ¢ for this r. As previously, the
final result is a union of partial results.

Example 4.5
EMP < (WORKS_.IN.DEPT)

11

returns a two-column table, where each row contains the identifiers of an employee and the identifier of
his department.

EMP < (DEPT where EDNO = DNO)

is a relational variant of the previous example. It shows that the construct is general. In ¢; b g9, the
second component ¢gs can be any query, in particular, a function of the elements returned by ¢;.

EMP < (WORKS_.IN.DEPT.(DNAME x LOC))

returns a three column table, where identifiers of EM P are associated with identifiers of DN AM E and
LOC of the department in which the employee works.

DEPT < avg(EMPLOYS.EMP.SAL)

returns a table of pairs consisting of a department identifier and the average salary of its employees. In
SQL this query requires the group by operator. In our approach we achieve the same goal using clean
functional semantics and orthogonality. a

4.9 Quantifiers

The syntax is Qq1(g2), where @ is either V or 3, ¢y is an arbitrary query, and ¢ is an arbitrary boolean-
value condition. Thus, @) is regarded as a binary operation, similar to previous non-algebraic operations.
The semantics is also defined similarly. The differences are in the combine function, and in how the
results of the parallel evaluation streams are merged. The combine function simply returns the truth
value returned by ¢s. For V the result is TRU E if ¢; returns an empty table, or the boolean conjunction
of all returned truth values otherwise; for 3 the result is FALSE in the first case, or the booloean
alternative of partial results otherwise.

Example 4.6 Departments where all programmers used to work for IBM:

DEPT where Y (EMPLOYS.EMP where JOB = ”programmer”)
(3 PREV_JOB (COMPANY =”IBM")) O

Usually quantifiers are associated with auxiliary variables. The next sub-section addresses this prob-
lem.

4.10 Correlation Variables and Synonyms

Most logical calculi rely strongly on the use of variables; so do many query languages. However, the
concept of variable as used in these languages is quite different from its standard use in programming
languages as a cell used to hold an updatable value. In calculi and query languages, variables are used as
temporary names: either to provide synonyms for stored relations (to avoid name conflict), or as iterators
over sets. The SQL phrase from EM P e, introduces e for a similiar purpose.

Semantics of such auxiliary names is not always obvious. An example is the DBPL construct [14]:

FORFEACH x IN EMP : 2.JOB = “clerk” DO z.SAL := 3000; FN D;

where z is used both as a calculus variable and as a programming variable. Achieving all goals of auxiliary
naming, (i.e. local synonyms for objects with statically determined scope, naming of a query result or
its parts, iterators/cursors, updating via auxiliary names, easy and clean semantics, avoiding semantic
anomalies) is difficult. The proposal below (implemented and tested in LOQIS) is a solution that in our
opinion is very simple, universal, and free of many disadvantages of other solutions.

The basic idea is that an auxiliary name can be used to refer object temporarily, i.e., only in the
context of a subquery. This blends naturally with our scoping-based approach. We distinguish two kinds
of occurrences of auxiliary names in a query: declaration and use. The syntax for the declaration 1is
n «— ¢, where ¢ is an arbitrary query. The declaration associates the name n with each row in the result
of ¢q. For row r returned by ¢, n(r) denotes the corresponding row returned by n — ¢. We allow also
such named rows to appear in ES. To be consistent with our previous definitions, we have to improve
the function nested: for arguments n(r) it is an identity function. This means that during opening a
new scope such elements are copied to ES without changes. The binding works as usual, but with a

12

small difference: when name n occured in a query is bound to the object n(r) on ES, only r is pushed
on @QRES; name n is not propagated to the result.

Example 4.7 (C.f. MyDatabase.)

(x — EMP) where (z.SAL > 1800)

As before, the atomic query EM P returns a single-column table {i1,i5,49}. Application of # « changes
this table into {x(i1), 2(i5), 2(i9)}. Assume z(i1) is processed by the where operator. This means the
application of nested, which pushes z(¢1) without changes on ES. Name z in the predicate after where
is bound to this element, but only 7; is send to QRFES; name z is not propagated. The dot operator in a
subquery z.SAL pushes nested(i;) = {is, i3,44} on the top of ES; thus SAL can be bound, as usual, to
t3. Then, the dereferencing and comparison operators will return TRU E. In the result, the whole query
will return a single-column table {x(i1), z(i5)}.
The reader can verify that the SQL-style query

(((# = (EM P where JOB ="clerk”)) x (y — EMP) x (2 — DEPT))
where (.SAL > y.SALAN2.EDNO = 2.DNO A zMGR = y. ENO)).x

returns identifiers of clerks earning more than their managers. Besides the SQL style, this general
mechanism of auxiliary names allows for many other styles (in particular, the domain calculus style). O

5 Updates and Procedures

In this section we briefly consider how bulk updates and procedures can be integrated into the language,

5.1 Assignment

The semantics of an assignment [:= r assumes that the left-hand side evaluates to an l-value, and
the right-hand side evaluates to an r-value; the r-value is assigned as the new value associated with the
l-value.

