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Abstract

The crucial characteristic of object-oriented databases is the concept of object iden-
tity which allows the direct representation of various kinds of dependencies between
objects, for example, sharing and cyclicity. For object stores to become a viable
technology for large shared databases, a certain degree of spatial control over ob-
ject dependencies (or object locality) seems to be essential. This paper exploits
the power of a static type system to capture and evaluate locality information
on objects. First, we represent objects by references to complex expressions in a
functional language. To control the locality of objects, the space of references is
partitioned into a set of subspaces with an explicit reachability constraint. Next, we
define a type system where the locality of an object is part of its static type spec-
ification and the predefined reachability constraint is enforced via a static typing
discipline. We conclude by highlighting the impact of locality information on the
operational support to be expected by next generation database systems.

1 Introduction and Motivation

Object-oriented data models are based on the notion of object identity, i.e. “the ability
to distinguish objects from one another regardless of their content, location, or address-
ability” [?]. They thereby relieve database modelers and programmers from the tedious
and error-prone “manual” management of key values and their associated uniqueness
and referential integrity constraints as required, for example, in relational databases.

This shift from copy semantics to reference semantics in database systems, together
with recent advances in computationally complete database languages reinforces the in-
terest in persistent object stores [?], providing long term storage of and shared access
to data objects and code fragments with mutual cross references via object identifiers.
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There is, however, an increasing awareness of the problems of scale that have to be solved
in order to make object stores a viable technology for large scale, multi-user or distributed
databases.

A promising approach to the solution of these problems is to partition the logically
homogeneous object store into disjoint repositories (files [?, 7], pools [?], databases [?,
?]) and to localize objects in these repositories. Despite a great deal of research and
implementation efforts in object-oriented databases and persistent programming, very
little is known about the properties of such repositories, the localization of objects in
repositories and, most importantly, the dependencies between objects induced by the
creation and propagation of object identifiers.

The interest of this work is to integrate the advantages of a partitioned store into a
data model for complex objects. Furthermore, we would like to achieve this integration
within a typed programming language so that the database programmer can also enjoy
the benefits of a static type system.

In this paper, we propose an abstract partitioning mechanism of an object store in a
type system of a programminglanguage. We model objects through references to complex
expressions, as they are implemented in Standard ML [?]. In contrast to Standard ML,
however, our reference space is partitioned into disjoint repositories. Each repository is
associated with a set of repositories representing the reachability set of the repository to
other repositories. We then develop a static type system to reason about the dependency
of a value to repositories (or the locality of a value). In the type system, the locality of a
value is represented as part of its type and the reachability constraint among repositories
is enforced by a static type discipline.

The main goal of this paper is to analyze the problem of object locality control and
to explain our solution with emphasis on the rationale behind the type system. The
reader is referred to [?] for a complete description of the type system and proofs of
various technical properties. The paper is organized as follows. In section 77, we set
the stage by defining a core database language with records, collections, references and
repositories. Section 77 develops a type system for that language. We introduce first
the notion of types and localities and then define type checking rules. The proof of the
soundness of these rules with respect to the run-time evaluation of the language is the
subject of section ??7. Section ?? outlines a method to develop a type inference system
for objects with locality. The paper concludes with a discussion of the use of static
locality information in database systems and describes possible extensions to our type
system.

2 Modeling Objects in a Partitioned Store

As argued in [?], major properties of objects (without locality control) can be represented
by references when they are combined with a rich set of value constructors. In a functional
language, references can be introduced by the following set of primitives:

new(v) reference creation,



Iy de-referencing,
ri=v assignment.

new(v) creates a new reference and assigns the value v to it. !7 returns the value
previously assigned to the reference r. r:=v assigns a new value v to a given reference r
(discarding the value previously assigned to r). In a database context, these operations
correspond respectively to the creation of an object with identity, retrieving the value
of an object, and changing the associated value (attribute or state) of an object without
affecting its identity. See [?] for a more detailed discussion of their relevance for database
programming and a formal account of these primitives in a purely functional framework.

