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Abstract. A gateway from DBPL (being a superset of Modula-2) to the
commercial database system Ingres is described. DBPL extends Modula-
2 by a new bulk data type constructor “relation”, persistence, and high-
level relational expressions (queries) based on the predicate calculus,
thereby maintaining the basic concepts of the language like strong typ-
ing and orthogonality. The gateway enables the user to write normal
DBPL programs for accessing Ingres databases. This is in contrast to
typical implementations that embed SQL statements into a program-
ming language and results in a fully transparent interface for DBPL pro-
grammers. DBPL queries and statements referring to Ingres tables are
automatically converted into corresponding SQL statements, are evalu-
ated by the Ingres database server and the results are transferred back
under the control of the DBPL program. This procedure also resolves
queries referring to both Ingres and DBPL tables. The design assump-
tions of the gateway and the used implementation methods are presented
as well as design and implementation difficulties.

1 Introduction

The coupling of programming languages with relational database systems is
based conventionally on embedding a query language into a programming lan-
guage. The border distinguishing querying and programming languages has be-
come, however, more and more fuzzy. Many functionalities typical for program-
ming languages and programming environments were fixed in the SQL stan-
dard as capabilities of the “query language”. Besides the impedance mismatch,
this approach involved yet another disadvantage known as bottom-up evolution,
i.e. extending incrementally and ad hoc the functionalities of query languages
with the result that many positive features that were the reason for the ini-
tial development were lost. This concerns mainly SQL which recently evolved
in the direction of programming languages (which is especially striking in the

INGRES/Windows4GL [Ingr90] and Oracle PL/SQL [Orac91]).
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Initial motivation and trends in the development of query languages were
different from those of programming languages. One basic assumption was sim-
plicity and naturalness of the whole query interface, called user-friendliness.
The positive aspects of user-friendliness include data independence, declarativity,
simplification of notions concerning data views, macroscopic operations allowing
the user to determine extensive computations in a compact form, and a syntax
similar to a natural language. However, user-friendliness also means the restric-
tion of the language® s functionality and power as well as non-orthogonality of
the language‘ s constructs (e.g. due to syntax). Real applications may consist of
a large number of queries and other constructs with the consequence that other
interpretations of user-friendliness are of vital importance such as preventing
the user from his/her own errors, computational completeness, and support of
various programming abstractions.

Database Programming Languages (DBPL-s) are to be distinguished from
these pure query languages. DBPL-s are strongly and statically type checked
(allowing the removal of many errors before a program is executed) as well as
syntactically and semantically orthogonal (leading to a reduction of the number
of necessary primitives in the language, as well as the size of manuals). They
support full computational and pragmatic universality as well as various pro-
gramming abstractions and have clean semantics. DBPL-s adopt the concept
of a query language as a powerful construct of a programming language. The
language DBPL [ScMa91, ScMa92, MRSS92] extends Modula-2 in several direc-
tions. In particular, it introduces persistence, bulk data (relations) and high-level
relational expressions (equivalent to queries), which allow declarative and asso-
ciative access to relation variables.

Despite the various advantages of DBPL, we are aware that it has little
chance of success in the commercial world as a complete system. As observed
in [Banc92], products of research activity suffer from the “new programming
language syndrome”: very few organizations are ready to adopt a new program-
ming language or a new system. DBPL is a new product working with its own
database format produced at a university. Clients of database systems usually
prefer the long existence of the databases, since investment in gathering data,
writing programs, education of staff, organization of technological routines of
data processing, etc. is high. Commercial systems are equipped with a large
family of utilities which are not implemented in DBPL since (however very use-
ful) they do not present scientific problems. We do not expect, therefore, that
potential clients of database systems will decide to use DBPL as the only tool
for the full development of database applications.

University software such as DBPL and their concepts, however, can be trans-
ferred to the commercial world as a supplement on top of popular and widely
distributed systems. Many professionals who are dissatisfied with the capabilities
and the programming style offered by languages such as SQL embedded in some
host language delivered with commercial database systems are potential DBPL
clients. Direct use of the high level language with its clean concepts is at hand
with storage and access of the data, for example, in an Ingres database, thereby



allowing the use of all the tools supported by the system. This was the main
reason for deciding to create the gateway. Vice versa, the implementation of the
gateway allows the DBPL community - students and researchers - to access large
commercial database systems and thereby use, within the DBPL programming
environment, their various capabilities.