Our approach to assignment as a general operation generalizes the update statement of SQL. The
general syntax is ¢; := ¢». It can be combined with previous queries in the form ¢.(¢; = ¢2). To
understand the issues in using such an operation, consider

(EM P where SAL > 1800).(WORKS_IN = (DEPT where DNAME =7Toy”))

The first part of the query terminates with {i;,i5} on the top of QRES. The ¢’ evaluation starts
streams, pushing the corresponding scopes on ES. Consider the stream for i5. The first argument of
the assignment evaluates to an l-value, i.e., to ig. The second argument evaluates to the identifier i;3.
The assignment updates the object < ig, WORKS_IN,i17 > to < 15, WORKS_IN,i13 >. Note that it
is crucial here that WORKS_IN returns a l-value for a WORKS_IN objects (ig), not its r-value (i17).

The example illustrates an issue that needs to be resolved for bulk updates to be well defined. To avoid
semantic ambiguity we assume that each of parallel streams prepares only an intention list of updates
to be performed, relying on a state before the updating, common to all parallel streams. When streams
are merged, their lists are merged. During merging inconsistences can be discovered, e.g. more than
one stream attempted to update the same object. To take into account a more complex case of nested
updates (i.e. when the update is of the form g¢.p, where ¢ is a query and p is an arbitrary updating
program) we must assume the transactional semantics: each parallel stream can see only own updates,
and any inconsistency or conflict between parallel stream reverts the database to the initial state.

We can easily do multiple updates in a single stream (‘;’ denotes sequencing):

Example 5.1 (EM P where JOB ="clerk”).(SAL := SAL 4+ 100; JOB :="of ficer”) a

5.2 Procedures

Since the semantics of procedures is also defined by using a stack, we can easily incorporate procedures
into our framework. There are, nevertheless, many issues to be considered, e.g. methods of parameter
transmission. For lack of space, we only illustrate the essential idea. A procedure can introduce local

13

objects, which are removed when the procedure is terminated. Parameters are treated similarly. We
assume static scoping, i.e., if p; calls ps then local objects of p; are not visible from the inside of ps.
Local objects can be easily implemented by storing them as volatile named objects, and storing the
identifiers on a new cell of ES. When the cell containing an identifier is popped, the object is gone.
Output from functional procedures is pushed onto QRES.

A procedure declaration has the usual format, with a header that contains a formal parameter list.

A call has the form

<procedure name> (p1: qq;...),
where p; is a name of the i’th formal parameter, and ¢; i1s a query that provides a value for it. Local
objects (i.e., variables) are declared by

create local < specification of the object >

Example 5.2 A functional procedure ‘poor’ has a list of jobs as a parameter. It returns pointers to
names, salaries, and department names of employees, who do one of the specified jobs and earn less than
the average.

procedure poor(JOBS)
begin
ereate local AVERAGE(avg(EM P.SAL));
(* Creating a set of pointer objects pointing poor EMPs *)
ereate local pointers POOR(EM P where(JOB € JOBS A SAL < AVERAGE));
return POOR.EMP.(N — NAME) x (S — SAL) x(D — (WORKS_IN.DN AME)));

end poor;
A query that retrieves names of poor clerks and programmers from the department ” Sales”:
(poor(JOBS : {"clerk”,” programmer”}) where (D = ” Sales”)).N
Increase salaries of poor programmers from the department ” Sales” by 100:

(poor(JOBS :”programmer”) where (D = ” Sales”)).(S := S + 100) O

Example 5.3 Define a view MyView(Dname, AvgSal, M gr(Name, Sal)) containing information about
department names, average salaries, and manager names and salaries for departments located in Paris.

procedure MyView()
begin
return(DEPT where ” Paris” € LOC).(
(Dname — DNAME)x
(AvgSal — avg(EMPLOY S.EMP.SAL))x
(Mgr — (MANAGER.EMP.((Name — NAME) x (Sal — SAL)))))
end MyView;

A query on the view: Give manager name for the department with the highest average salary:
(MyView where AvgSal = max(MyView.AvgSal)).Mgr.Name

An update through the view: Increase by 200 the salary of the manager of the Sales department:

(MyView where Dname = ”Sales”).Mgr.(Sal := Sal + 200) ad

6 Conclusions

We have presented an approach to query languages based on a modification of concepts that are well
known in programming languages. It makes possible to build query languages for variety of data models,

14

including relational and object-oriented models. The approach supports pragmatic universality, orthogo-
nality, and precision of specification of semantics. We have shown that a modified stack-based mechanism
can be used to define and process declarative queries, and that it makes possible seamless integration of
query constructs with imperative constructs and programming abstractions.

