
Lessons Learned in Aligning Data and Model Evolution in
Collaborative Information Systems

Thomas Reschenhofer
Technical University of Munich (TUM)

Munich, Germany
reschenh@in.tum.de

Manoj Bhat
Technical University of Munich (TUM)

Munich, Germany
manoj.mahabaleshwar@tum.de

Adrian Hernandez-Mendez
Technical University of Munich (TUM)

Munich, Germany
adrian.hernandez@tum.de

Florian Matthes
Technical University of Munich (TUM)

Munich, Germany
matthes@in.tum.de

ABSTRACT
Today’s enterprises have to align their information systems
continuously with their dynamic business and IT environ-
ment. Collaborative information systems address this chal-
lenge by involving diverse users in managing the applica-
tion’s data as well as its conceptual model. In this sense,
both the data and the model co-evolve. There are different
approaches for aligning data and model evolution, wherein
either the data is aligned to the model, or vice versa.

In this work, we present a hybrid approach supporting
both strategies and elaborate on our experiences of apply-
ing the approach in projects for over five years. Thereby,
we discuss challenges and issues faced in those projects, and
how we addressed them by redesigning and reimplement-
ing the approach. We formulate those issues and respective
solutions as lessons learned, which not only hold for the con-
crete system which was applied in those projects, but which
should guide the design and implementation of all software
systems supporting the co-evolution of data and model.

Keywords
Lessons learned, best practices, model evolution, data evo-
lution, collaborative information systems, semantic wiki

1. INTRODUCTION
The demand and requirements for information systems are

changing continuously due to an increasingly turbulent busi-
ness environment, technology innovations, and legal regula-
tions [1]. Adaptive information systems enable enterprises to
adapt their software systems to meet the demands of such
a dynamic business and IT environment. This enables an
enterprise to focus on its business and to quickly setup and
update its information systems without investing too much

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889235

time and effort (and thus money) on the technology that
supports its business [25, 36, 29].

One aspect of an information systems that is subject to
frequent changes is its conceptual model—also referred to as
the user-model [22]. The reasons for the user-model changes
are manifold, and range from the correction of mistakes to
the adaption to new laws and regulations. If the informa-
tion system is not able to adapt to the changing environ-
ment, the quality of the system’s support for its business
will decrease over time [35]. Therefore, meta-model based
information systems that allow users to dynamically update
and evolve their user-models in order to meet the demands of
the changing business needs are becoming popular. In a col-
laborative environment, this approach implies at least two
different co-existing user roles for managing the user-model
and its application data [34, 37], namely model designers
who are responsible for user-model changes, and end-users
or data owners performing data changes.

The traditional top-down approach to model evolution
where user-models evolve and the existing data is migrated
to its newer model version has been documented exten-
sively [3, 23, 28, 32]. On the other hand, the popularity of
agile methodologies in software engineering and the advent
of big data suggests a bottom-up approach where the data is
captured first and then the models are extracted or refined
based on the data. The bottom-up approach to modeling
not only supports quick prototyping and iterative modeling
but also allows end-users to capture the data without being
restricted by the pre-defined user-model [20]. Subsequently,
model designers are notified regarding the availability of new
structures or patterns in the data that needs to be consid-
ered in the user-model so that it can be adapted according to
the evolving data. We refer to such a collaborative approach
as the co-evolution of the user-model and its data.

Achieving such a collaborative environment that supports
the evolution of both the user-model and its data in a coher-
ent and consistent manner is a non-trivial task. Matthes et
al. [20] tackle this challenge with the so-called Hybrid Wiki
approach (c.f. Section 2.2). Thereby, the application data is
initially represented by the unstructured wiki pages which
can be structured incrementally and collaboratively by at-
taching types, attributes, and integrity rules. At the same
time, model designers can define and adapt the user-model
which imposes certain constraints on the underlying wiki
pages and thus induces a schema on the application data.

However, the application of a collaborative information
system (CIS) implementing the Hybrid Wiki approach in a
variety of use-cases and domains—e.g., Enterprise Architec-
ture Management [19, 5] and Collaborative Product Devel-
opment [29, 12]—revealed a couple of challenges and issues
which are not only related to the Hybrid Wiki approach
in particular, but to collaborative approaches for the co-
evolution of user-models and data in general. In this paper
we discuss our experiences of applying the Hybrid Wiki ap-
proach in industrial and research projects, and the conse-
quences for the redesign of this approach. In this sense, we
answer the following research questions:

1. What are the challenges in collaborative approaches
for managing the co-evolution of the user-model and
its corresponding data?

2. How can a CIS address those challenges?

This work can be understood as iterations in the Design
Science approach as defined by Hevner et al. [14]. Thereby,
the Hybrid Wiki approach as the corresponding design ar-
tifact was evaluated by its application in multiple use-cases
and subsequently redesigned according to the respective find-
ings. In this context, those findings refer to issues faced in
the use-cases as well as solutions and suggestions addressing
those issues. Therefore, the main contribution of this paper
and thus the additions to the knowledge base in the area
of collaborative and model-based information management
are the lessons learned [27] in multiple applications of a CIS
supporting the alignment of data and model evolution.