The following examples (taken from [?]) illustrate the (standard) semantics of refer-
ences in our model that are formally captured by the reduction rules in section ?7. The
invocation of new such as

David = new([Name="David", Age= 25]);

will create a reference whose associated value is the record [Name="David", Age=25]
and can naturally be regarded as an object with identity which has a Name and an Age
attribute. Sharing and mutability are also represented by references. If we define the
following two person objects from David:

Jessica = new([Name="Jessica'", Age = 2, Father = David]);
Frederick = new([Name="Frederick", Age = 3, Father = David]);

then Jessica and Frederick share the same person David as the value of the Father
field and the expression eq((!Jessica).Father, (!Frederic).Father) is true. An
update to the object David as

David := modify(!David, Age, (!David).Age + 1);

isreflected in the Father as seen from both Jessicaand Frederick, where modify(r, f,v)
is the operation that creates a new record form the record r by modifying the field f
with the value v. After the above statement, both (!((!Jessica).Father)).Age and
(' (('Frederick).Father)).Age are evaluated to 26.

By virtue of these properties references capture the central features of objects but they
also introduce strong explicit data dependencies among objects. In the above examples,
the objects Jessica and Frederick depend on the object David and are meaningless
unless David exists. Furthermore, it is possible to introduce new dependencies by creating
copies of the Father attribute of Frederick or Jessica. Additional complications arise
if we want to include functions (methods) within objects, since functions induce implicit
dependencies to objects through their variable binding mechanism. It should be clear
that in the context of large, shared and long lived data structures the control of such
dynamic dependencies becomes crucial, e.g. to support optimized data placement and
efficient garbage collection.

The challenge is now to introduce a mechanism to partition the space of objects
into suitably selected subspaces and to control the generation and propagation of cross-
references between these subspaces. For this purpose, we introduce the notion of reposito-
ries with a predefined dependency constraint. OQur primary intuition behind repositories



is that they correspond to partitions of a persistent store. Here, we simply assume that
they are abstract named entities. It is not hard to add persistence to our system by using
the techniques developed in persistent programming languages [?, 7] (reachability-based)
or in modular database programming languages [?, 7, ?] (statically declared).

We assume that there is a fixed set R of repository names (ranged over by R). We
require that references are bound at creation-time to a repository as in:

new(R,M)

where R is the repository name to which the reference is bound. This binding between
a reference and its repository is immutable, i.e. objects possess no mobility. To model
the intended constraint on the dependencies among repositories, we associate to each
repository R a set u(R) of repositories, called the reachability set of R. This is to impose
the constraint that if a reference in a repository R refers to a value containing other
references then they must be in some repositories in the reachability set p(R). This re-
striction on cross-references is deliberately chosen to be “shallow”, i.e. there is no explicit
restriction on the set of repositories that can be reached transitively via several refer-
ences. This decision is in the spirit of modular systems where every component should
only introduce local constraints on the overall system structure. With this mechanism
at hand, we are able to abstract from the multiplicity of dynamic reference creation and
propagation operations in a persistent system and to view the database at the granularity
of repositories and their reachability sets. Section ??7 will elaborate on the impact of this
kind of compile-time information on databases with a structured object store.

As a very simple example, suppose we have repositories Permanent and Temporary
with the reachability sets p(Permanent) = () and p(Temporary) = {Permanent}. This
imposes the constraint that references in the repository Temporary can refer to references
in Permanent as well as Temporary while references in Permanent can only refer to
references in Permanent. Then

helen = new(Permanent, [Name = "Helen", Age = 35]);

john = new(Temporary, [Name = "John", Age = 41]);

joe = new(Permanent, [Name = "Joe", Age = 29, Boss = helen]);
susan = new(Temporary, [Name = "Susan", Age = 18, Boss = helen]);

are all legal but
mary = new(Permanent, [Name = "Joe", Age = 29, Boss = john]);

violates the constraint and we expect the type system to detect the violation and to
reject this statement.