There are several possible approaches in designing a gateway. In this project
we decided to couple the DBPL run-time system with the Ingres SQL machine
[IngrA89, IngrB89]. All references from DBPL programs to Ingres databases are
transformed during run-time into dynamic SQL statements. This permits the
use of the SQL optimizer and all capabilities of Ingres that are “below” the SQL
machine (concurrency, indices, views, Ingres/Star, gateways, etc.). The interface
is fully transparent to DBPL programmers: knowledge of SQL and Ingres is not
necessary. This approach does not support the opinion that SQL should be the
“intergalactic language” [SRLG490] for the next database era, but only accepts
a widely used standard. We do not believe that SQL, as a programming language,
has reached its maturity (despite fixing it in huge standards).

The paper is organized as follows. In Section 2 we present briefly similarities
and differences between DBPL and Ingres SQL. In Section 3 we discuss possi-
ble methods of mapping DBPL constructs into SQL statements and present the
methods chosen. In Section 4 we present architectural assumptions of the gate-
way in connection with the architecture of DBPL. In Section 5 implementation
difficulties are discussed.

2 Similarities and Differences of DBPL and Ingres SQL

There are significant differences in the available types for structuring data of-
fered by Ingres and DBPL. Full orthogonality of type constructors is a leading
principle in DBPL which results in the possibility of defining nested relational
structures whereas Ingres allows flat relations only. On the level of queries or-
thogonality of DBPL f.e. allows range relations of queries to be described by
queries itself, in SQL this is not possible. Persistence in DBPL is also introduced
as a orthogonal property of modules (DATABASE MODULEs) allowing variables of
every type (except pointer-variables) to become persistent. INGRES only sup-
ports persistent relations.

Primary keys of relations in DBPL are considered as a structural property
of a relation and as such they are declared in the definition of the relation type.
The semantics of some operators depends on them. In contrast to this primary
keys in Ingres are defined for relation variables and used only internally (for
creating an index structure). For querying the information about primary keys
is irrelevant. As a consequence DBPL does not allow duplicate tuples either in
stored relations or in intermediate query outputs, but Ingres does so. So efficient
programming of some tasks in DBPL may prove impossible.

Both Ingres SQL and DBPL make the distinction between querying a database
and processing a database. SQL was designed for retrieval and then extended by
some programming capabilities, that is, inserting, deleting and updating. It is not



computationally complete: more complex (but still typical) programming tasks
require a classical (host) programming language. In DBPL the main reason for
the distinction between queries and other constructs of the language is query op-
timization. DBPL is based on the assumption that queries problematic for query
optimizers should be forbidden syntactically. As a consequence, functions and
operators are not allowed within DBPL predicates. This restriction results in a
potential for good performance, however, it violates the orthogonality principle.
As consequence it is practically impossible to utilize in DBPL queries requiring
capabilities available in SQL like arithmetic operators, aggregate functions and
grouping.

By high-level constructs we denote such programming capabilities which sup-
port data independence and follow the “many-data-at-a-time” principle. We list
all high-level constructs of DBPL that may concern Ingres databases with short
comments concerning their semantics and possible equivalents in SQL. All ex-
amples refer to the classical supplier-part database defined as follows (whereby
the primary key is determined by the attributes following the RELATION-keyword
in the type definition):

TYPE suppRel = RELATION sno OF

RECORD sno:...; sname:...; status:...; city:... END;
partRel = RELATION pno OF
RECORD pno:...; pname:...; color:...;
weight:...; city:... END;
spRel = RELATION pno OF
RECORD sno:...; pno:...; qty:... END;

VAR supp: suppRel; part: partRel; sp: spRel;
1. Quantified boolean expressions, for example:
ALL X IN part (SOME Y IN sp (X.pno = Y.pno))
Quantifiers have several counterparts in SQL; we will discuss them later.
2. Selective access expressions, for example:
EACH X IN supp: SOME Y IN sp (X.sno = Y.sno)

Selective access expressions can be used inside the FOR iterator; in this case
the range variable has the status of an updatable programming variable.
Selective access expressions have a direct counterpart in SQL.