Based on the applied research methodology, the remain-
der of this paper is organized as follows: Section 2 presents
the concepts forming the foundations for the main contribu-
tion of this paper, which includes a detailed description of
the Hybrid Wiki approach. Thereafter, Section 3 summa-
rizes the cases of applications of the CIS and thus the re-
sults of the evaluation as part of a Design Science iteration.
Section 4 details a list of lessons learned originating from
the aforementioned applications. Thereby, these lessons not
only describe the challenges but also suggest how a CIS
can address them. Therefore, this section provides answers
to the aforementioned research questions. While Section 5
gives an overview of the related work, Section 6 concludes
the present work and suggests future research possibilities.

2. FOUNDATIONS
In this section, we will first discuss the top-down and

bottom-up approach to modeling and set the context of the
evolution of the user-model and its data. We then present
the Hybrid Wiki approach that supports the evolution of
both the model and its data in a collaborative environment.

2.1 Evolution of Model and Data in Collabo-
rative Information Systems

As discussed in Section 1, a CIS that supports the col-
laborative evolution of the user-model and its data provides
appropriate constructs for two different user roles, namely
model designers and data owners. The former captures the
user-model which forms the core of that system, while the
latter is responsible for capturing instances of the concepts
in the user-model, their attributes, and their relationships.

2.1.1 Top-down Approach to Modeling (Model-first)
In the first iteration of the model-first approach, the model

designer defines the user-model based on the requirements.
Using this user-model, system developers realize the model
by implementing concepts, relationships, and their constraints.
Alternatively, system developers generate the code semi-
automatically for the system using the Model-Driven De-
velopment approach [2]. Finally, the implemented system is
deployed and made available to the data owners to capture
the data that is consistent with the predefined model. This
process results in context-dependent systems which require
updating the system at code-level to accommodate changes
in the user-model [22]. Furthermore, it also requires appro-
priate data transformation mechanisms to migrate the ex-
isting data so that it complies with the updated user-model.

The existing approaches that focus on automatic data
transformation are restrictive in the sense that they ensure
the consistency of the existing data with the updated model.
For instance, to ensure a restrictive multiplicity relationship
(one-to-many relationship is updated to exactly one rela-
tionship) a predefined rule such as ”delete all relationships
except the first one” is executed to ensure that the existing
data is consistent with the new model. Defining such rules
when evolving user-models can result in information loss in
the CIS. A similar analogy referred to as ”schema on write”
can be found in data warehousing systems where the schema
is defined in databases, and the extract, transform, and load
approach ensures that the data is transformed to comply to
the schema before it is persisted [9].

To summarize, the model-first approach (a) structures the
problem domain using concepts and relationships, (b) pro-
vides a consistent view over the data, and (c) restricts users
from adding inconsistent data that does not confirm to the
defined user-model.

2.1.2 Bottom-up Approach to Modeling (Data-first)
One of the requirements of CIS is their interoperability

with other systems. They should support the collection of
voluminous and high velocity data (big data) from differ-
ent sources. This becomes a challenge in the traditional
model-first approach as transformation engines need to be
implemented to ensure that the incoming data fits the pre-
defined user-model. Referring back to the analogy of data
warehousing systems, this problem is addressed by collect-
ing all the incoming data streams (”schema on read”) and
then providing the flexibility for applications to decide what
information they need and in which format [9].

Furthermore, typically in green-field projects that follow
an agile development approach, the requirements become
clear after multiple iterations of software development phases.
In model-based information systems, new requirements typi-
cally involve improvements of the user-model as data owners
are unable to capture the data using the existing user-model.
The data-first approach provides the flexibility to data own-
ers to capture their demands for instance by adding a custom
attribute to an entity. On receiving notifications regarding
the same, the model designer can decide if to incorporate
them as part of the user-model or not, i.e., if the newly added
attribute is generic enough then a corresponding property
can be created for the relevant concept.

The benefits of the data-first approach are that it (a) pro-
vides the flexibility to data owners to contribute to the user-
model definition, (b) reduces the number of hand-shakes re-

quired in the process of a user-model update, and (c) facili-
tates the integration of data from multiple data sources.

However, implementing only the data-first approach could
also be disastrous in information systems, as the system
would not support the much-required benefits of the model-
first approach. Thus, conscious trade-offs must be made
while developing a CIS that supports both the model- and
data-first approaches.

2.2 The Hybrid Wiki Approach
The goal of the Hybrid Wiki approach is to empower non-

expert users to collaboratively gather and consolidate infor-
mation in a knowledge-based information system [20]. It
tries to reduce the complexities involved in using seman-
tic wikis and their corresponding technologies including the
markup language and the query language. The term ”hy-
brid” refers to wiki pages which integrate a subset of seman-
tic wiki features into classical wiki software.