We integrate these operations for references in a typed functional language with
labeled records and lists as defined by the following syntax:

M= (¢:m) | x| de:7. M | M(M)
| [=M,...,I=M1 | M.l | modify(M,!,M)
| (nil:7) | insert(M,M) | head(M) | tail(M)
| new(R,M:7) | M:=M | 'M

where 7 stands for types which will be discussed in the next section. (c:7) stands for
typed constants, [[=M,...,[=M] is the syntax for labeled records as we have already



seen in the above examples. M.l is field selection from a record, modify(M;,l, M) is
field modification (or field update) as already explained. (nil:7) is the empty list of
type 7. head and tail are standard primitives for lists (coresponding, respectively, to
car and cdr in Lisp). The type specification in new(R, M :7) is needed to show the
soundness of the type system. Since 7 is always the same as the type of M, this can be
automatically inserted by the type system and can therefore be safely omitted.

With appropriate syntactic shorthand, this language can serve as a language to define
and manipulate objects. We write x1=M;; M5 as a shorthand for (Azi:7.Ms) (M)
where 7 1s the type of M; and write #1=M1;---;x,=M, as a shorthand for z,=M;;
(z2=Msy; (--+; zp=My)---). Under a call-by-value evaluation strategy, this provides a
mechanism for value bindings and sequential evaluation.

3 Typing Objects with Locality

In a conventional type system, a type represents the structure of a value and typecheck-
ing is the process of checking the consistency of operations with respect to the structures
of the values involved. Our goal is to extend such a conventional type system to include
repository information so that a type also captures the dependency of a value on reposi-
tories. The type system can thereby also check the consistency of reference creation and
manipulation with respect to reachability constraints among repositories. In this section
we will develop such a type system.

3.1 Types and Localities

An expression, in general, contains references through which it depends on a set of
repositories. We call this dependency the locality of an expression. Formally, a locality
7 is a set of repositories. The first step in defining the type system is to enrich the
language of types to include locality information. Since types in a static type system
must be static entities, i.e. they must be denotable at compile-time, we assume that the
set of repositories and their reachability sets are known at compile-time. This is certainly
a restriction as it prohibits a dynamic reconfiguration of repositories. The relaxation of
this restriction is a topic of future interest. We will take this point up later in section ?77.

It turns out that the only type constructors that require an explicit locality specifi-
cation are:

ref(w,7) the reference type constructor, and
™ .
T — T the function type constructor.

A value of a reference type ref(w,7) is a reference in one of the repositories of =.
7 specifies the type of the referenced value. Note that the repository information is
ambiguous unless 7 is a singleton set. As we shall see later, this ambiguity is viatal in
achieving a smooth mixture of lists (or more general collection types) and references.

The locality tag = in 71 — 7 means that a function may possibly manipulate refer-
ences in . To see the need of this explicit locality tag, consider the following functions.



f = Ax:ref({R},int).Ay:int.(!x) + y;
g = f(new(R,2))

F is a function that takes a reference x to an integer in a repository R and returns a
function that increments its argument y by the dereferenced value !x. The expression g,
therefore, is a function which takes an integer and returns an integer. In a conventional
type system it is given the type int— int. Although neither its domain type nor its
range type have a connection to any repository, g nevertheless depends on the repository
R through the static environment where the variable x is bound to a reference in R.
To completely capture the localities of values involving functions, we must record such

. Cq . . R .
dependencies within the type of an expression. Therefore, g has type int{—>}int in our

type system.

The meaning of the extra locality tag « in function types can also be illustrated by
looking at standard implementations of functional languages, where a run-time value of a
function type is a function closure containing an environment and it is this environment
that induces the dependency of the value to repositories.

With these refinements, the set of types is given by the following abstract syntax:
T ou=b|uwit | 757 | Uir,..,0:7] | {7} | ref(m,7)

unit is the trivial type whose only value is Void. b ranges over base types. [l:0,...,l:0]
stands for record types and {7} for set types.

Types in our system not only represent the structure of values but they also represent
their locality. The locality £(7) represented by the type 7 is defined inductively as follows:

o) = 0
0

)

) T
L(Thim,. sloim]) = (J{L(m)1<i<n}

) = L(7)

) = =
Note that the domain type and the range type of a function type do not induce any
dependency. The rule for reference types reflects our decision that the reachability con-
straint specified by the map p is shallow. The locality of the type ref(w,7) is always

@ irrespective of the locality of 7. If a deep restriction were preferred, then the required
rule would be:

L(ref(m,7)) = wUL(T)

3.2 Typing Rules

We are now in a position to define a proof system for typing judgements in such a way
that for any well-typed program (closed expression) P, a static typing judgement P : 7
implies the following three desirable properties of the (dynamic) evaluation of P.