3. Constructive access expressions, for example:

{X.sname,Y.pno} OF EACH X IN supp, EACH Y IN sp:
(X.sno = Y.sno) AND (Y.qty > 200)
They have a direct counterpart in SQL.
4. Aggregate expressions used to construct tuple and relation values have no
counterpart in SQL. One example is: for example:
partRel{{"P7", "bolt", "green", 65, "London"},
{"P8", llnutll’ llredll’ 11’ "Rome" }}
5. Relation expressions for describing relation values by combining an access
expression with a compatible relation type (which determines the primary



key), for example:

JoinRelType{{X.sname,Y.pname} OF
EACH X IN supp, EACH Y IN part: SOME Z IN sp
((X.sno = Z.sno) AND (Y.pno = Z.pno) AND (Z.qty > 200))}

Relation expressions can be used in all contexts allowed for stored relations,
i.e. they follow the orthogonality principle. SQL does not allow expressions
as range relations under a from clause.

6. Union operator, for example:

suppRel{EACH X IN supp: X.city = "London",
EACH Y IN supp: Y.status > 10,
{"s8", "Miller", 20, "Paris"}}
Ingres SQL also supports union, but only on the top nesting level.
7. Relational operators =, #, <, <=, >, >= denoting relation equality, non-
equality and set-theoretic inclusions, for example:

suppRel{EACH Y IN supp: Y.status > 30} <=
suppRel{EACH X IN supp: X.city = "London"}

SQL does not support these comparisons.
8. Assignments on relations realizing all updates: := (assign), : — (delete), : +
(insert), and :& (update), for example the insert operation:

supp  :+ suppRel{{"S1", "Schmidt", 25, "Berlin'"}};

All operators follow the “many-data-at-a-time” principle (both operands are
relation-valued; in the example the right-hand side expressions is a relation
value of cardinality one). They can be implemented by SQL high-level “up-
date” | “insert”, “delete” statements, or by fetching the required tuples from
Ingres tables to a DBPL buffer, doing the required operations and shipping
them back to Ingres.

The standard DBPL functions CARD (the number of relation elements) has a
direct counterpart in SQL whereas the “one-data-at-a-time” functions EXCL and
INCL (exclude/include one tuple) present a problem, because their semantics is
based on primary keys (discussed later). No SQL equivalent exists for the low-
level standard procedures LOWEST, HIGHEST, THIS, NEXT and PRIOR.
They enable processing of DBPL relations in a tuple-by-tuple fashion. Some
tasks cannot be programmed without them, for example, merging of relations or
a browsing utility for visualizing the contents of a database.

SQL views are special objects with independent existence in the database.
They can be dynamically created and deleted. In DBPL similar notions are called
“constructors” and “selectors” [ERMS91]. They are not, however, properties of
the database but rather properties of the source text of programs. They are first-
class objects and may exist in the database as values of variables, but only when
proper assignments are executed in the user program. Both, selectors and con-
structors, may have parameters and so they are different from SQL views. Beside
this selectors could be considered as updatable views whereas the constructors
(pure query expressions) could be recursive (with a fixed-point semantics). Since



the mapping of selectors and constructors into views implies problems, we have
chosen to construct the gateway between DBPL and Ingres on architectural lev-
els that are below these abstractions (still allowing to evaluate recursive queries
on Ingres tables).

DBPL does not deal with null-values. In Ingres SQL null-values are asso-
ciated with special facilities (a comparison operator is [not] null and indicator
variables in embedded SQL) and with a special treatment in aggregate func-
tions. Null-values are captured in DBPL by variant records; however, there is no
simple systematic mapping from existing SQL databases to semantically equiv-
alent DBPL type definitions. Ingres types such as date, money, table-key, and
object-key could be represented in DBPL but they require special functions to
serve them and are currently not available.

Both DBPL and Ingres are multi-user database systems and employ their
own methods for dealing with transactions, locks, deadlocks, logs, etc. There is
no danger of improper interference of these mechanisms since from the point of
view of Ingres, a DBPL application is one of its clients, and a Ingres application
cannot be a client of DBPL.