For space limit, we do not discuss many issues relevant to this approach, in particular, static poly-
morphic typing, object orientation, general transitive closures, ordering, processing of null values and
variants, various procedural constructs, methods of parameter transmission in procedures, optimization,
active rules and event-driven programming. Many of them are implemented in LOQIS and they will be
subjects of subsequent papers.

References

[1] A. Albano, L. Cardelli, R. Orsini. Galileo: A Strongly-Typed, Interactive Conceptual Language.
ACM Transactions on Database Systems, Vol.10, No 2, 1985, pp.230-260

[2] C. Beeri. Formal Models for Object-Oriented Databases. Proc. 1st DOOD Conf., Kyoto, pp.370-395,
1989.

[3] AL Brown, R. Morrison. A Generic Persistent Object Store. FIDE, ESPRIT BRA Project 3070,
Technical Report Series, FIDE/92/39, 1992

[4] Language Reference Manual for INGRES/Windows 4GL for the UNIX and VMS Operating Systems.
INGRES Release 6, Ingres Corporation, August 1990.

[5] M. Kifer, W. Kim, Y. Sagiv. Querying Object-Oriented Databases. Proc. ACM SIGMOD Conf.
pp-393-402, 1992.

[6] Kifer, M. and G. Lausen F-Logic: A higher-order language for reasoning about objects, inheritance,
and scheme. Proc. SIGMOD Conf., June 1989, pp. 134-146.

[7] F. Matthes, A. Rudloff, J.W. Schmidt, K. Subieta. The Database Programming Language DBPL,
User and System Manual. FIDE, ESPRIT BRA Project 3070, Technical Report Series, FIDE/92/47,
1992

[8] R. Morrison, F. Brown, R. Connor, A. Dearle. The Napier88 Reference Manual. Universities of
St Andrews and Glasgow, Departments of Comp. Science, Persistent Programming Report 77, July
1989.

[9] E.J. Moss. Design of the Mneme Persistent Object Store. ACM Transactions on Information Systems,
Vol.8, No.2, April 1990, pp.103-139

[10] J. Mylopoulos, P.A. Bernstein, H.K.T. Wong. A Language Facility for Designing Database-Intensive
Applications. ACM Transactions on Database Systems, Vol.5, No 2, 1980, pp.185-207

[11] The Oy User Manual, Version 4.1. newblock Os Technology, Versailles, France, October 1992

[12] A. Ohori, P. Buneman, V. Breazu-Tannen. Database Programming in Machiavelli - a Polymorphic
Language with Static Type Inference. Proc. of ACM SIGMOD 89 Conf., 1989, pp.46-57

[13] J.W. Schmidt. Some high level language constructs for data of type relation. ACM Transactions on
Database Systems, Vol.2, No 3, 1977, pp.247-261

[14] J.W. Schmidt, F Matthes. The Database Programming Language DBPL, Rationale and Report.
FIDE, ESPRIT BRA Project 3070, Technical Report Series, FIDE/92/46, 1992

[15] M. Stonebraker, L.A. Rowe, and M. Hirohama. The Implementation of POSTGRES. IEEE Trans-
actions on Knowledge and Data Engineering, 2:1, pp.125-142, 1990.

[16] M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P. Bernstein, D. Beech: The
Committee for Advanced DBMS Function. Third-Generation Data Base System Manifesto. ACM
SIGMOD Record 19(3), pp.31-44, 1990.

15

[17] K. Subieta. LOQIS: The Object-Oriented Database Programming System Proc.lst Intl. East/West
Database Workshop on Next Generation Information System Technology, Kiew, USSR, 1990 Springer
Lecture Notes in Computer Science, Vol.504, pp.403-421, 1991.

[18] K. Subieta, C. Beeri, F. Matthes, J.W. Schmidt. A Stack-Based Approach to Query Languages.
Institute of Computer Science Polish Academy of Sciences, Report 738, Warszawa, December 1993.

16