1. The structure of the value produced by P conforms to the structural part of 7;
2. The locality of the value produced by P conforms to £(7);

3. The reference environment (the object store) does not violate the predefined reach-
ability constraint imposed by pu.

Since expressions in general contain free variables, a typing judgement is defined with
respect to a type assignment A which is a function from a finite subset of variables to
types. We write A{z — 7} for the function A’ such that dom(A") = dom(A) U {z},
A'(z) = 7, and A'(y) = A(y) if y # z. We write A > M : 7 if expression M has type 7
under type assignment A. In the rest of this section, we analyze each of the expression
constructors and define their typing rules.

(const) Ab(c:7): 71
(var) Apbz 1 if z € dom(A), A(z)=r

.A|>A41ZTJLT2 .A|>M2:Tl

(app) Ab M (M) :

AbM;:7m (1<i<n)

(record)  — T oTei, . e - Dhims o]
Ab M :n . . : . .
(dot) m if 71 is a record type with [: =
(modify) Ab>M :n A M, : if 71 is a record type with [ : m

A > modify (M, ,1, M) : 7

(empty) A > (@il: {r}) : {r}

AbM: {7}

(head) A > head(M) : 7
~ AbM: {r}

(tail) y AT TR

(deref) A > M ref(x,7)

Ap ‘M . 1

Figure 1: The remaining typing rules

We start with references. For reference creation new (R, M), we must ensure that
the locality of M satisfies the reachability constraint g(R). This is expressed in our type
system as £(7) C p(R) where 7 is the type of M. The desired typing rule for reference



creation is then given as:

A M1
A bnew(R,M:7) : ref({R},7)

it L(7) € (R)

(new)

For example, in the previous section, we considered the two repositories Permanent and
Temporary with the associated reachability sets y(Permanent) = () and u(Temporary) =
{Permanent} and created references named helen, john, joe and susan. All of them
are legal and the following typings are derivable:

helen: ref({Permanent}, [Name:string, Age:int])
john: ref({Temporary}, [Name:string, Age:int])
joe: ref({Permanent}, [Name:string, Age:int,
Boss:ref({Permanent}, [Name:string, Age:int])])
susan: ref({Temporary}, [Name:string, Age:int,
Boss:ref({Permanent}, [Name:string, Age:int])])

The reachability constraint among repositories is enforced by the side condition £(1) C
u(R) of the typing rule (new). In the case of susan, for example, the condition is

L([Name:string, Age:int,
Boss:ref ({Permanent}, [Name:string, Age:int])])
C p(Temporary) = {Permanent}

which is indeed true. The rule for dereferencing is standard (see Fig. 77). We will
consider the rule for assignment after considering the interaction between references and
lists.

The locality of each of the above reference types is a singleton set representing the
exact repository of the reference. More flexible or ambiguous reference types become
necessary when we want to achieve a smooth interaction between references and lists.
In order to make locality information as transparent as possible to those users who
do not make any use of it, we would like to allow lists which contain references of
different localities as long as their structure is the same. This conflicts with the (strictly
homogeneous) list type constructor. In order to typecheck statically the elimination
operation head, lists must be homogeneous while objects with different localities have
different types. We reconcile this conflict by weakening the locality information of the
element type of a list type. Remember that a value of the type ref(w,7) is a reference
in one of the repositories in 7. This ambiguity allows us to assign a type to a list
containing elements with different localities. For example, the list {helen, john} is
given the type {ref({Permanent, Temporary}, [Name:string, Age:int])}. A value
of this type is a list whose elements are references either in Permanent or Temporary.
This idea is generalized to arbitrary complex types by exploiting the following partial
ordering induced by the ambiguity of locality:

b < b
non < T{W—I>Té ifrf <, rCa
i, o Hlem] < [her,. 0Ll ifn<r (1<i<n)
{r} < {r'} ifrxr
ref(m,7) <« ref(a',7) ifnCa



Informally, 71 < 7 means that the locality information of any part of type 7 is at least
as precise as that of the corresponding part in 75. This ordering is used to define the
typing rule for list construction:

ABbM 7 A b M {r}

A b insert(M;, M) : {3} frg=mnuUm

(insert)

In the example of {helen, john}, which is shorthand for insert(helen, insert(john,
nil)), 7y =ref({Permanent}, [Name:string, Age:int]) and m» =ref({Temporary},
[Name:string, Age:int]) and therefore we have 7 U =ref ({Permanent, Temporary},
[Name:string, Age:int]) as desired. The other rules for list types are again standard.