3 Mapping DBPL into SQL

Since the gateway from DBPL to Ingres is a generic application which must
work for all types of relations and for any DBPL high-level expressions the use
of dynamic SQL was necessary. It is an extension of the capabilities in embedded
SQL allowing to write SQL statements as strings which can be manipulated dur-
ing run-time. Basic component is the so-called SQL Description Area (SQLDA),
which allows a communication between the application and the Ingres server
through pointers. It is a dynamically created data structure consisting of ex-
plicit typing information and pointers to data. The pointers are counterparts of
the host variables in embedded SQL. They have two kinds of applications. In
the first case (used by select statements) they determine places, where the at-
tributes of a retrieved tuple are to be written. In the second case, they determine
actual parameters of an SQL statement. This technique assumes application of
statements containing question marks as “formal parameters” which will be sub-
stituted by the values referenced through the pointers at execution time.

In the following the basic methods that have been used to map DBPL con-
structs referring to Ingres relations are presented. For most DBPL constructs
such a mapping exists, but in some cases there is no convenient solution, thus
we needed some escape methods. Although being not very efficient, they allow
the completion of computations. There are several such methods; in this project
we use only one of them, namely copying DBPL relations to the Ingres side.

3.1 Unproblematic Cases

DBPL expressions without quantifiers: Consider the following DBPL expression:



{projection list} OF

EACH X; IN Rel;,..., EACH X, IN Rel,: p(Xi,...,X,)
If the predicate p does not contain quantifiers and all comparisons in p are
available in SQL, then this expression is equivalent to the following SQL query:

select projection list

from Rel; X;, ... , Rel, X,

where p(X1,...,%,)
DBPL predicates returning boolean values: SQL has no semantic domain with
boolean values, thus we convert a DBPL predicate p into the following SQL
statement:

select * from AuxRel where p

where AuxRel is the name of an auxiliary Ingres table containing exactly one
tuple. We need only a simple procedure returning TRUE if the select statement
will return a non-empty result, and FALSE otherwise. The DBPL predicate ( “Do
all suppliers have a status higher than 107”)

ALL X IN supp (X.status > 10)
is converted to the following SQL query:

select * from AuxRel where not exists
(select * from supp X where not( X.status > 10 ) )

DBPL expressions with quantifier SOME in the prenex form: If a DBPL ex-
pression contains only SOME quantifiers in the prenex form, the conversion is
simple. The DBPL expression
{projection list} OF
EACH X; IN Rely,...,EACH X, IN Rel,:
SOME Y, IN Rel,yi,...,SOME Y,, IN Rel,im (p)
where p contains no quantifiers, can be directly mapped to the following SQL
query:
select projection list from
Rel; Xy, ..., Rel, X,, Rel,y41 Yy, ..., Rel,4ym Y, where p
DBPL projection lists into SQL equivalents with no change, since syntax in both
cases is the same.

3.2 Predicates with Universal Quantifiers

SQL supports several methods for expressing queries which require the use of
universal quantifiers when formulated in other languages [Frat91]. These are the
following:

Quantified comparisons They are normal comparisons followed by the key
words all or any, for example, =all, <any, >=all, etc. Because of the
lack of universality of quantified comparisons the automatic conversion of
DBPL’ s universal quantifiers is problematic.

Function “count” Since it requires materialization of its argument, this method
may lead to performance problems.



Operator “exists” The predicate ALL X IN R (p(X)) can be expressed in
SQL as

not exists (select * from R X where not p(X))

The method seems to be the most promising because of its universality
and potential for optimization; thus it is used in the implementation. The
DBPL access expression and the corresponding SQL statement for the query
(“Suppliers supplying all parts”) are
EACH X IN supp: ALL Y IN part
(SOME Z IN sp ((X.sno = Z.sno) AND (Y.pno = Z.pno)))

select * from supp X1 where not exists
(select * from part X2 where not exists
(select * from sp X3 where X1.sno = X3.sno and X2.pno = X3.pno))

3.3 DBPL Expressions Mixing DBPL and Ingres Relations

Two kinds of mixing can be distinguished. In the first case, a DBPL statement
contains sub-statements independent of external variables. As an example, con-
sider the expression

EACH X IN supp: SOME Y IN sp (Y.pno = "P1")

Assume that supp is an Ingres table and sp is a DBPL relation. Since the internal
sub-predicate does not reference the external variable X, we can evaluate it on
the side of DBPL, and then generate a proper SQL statement. This method
is applied in the implementation: using a procedure that recursively scans a
predicate tree, discovers independent subpredicates, evaluates them, and then
modifies the tree by reducing it and inserting the calculated truth values resp.
temporary relations. In other cases mixing requires the application of escape
methods.

3.4 Predicates with a Range Relation Given by a Subpredicate

SQL does not allow select blocks in the from clause, thus direct mapping
of predicates with range subpredicates (range relations described by relation
expressions) is impossible. There are several methods of solving this problem, in
particular unnesting and creation of a view on the Ingres side. In this project
we decided to create a temporary range relation on the Ingres side.

3.5 FOR EACH Construct

Mapping the FOR EACH construct of DBPL was the most difficult implemen-
tation problem. The semantics of the construct
FOR EACH wariable IN relation: predicate DO

sequence of statements
END



can be explained as follows. The sequence of statementsis executed for each tuple
in relation, for which predicate is true. The sequence of statements may contain
arbitrary DBPL statements, in particular other “FOR EACH” statements. The
variable inside the sequence of statementsis considered as a normal programming
variable. In particular, all updates of the relation can be done by this variable.
The updating semantics is, however, not straightforward: the variable contains a
main memory copy of the processed tuple and all updates modify the copy only.
At the end of each loop the original tuple in the relation is modified according
to the values of this eventually modified copy.
An example of the FOR EACH construct follows:

FOR EACH X IN supp : X.city = "London" DO
X.status := X.status + 10;
FOR EACH Y IN sp : X.sno = Y.sno DO
WriteString(X.sname); WriteString(Y.pno); WriteInt(Y.qty);
END;
END;
The above semantics has a direct counterpart in SQL relying on the applica-
tion of cursors. Dynamic SQL assumes that the buffer for fetching/flushing a
tuple is organized through SQLDAs. DBPL allows nested FOR EACH and re-
cursion, thus SQLDAs, names of cursors and SQL PREPARE statements must
be managed by a special stack, which we implemented in SQL+C.

The dynamic SQL version is neither clear nor well specified in SQL manuals;
there are also some bugs. Thus the final solution is the result of experiments
rather than careful reading of manuals. To serve the FOR EACH construct we
need the following steps:

1. Generate a SQL query from the argument of the FOR EACH statement.

The statement presented above will produce the query

select X1.* from supp X1 where X1.city = "London"

2. Execute PREPARFE and DESCRIBE SQL commands with the the query
generated in the previous step as argument. This step is necessary to obtain
the attribute names of the relation.

3. Generate an extended SQL query
<previous query> FOR DIRECT UPDATE OF <list of all attributes>
The statement presented above will produce the query

select X1.* from supp X1 where X1.city = "London"
FOR DIRECT UPDATE OF sno, sname, status, city

4. Generate a new statement name and push it on the stack. Then create a
new SQLDA and push it also on the stack.

5. Execute PREPARE and DESCRIBE SQL statements for the given extended
query, statement name and SQLDA.

6. Generate a new cursor name and push it on the stack. Then declare the
cursor.



7. Open the cursor. This is the preparation step for fetching tuples from the
Ingres relation.
8. Extract the relation name from the query and generate the SQL update
statement
UPDATE relation name
SET attribute; = ?7,..., attribute, = 7
WHERE CURRENT OF cursor name
For the example above we generate the statement
UPDATE supp SET sno = 7, sname = ?, status = 7, city = 7
WHERE CURRENT OF dbcurs;
9. Generate a new statement name and push it on the stack. Then execute the
SQL PREPARE statement w.r.t. the generated UPDATE statement and the
new statement name.

Now, on the top of the stack we have two statements, one cursor and one SQLDA.
Fetching tuples requires the SQL FETCH command (with the cursor address-
ing the first statement), while flushing requires the SQL EXECUTE command
addressing the second statement.