The rule for assignment is also specified using the ordering on types induced by
ambiguous locality information.

A b M, ref(m,mn) Ab M m

A > My :=M, : unit ifry <

(assign)

The rationale behind this rule is that we can lose locality information in assigning a value
to a reference.

Another expression constructor that interacts with locality information is lambda
abstraction. To give the rule for lambda abstraction, we need to know the exact condition
for a lambda term Ax:7.M to have a function type 7 = 75 under a type assignment
A. As in any standard functional calculus, the domain type 7 should be the type of
the lambda variable and the range type 7 should be the type of the body M under the
type assignment obtained from A by extending A with the entry « : 7. What should
be asserted on the locality #7 It should reflect the locality of the run-time value that
corresponds to the lambda term. As noted earlier in section 77, = has to describe the
dependencies on repositories induced by the function environment that binds a set of
variables assumed in A to the actual parameters supplied through function applications.

We therefore define the locality 7 of the function type as the union {L(A(z))|z €
dom(A)}. In the following, we simply write £(.A) for the above union. The typing rule
for function abstraction is now defined as:

A{le —n} b M :n
(abs) (A
AbAxin. M 1 S 1

Typing rules for the other expression constructors are standard and are summarized
in Fig. 77.

4 Soundness of the Type System

In order for a static type system to be useful, it must be sound with respect to the
run-time computation of the language. Intuitively, the soundness states that the static
type information of an expression represents the actual properties of the value computed



at run-time from the expression. In our system, this implies that, as in a conventional
type system, a well-typed program will not produce a run time type error but it also
guarantees that a well-typed program will not produce a reference environment that
violates the predefined reachability constraint. In this section we will explain the method
used to establish the soundness of our system and sketch the proof.

One approach to show the soundness of a type system is to model run-time compu-
tation by a reduction relation and to show that typing judgements are preserved by the
reduction relation. We first define the set of canonical values that represent run-time
values of our language. For each repository name R, we assume that there is a countably
infinite set of reference atoms. We further assume that a reference atom in a given repos-
itory is identified by an integer. The use of integers is not essential. Any countable set
of atomic elements with a linear ordering can be used. We write r5(i) for the reference
atom in the repository R identified by the integer ¢. The set of canonical values (ranged
over by v) of the language is given by the following syntax:

v == (e:r) | fun(E,z, M) | [=v,...,l=v] | {v,...,v}
| r%(i) | except | wrong

where except is the value to denote a run-time exception (which is needed for par-
tially defined functions like head and tail), wrong represents a run-time type error and
fun(F,z,e) denotes function closures where E is a wvariable environment which maps a
finite set of variables to canonical values.

In order to represent mutable references, we define a repository environment (R-
environment) as a record [I = 7, S = f] where 7 is an integer and f is a function which
maps the set of integers {1,...,7— 1} to canonical values. This is to model the conients
of the repository R. The integer ¢ is used to maintain the “next available reference
index”. An R-environment & is a set of repository environments indexed by R, i.e. it is
a function on R such that £(R) is an R-environment. A run time value is then modeled
by a pair (£, v) of an R-environment (modeling the state of the partitioned object store)
and a canonical value (maintaining the progress of program execution). Following [?],
we present the operational semantics as a reduction system for such pairs under a value
environment F. We write ' F (£, M) = (&', v) if (£, M) is reduced to (£',v) under
E. Some of the reduction rules are shown in Fig. 77. The rules for other expressions are
similar to those found in [?].