The above procedure is complicated, although the task is typical. In our
opinion, design solutions concerning cursor processing in embedded SQL were
burdened by attempts to hide the fact that cursors are pointer-valued variables.
In effect, this programming interface is more difficult than it should be.

3.6 Implementation of High-Level Relational Assignments

For each of the four kinds of high-level relational assignments in DBPL (assign,
insert, update, delete) we must consider four cases, depending on the status of
the left-hand and right-hand side relations (DBPL/DBPL, DBPL/Ingres, In-
gres/DBPL, Ingres/Ingres). Each case implied specific methods. Even in the
Ingres/Ingres case not all operations can be executed by SQL because of the
lack of power. An example of these problems is the delete operation for the In-
gres/DBPL case. In DBPL the construct R; : — Rg means removing from R;
all those tuples whose primary keys are the same as for one of the Ro tuples;
values of other attributes of Rs are not taken into account. The SQL method
of passing parameters to statements through question marks requires filling in
values of all attributes. As follows from DBPL semantics, some of attributes of
R5 tuples may be meaningless. To ignore them, we generate the SQL statement

DELETE FROM R; WHERE p; AND p, AND ... AND p,

where n is the number of attributes. Predicate p; has the form attribute; =
? for key attributes, and the form ( 1 = 1 OR attribute; = ? ) for non-key
attributes. For example, the DBPL statement

SuPP :— suppRel{{"Sl" s ] s 0 s IIII}’ {IIS2II s ] s o’ IIII}};
generates the SQL statement

DELETE FROM supp WHERE sno = ? AND (1=1 OR sname = ?)
AND (1=1 OR status = ?) AND (1=1 OR city = ?)



This statement is executed for each tuple of the right hand side relation. The
example clearly shows the disadvantage of the SQL ad hoc approach to generic
programming.

3.7 Relational Comparisons

Since DBPL does not allow duplicate tuples, all comparisons can be performed
by one operator contains (denoted >=). Equality and strong comparisons are
obtained by comparison of the numbers of tuples and contains. Semantics of
relational comparisons in DBPL assumes that only primary keys are taken into
account. That is, the DBPL predicate R; >= Rs means

ﬂ-primarykeys( Ry ) 2 ﬂ-primarykeys( RZ)

where 7 denotes projection, and D is an inclusion of sets. As in the previous case,
we must consider four cases of relational comparisons, dependingly whether the
left-hand side and right-hand side relations are on the DBPL or Ingres side. In
the case when one relation is DBPL and another is Ingres, we apply a sequential
scan through the right hand side relation and check if the primary key of the
tested tuple is present in the left hand side relation. If both relations are from
the side of Ingres, we change predicate R; >= R, into a quantified predicate

ALL Y IN Ry, (SOME X IN R,
((X.key; = Y.key;) AND ...AND (X.keyjs: = Y.keyigse)))

and then transform it in a corresponding select statement (see sec. 3.2).

4 Architecture of the Gateway

The general architectural view of the gateway, DBPL and Ingres is presented
in Fig. 1. The entry Ingres interface is embedded SQL. We wrote a package
of procedures in embedded SQL + C capable of mapping all DBPL constructs
(unfortunately the dynamic embedding is not standardized until now). The pro-
cedures are also available in a normal DBPL module. They allow the user to
write SQL statements inside DBPL programs, an advantage for some kinds of
applications.

Exit points in DBPL implied more problems. We assumed that the DBPL
compiler should not be changed; all connections to Ingres should be done from
the existing run-time system. The DBPL run-time system consists of several lay-
ers and features of DBPL are tailored to parts of different layers. Some work was
necessary to make the architecture of the run-time system cleaner. Afterwards it
was possible to determine exit points “below” the transaction processing system
(thus the gateway does not deal with locking, unlocking, log, recovery, etc.) and
“below” the system responsible for evaluation of DBPL selectors and construc-
tors (thus the gateway also does not deal with them). Exit points to Ingres are
in the module responsible for evaluation of DBPL predicates and sometimes in
the lower layer responsible for tuple-oriented processing of relations.
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Fig. 1. General view on the gateway, DBPL and Ingres

We introduced a change to the DBPL data dictionary allowing to distinguish
between DBPL and Ingres relations. Since the compiler is unchanged, a DBPL
program processing Ingres relations is exactly the same as that required for
DBPL relations. This means that each Ingres relation which has to be processed
by DBPL should have a “twin” relation on the DBPL side. Normally this twin
is empty and not used but it must be declared and stored. Twin DBPL relations
allow the user to retrieve typing information and sometimes they are internally
used for storing intermediate results. The architecture of the gateway is presented
in more detail in Fig. 2. A special utility is written to change the status of DBPL
relations. This utility compares types of corresponding DBPL and Ingres twin
relations. If the types are fully compatible, it allows the user to change the status
of the DBPL relation so that further processing will be performed on the Ingres
relation.

Generation of SQL queries from DBPL predicates is done by a recursive scan
of the DBPL predicate tree. During the scan a list of SQL lexicals is built. Roots
of the tree corresponding to access expressions cause pushing lexicals select, from
and where to the list. Then, projections in the tree insert proper lexicals after
select, range relations in the tree insert proper lexicals after from, and conditional
expression insert proper lexicals after where. The list works as a stack: to take
into account nested select blocks, the insertions are done after this select, from
or where, which is the nearest from the top of the list. When the select block is
completed it is “masked” (so it is not seen by further insertions). This algorithm
is modified for ezists and other lexicals to take into account all situations that
can occur in DBPL predicate trees. The final SQL query is obtained by direct
generation of the query text from the list of lexicals.

For evaluating DBPL predicates containing mixed references to DBPL and
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Fig. 2. Architecture of the gateway

Ingres relations the corresponding predicate tree is recursively scanned and one
of the following answers is produced: pure dbpl, pure ingres, top dbpl, top in-
gres, mized joins, badly mized. The answer pure ingres means that the predicate
contains only references to Ingres relations and can be converted into a SQL
query. Top dbpl means that the predicate contains independent subpredicates
that are pure ingres. They can be evaluated internally and the whole predicate
becomes pure dbpl. Similarly, top ingres means that the predicate contains sub-
predicates that are pure dbpl; they can be internally evaluated on the side of
DBPL, then the resulting temporary relations are copied to the Ingres side, thus
the whole predicate becomes pure ingres. In the case of mized joins we send
the participating DBPL relations to the Ingres side (the escape method), thus
the predicate becomes pure ingres. The result badly mized means that all good
methods fail, and the only method is copying Ingres relations to the DBPL side.
For performance reasons we prefer to generate in such a case a run-time error in
the current implementation.

5 Implementation Difficulties

A few problems were caused on the side of DBPL. On the language level the
missing possibility of using arithmetic and other operators inside the high-level
constructs limits the utilization of the full power of SQL. On the system level
the use of Modula-2 as system-programming language requires that all advanced
data structures are stored in dynamic memory. This concerns, in particular,
syntactic trees for high-level expressions and predicates, type descriptors, and the
data dictionary. Receiving information from these structures requires navigation
via pointers, a feature which is cumbersome and error-prone. In Modula-2 there
is no alternative solution. This is an argument in favour of languages having



the possibility to define bulk types. The construction and semantics of internal
DBPL structures is not always well specified and clear. Small optimizations
concerning syntactic trees introduced additional difficulties in recognizing their
semantics and in traversing them.

Most of the problems had their origin on the SQL side especially in bad
design assumption of SQL and its (dynamic) embedding concept.

1. Communication of dynamic SQL with the external world is based on pre-
pared statements, cursors, and SQL Description Areas. This interface is not
well prepared for nested and recursive processing, which is inherent for lan-
guages like DBPL. Therefore we have to implement a special stack of state-
ments, cursors and SQLDAs together with operators acting on this stack.

2. Although the concept of primary keys is a fundamental part of the relational
model, SQL has no direct possibility of updates based on primary keys.
In contrast, in DBPL all updates are based on primary keys. This causes
problems in expressing some DBPL updates in SQL.

3. The missing orthogonality of the language leads to problems in the automatic
generation of SQL queries. For example there is no nested union, there are no
range expressions described by queries, all this must be done on the DBPL
side. Another example is the select count(*) from ... statement where
we would prefer the syntax count( select ... from ...).