A canonical value v is a value independent of any external environment. We can
define the locality £°(v) of a canonical value v as:

L(Ce:)) = 0
Lo(fun(E,z 7, M) = | J{L(E(x))|z € dom(E)}
Lo(Lh=vr,.. ., lh=v,] Jicealt <i < n}
Lo, v}) = (J{Ll <i<n}
L(rr(i) = {R}

L(except) = 0

)
)
)
)
)
)

In order to reason about the properties of the run-time evaluation we use the following



Er(£z)= (£,if z € dom(FE) then E(z) else wrong)
Er (& xx:7. M) = (&£, fun(E,z,M))

Et (&, M) = (&, fun(E' ,z : 7, M>))
F+ (52,]‘43) — (53,’U1)
E,{CL‘ — 'UJ} = (gg,ﬂffz) — (54,’1}2)
EF (&, Mi(M3)) = (€4, v2)

EF (&, M) = (£&,v)
EF (&,new(R,M : 1)) = (
E{R— (E2(R).I +1,(E2(R).S){&(R).I — v})}, rR(E(R).D))

EF (&1, M) = (&,75(i)) EF (&2, Mz) = (&, 0)
E |_ (51,]\’11 :=A'12) — (gg{R — (gg(R)I,gg(R)S{Z — ’U})},Void)

Figure 2: Some of the reduction rules

notation: We write = v : 7 for a typing of a canonical value v. A variable environment
F respects a type assignment A, denoted by £ = A, if dom(F) = dom(.A) and for all
z € dom(A), E E(z) : A(z). A reference environment & is a model of p, written &£ |= p,
if for all R € R and for for all r;(i) € dom(E(R).S), = E(R).S(i) : 7. The rules for

typings of canonical values are then given as:
E(e:m) 7
= rg(i) : ref(m,7) for all integer i and Re =
= except : 7 forall 7

Efun(FB,z,M) 1 5m if L¢(F) C m and
VoWl ifEv i 1, E mpand E{e — v} F (&, M) = (&',v")
then & = pand E o' @ m.

Ev:n
E[h=v1,.. 0=, Dhim,. . L lai7]

SR
E{vi,...,un} : {7}
Ev:mn

m if 71 <K€ m

It should be noted that the definitions for £°(v) and |= v : 7 are not syntactic but
reflect the actual computational properties of the value. Canonical values have in general



multiple typing but wrong has none.

We can then show the following theorem.

Theorem 1 (Soundness of the Type System) Let (4,05, 0 respectively be the empty
type assignment, the empty variable environment and the empty R-environment. For any
closed expression M, if 0o > M : 7 and Qg+ (0e, M) = (E,v) thenEEp, Ev @ T

This is proved by showing the following stronger property by induction on the structure
of expressions.

For any variable environment £, any R-environment £ and any typing A >
M :riftEEAEEpand EF (E,M) = (£,v) then & = p and
Ev:rT.

For details of this proof, the reader is referred to [?]. Since wrong has no typing, this
theorem implies the following

Corollary 1 For any closed expression M, if ba b M : 7 and Qg F (e, M) = (&, v)
then v # wrong.

Since it can be shown that if = v : 7 then £°(v) C L(7), the above theorem also implies
the following desired property on the locality of expressions.

Corollary 2 For any closed expression M, if ba b M : 7 and Qg F (e, M) = (£, v)
then L°(v) C L(7) and & respects the repository constraint u.

The difference between £ and £¢ should be noted. £(7) is a static property available at
compile-time. On the other hand, we have defined £°(v) based on the actual reference
structure contained in v so that it represents the actual locality of the value v. As such,
this information is not available at compile-time. The above corollary guarantees that
the locality of an expression represented by its type is always a correct estimate of the
actual locality of the result of the run-time computation and that a type correct pro-
gram will never produce a reference environment that violates the predefined reachability
constraint.

5 Towards a Type Inference System

The type system we have just described is based on the simply typed lambda calculus
and is too restricted to be a type system for a practical programming language. First,
it cannot represent generic code; and second it requires tedious and often obvious type
declarations. This restriction is particularly problematic in our system due to the need for
additional locality specifications which make programs even less generic and the required
type specifications more complicated. It is therefore essential to introduce polymorphism



and type inference into our type system. One way to achieve this is to extend the type
inference method developed for the polymorphic programming language ML [?, 7]. Here
we only give an informal description on how this extension can be introduced. A full
description of the system requires a certain amount of mathematical development and is
beyond the scope of this paper.