4. No queries returning boolean values, they must be simulated by counting the
number of elements of a corresponding select-statement. The missing truth
values requires the substitution by formulas like 1=1 or 1=0.

Sometimes it is also difficult to retrieve internal information from the system
which is necessary for writing generic applications. May be the ongoing stan-
dardization work (f.e. for the data dictionary) will lead to a better situation.

1. There are difficulties in retrieving all information about Ingres tables; in par-
ticular, this concerns recognizing which attributes are forming the primary
keys.

2. No comparison of tuples for equality, and no (officially supported) explicit
tuple identifiers and operations on them.

3. In programming of generic applications we need to “capture” some system
reactions to errors. These reactions and error codes are not well specified in
the documentation of Ingres. In this context the automatic generation of the
SQL STOP statement, in all possible places where an error is expected, is
controversial. STOPs after errors are frequently unacceptable, because be-
fore the stop some operations must be performed. This forces use to use the
statement WHENEVER SQLERROR CONTINUE after each SQL state-
ment, which makes the text of the program longer and less readable. SQL
itself gives poor testing capabilities for programmers, e.g. about names of
available relations, about their ownership, status, number of tuples, etc.

With new releases (and realizations) of the SQL-standard, which will also cover
dynamic SQL, some of the following problems will hopefully become obsolete.

1. The system of navigation through cursors gives no possibility to navigate
to the prior tuple, making the implementation of browsing capabilities ex-



tremely difficult.

2. SQL dynamic statements use question marks as “formal parameters”. This
is inconvenient and error-prone.

3. To open a cursor for updating in dynamic SQL, the programmer must gen-
erate the statement select ... from ... FOR DIRECT UPDATE OF ... which
is not described in the manual (we invented it by experiments).

4. There are some not well-justified syntactic features of SQL statements; for
example, an update statement through a cursor requires the relation name
despite the fact that it was determined previously during declaration of the
cursor.

5. Direct update through cursors may change the order of rows, what means
that the processing may lose consistency (e.g. the same row will be updated
two times).

Surprisingly there also have been technical problems with bugs in the used ver-
sion of the Ingres system. So opening a cursor for a query returning an empty re-
sult causes a run-time error. Because normally it is impossible to predict whether
the result of a user query is empty or non-empty a special handling of empty
query results is necessary. Another example was the WHENEVER SQLERROR

CONTINUE statement that does not work in all cases, requiring the manual

correction of the C programs generated by the ESQL-precompiler.

6 Conclusion

The implementation of the gateway from DBPL to the commercial Ingres sys-
tem achieves several results. A direct pragmatic result is that Ingres databases
are now transparently accessible within DBPL programs. This allows the user
to build up modular designed applications using a type-safe language with or-
thogonal language constructs thereby significantly reducing the risk of run-time
errors and increasing the maintainability and extensibility of the application
while using the reliability and effectiveness of a commercial database system
developed and improved over years. It has also uncovered some limitations and
disadvantages of both DBPL and SQL. When considering DBPL, we recognized
limitations of high-level constructs which may produce problems for users espe-
cially if they come from the SQL world. The advantage of DBPL - strong typing
- may become a hindrance to the development of some applications requiring
generic procedures mainly because of its monomorphic type system. This shows
directly the need for new languages with polymorphic type systems as a base for
persistent programming and system construction [ScMa93].

The majority of problems were connected, however, with SQL. In contrast
to the enthusiasm found in popular database textbooks, our experience with
SQL as a programming language indicated that SQL is below the state-of-the-
art. Many ad-hoc solutions, irregularity of syntax and semantics, limitations,
unclear rules of use, an approach to user-friendliness which forbids untypical
(but still reasonable) situations, lack of programming abstractions, etc. make
the programming of generic programs difficult and frustrating.



This clearly emphasizes the necessity and usefulness of our approach to view
database systems simply as external servers which can be accessed via powerful
languages like DBPL. We feel that SQL has yet to achieve the maturity necessary
for next-generation databases. It is our hope that this paper helps clarify some
design pitfalls in database languages and offers a way to solutions for avoiding
these problems.
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