In ML, program code does not carry type specifications. The distinguishing feature
of ML’s type system is that for any type consistent raw ezpression (i.e an expression
without type specifications) it infers a principal type scheme containing type variables.
This is a type scheme such that all ground instances obtained from it by substituting
type variables with some type terms are types of the expression, and conversely, any
type of the expression is such a ground instance. For example, for the raw expression
Ax.x (the identity function), ML infers the principal type scheme >a—’a where ’a is a
type variable. The (infinite) set of types obtainable form this scheme by substituting ’a
with some type is exactly the set of derivable types for the above raw expression, and
therefore, the raw expression can be used as a program of any type of the form 7 — .
By this mechanism, ML achieves polymorphism and relieves the programmer of making
complicated type assertions.

In order to apply this idea to our system, we need to extend ML’s type inference
system in three ways. The first one is to introduce variables for localities. The necessity
of this extension is seen by considering the raw expression Ax. 'x. According to our typing
rules, it is easily seen that this raw expression has types of the form ref (7 ,7) =2 7 for
any locality 71 and any type 7. (The locality 3 is determined by the type assignment.)
A type scheme that represents those types would therefore look like ref(’r,’a) — ’a
where ’r is a locality variable representing arbitrary localities. This extension can be
done by introducing sorts in the language of type schemes, as it was done in [?].

Another and more difficult extension is needed to represent various constraints asso-
ciated with some of the typing rules in our type system. For example, the rule (new)
for reference creation is specified with a constraint of the form £(7) C p(R) saying that
the locality of the argument type must be smaller than the predefined reachability set
of the repository. The rules for M .l (field extraction), modify, M; := M5 and insert
are also specified with constraints which cannot be represented by conventional type
schemes. To give the exact typing schemes to raw expressions that involve those expres-
sion constructors, we must invent a syntactic mechanism to represent those constraints.
One approach is to refine the notion of typing schemes to conditional typing schemes
[?]. This is a typing scheme associated with a set of syntactic conditions that control the
instantiation of type variables. As an example, a most general typing scheme for the raw
expression Ax.new(R,x) is the following syntactic formula

’a — ref(R,’a) where{ subset(locality(’a),u(R)) }

subset (locality(’a),u(R)) in the where clause is a syntactic condition on the sub-
stitution of the type variable ’a. A ground substitution 6 satisfies this condition if
L(6(’a)) C u(R). A substitution # can be applied to the above typing scheme only if
it satisfies the condition. Under this definition the above formula represents the precise
set of types of the above raw expression. Other constraints can also be handled by intro-
ducing appropriate syntactic conditions. We can then apply the method developed in [?]
to combine these conditions and the basic type inference methods to achieve a complete



type inference system for the type system described in this paper.

In order to obtain the full power of ML-style polymorphism, we must combine the
type inference system for our base language with the polymorphic let constructor of the
formlet 2 = M in N end. This construct allows different occurrences of the variable
xz in N to be instantiated with different type variable substitutions and it is the only
source of ML polymorphism. The necessary extension to include this construct is well
understood for ML [?]. (See also [?] for various formal properties of the type system of
[?].) However, it is known [?, ?] that the typing rule for let as defined in [?] does not
agree with the operational semantics for references and a naive mixture of references and

the polymorphic let results in an unsound type system. The following example is given
in [?]:

let

f = new(Ax.x)
in (f:=(Ax.x + x), ('f)(true))
end

If the type system treats the primitive new as an ordinary expression constructor then it
would infer the type bool for the above expression but the expression causes a run-time
type error if the evaluation of a pair is left-to-right. In [?, 7], solutions were proposed.
They differ in details of the technical treatment but are both based on the idea that the
type system prohibits reference values from having a polymorphic type. Either of these
solutions can be adopted by our system.

The resulting type system is particularly useful for controlling locality. It not only en-
forces a predefined reachability constraint but it also infers the exact locality information
for arbitrary complex data structures.

6 Exploiting Object Locality

At first glance, the introduction of locality information in database systems seems to
merely complicate the tasks of programmers and users: They lose the illusion of a uniform
(persistent) store and have to be aware of the repository structure and the restrictions
imposed by reachability constraints.* However, since we regard operational support for
large scale data structures with persistence, access optimization, access control, garbage
collection, concurrency control and recovery as an essential property of data-intensive
applications, language mechanisms for locality control seem to be required.

Specifically, we envisage the exploitation of repositories and object locality
e to express organizational and logical clusterings of objects via repositories with
suitably selected dependency sets;

e to associate non-functional attributes with repositories (e.g., physical placement on

*Note that a partitioned object store with the trivial reachability constraint u(R) = R forall R € R
would re-establish this illusion.



devices and network nodes, persistence mechanisms, access rights and ownerships,
concurrency control and recovery policies, object faulting strategies);

e to equip module interfaces with locality specifications constraining the utilization
of exported references;

e to support the removal and the modification of entire repositories by explicit infor-
mation about dependent repositories;

e to improve the performance of “global” object store operations (e.g., garbage col-
lection, address translation, backup, recovery) by exploiting the locality within
individual repositories.

Another interesting property of our type system is the fact that a non-empty locality
tag 7 in a function type specification 7 = 75 indicates that the evaluation of a function
of this type depends on side effects in repositories «, an information that is particularly
valuable for query optimizers in database systems [?].

The generalization of type inference techniques to incorporate object locality, as out-
lined in section 77, will allow a smooth coexistence of “querying” users unaware of reach-
ability constraints and programmers making heavy use of locality information to develop
modular application code amenable to system evolution and performance optimization.

7 Summary and Further Investigations

We have discussed the problems arising in partitioned object stores supporting object
identity and developed a type system to formalize and control dependencies between
complex objects. The framework of our study was a typed functional programming
language enriched with essential features of object-oriented systems like records, (higher-
order) functions and references. We developed a static type system where the locality of
an expression (i.e. its dependency on repositories) is represented as part of its type and
reachability constraints among repositories are enforced by a static typing discipline.

This work on object locality is a first step towards capturing non-structural properties
of values in a type system. Therefore, many interesting theoretical and practical issues
remain to be investigated. We sketch some of them in the remainder of this paper.

In a static type system it is only possible to capture an approximation of the actual
locality of a run-time value. In some cases, the estimate might be too coarse to be
practical. One cause of this is due to function closures. To obtain a sound type system,
we defined in section 7?7 the locality of a function closure as the possible locality of
the entire environment in the closure, which might contain many references that will
never be used by the function. One possible refinement is to consider only the set of free
variables in the body of a function definition.

In our system a reference is always mutable in any context. In practice, however,
object identifiers would be treated in a somewhat more controlled manner. For example,
one may not be allowed to change objects in a certain context. In such cases, we may want



to distinguish the strength of the dependencies induced by different kinds of references.
One possible approach would be to separate object identification from mutability and to
introduce mutable and immutable reference types.

By exploiting an ordering based on the ambiguity of locality information, we achieved
a degree of flexibility in constructing lists of values of different localities. However, the
current system is still very restricted in that it does not allow the mixing of references
whose referred values have different localities. For example, suppose we have the following
objects

helen = new(Permanent, [Name = "Helen", Age = 35]);
john = new(Temporary, [Name = "John", Age = 41]1]);
susan = new(Temporary, [Name = "Susan", Age = 18, Boss = helen]);

mary = new(Temporary, [Name = "Mary", Age = 18, Boss = john]);

then the list {helen, john} is legal but {susan, mary} is illegal. This restriction is
needed to maintain the soundness of the type system. However, if these references are
immutable then this restriction becomes unnecessary. This example provides another
incentive to study immutable reference types.

Another natural extension is to include recursive types which are essential to represent
cyclic structures. One approach is to follow [?, 7] and to use regular trees [?] to represent
recursive types.

Throughout this paper we assumed that the set R of repositories and their reachability
constraint p are fixed and known to the compiler. One extension that seems to be useful
for maintaining long-lived data is to allow elements of R to be treated as values in some
context. To achieve this extension without sacrificing a static type system constitutes a
challenge. Useful techniques for this extension might be derived from the typing discipline
for modules [?] and the level distinction in a type system [?].

A final extension related to the type inference method we have described in section 77
is not to assume a predefined reachability constraint u but to infer a minimal (or principal)
[t a given expression satisfies.
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