The core concepts attribute and type tag in the Hybrid
Wiki meta-model as shown in Figure 1 allow users to capture
the knowledge in a semi-structured wiki page. An attribute
is a key-value pair associated with a wiki page. The attribute
has a name and potentially multiple values of different types,
e.g., strings or links to other wiki pages. A data owner
can create an attribute at run-time to capture structured
information about a wiki page. A type tag allows users
to refer to a collection of similar pages, e.g., organizations,
projects, etc. A data owner can associate multiple type tags
with a wiki page. These concepts structure the data in a
wiki page and capture the data in a data-first manner as
discussed in Section 2.1.2.

Furthermore, the concepts type tag definition, attribute
definition, and validator specify constraints on the data.
The type tag definition and attribute definition are loosely
coupled with type tags and attributes respectively through
their name. The type tag definition consists of multiple at-
tribute definitions which in turn contain multiple validators
such as multiplicity validator, string value validator, and link
value validator. A wiki page associated with a type tag def-
inition through a type tag may therefore contain attributes
corresponding to attribute definitions. Furthermore, an at-
tribute and its values can be associated with validators for
maintaining integrity constraints. These mappings, which
are also indicated in Figure 1 with the dotted lines, en-
able model designers to specify soft constraints on the wiki
pages and its attributes. The model designer defines the
user-model using type tag definition, attribute definition,
and validators, and urges the data owners to capture data
corresponding to the user-model. This corresponds to the
model-first approach as discussed in Section 2.1.1. However,
it should be noted that in the Hybrid Wiki approach data
owners are not restrained by strict integrity constraints while
capturing information in wiki pages and their attributes, i.e.,
a value violating integrity constraints as defined in the user-
model can still be stored in the CIS [20].

Let us consider the implementation of an exemplary use-
case of a Publication Management System (PMS) for man-
aging publications in a conference using the Hybrid Wiki
approach. Initially, concepts such as conference and pub-
lication are not yet defined as type tag definitions. The
data owners responsible for capturing the publications in a
conference start to document the knowledge in wiki pages.
As the number of publications increases over time, patterns

Figure 1: The Hybrid Wiki meta-model [20]

Figure 2: An exemplary user-model of a PMS

in the attributes of the wiki pages representing publication
emerge over time, e.g., title, abstract, and authors. Based on
those patterns, the model designer creates a corresponding
type tag definition Publication, which is defined through its
attribute definitions along with cardinality constraints (c.f.,
Figure 2). The wiki pages annotated with the Publication
type tag that do not conform to the soft integrity constraints
are highlighted in a table so that they can be harmonized by
data owners. Consequently, when creating a new wiki page
of type Publication, the data owner is notified to provide its
associated attributes. If a required attribute is not available,
new attributes can be created for wiki pages, and the pro-
cess is reiterated. This end-to-end example illustrates how
the Hybrid Wiki approach supports the co-evolution of the
user-model and its data in a collaborative way.

3. APPLICATIONS OF HYBRID WIKIS
In this section we present our experiences in applying the

Hybrid Wiki approach in several industrial and research
projects. We classify these projects into Enterprise Ar-
chitecture Management (EAM), Collaborative Product De-
velopment (CPD), and Collaborative Content Management
(CCM) and present a few selected facts for each category.

3.1 Enterprise Architecture Management
The so-called Wiki4EAM community was started in 2010

by researchers at the Technical University of Munich (TUM)
in collaboration with 25 large German enterprises to ap-
ply a lightweight approach to EAM using the Hybrid Wiki
approach [19]. The successful projects discussed in [5, 18,
20, 33] were conducted as part of the Wiki4EAM initia-
tive to document the current state of the EA by considering
viewpoints of different stakeholders in the enterprises. The

Hybrid Wiki approach supported the stakeholders in doc-
umenting specific parts of the EA to form a holistic view
of the enterprise. The outcomes from the related projects
indicated the following positive aspects of using the Hybrid
Wiki approach for documenting the EA:

• Stakeholders are empowered to collaboratively revel
their information demand.

• Through the collaborative documentation of the EA
model in Hybrid Wikis, the EA model emerges bottom-
up in a very short period of time.

• Documentation is created in the early stages of an EA
initiative.

• Scenarios in which the target model is not completely
known are supported.

• The evolution of EA models with changing information
demands at run-time is facilitated.

Some of the challenges as indicated by the collaborating
industry partners include:

• A lack of strict integrity constraints results in limited
querying capabilities.

• The modeling capabilities in the Hybrid Wiki approach
are restricted. For example, it does not support the
explicit definition of type-subtype relationships.

3.2 Collaborative Product Development
The application of the Hybrid Wiki approach in a co-

operative new product development (NPD) project (named
SmartNets) enabled collaborating networks of small and me-
dium enterprises (SMEs) to develop new products, processes,
and services [12, 17, 29]. This research project was funded by
the European commission and started in April 2011 involv-
ing 15 companies from different European countries. The
SmartNets project not only used the Hybrid Wiki system
for knowledge management but also for defining a collabo-
ration model for the involved SMEs to develop knowledge-
intensive products. The SmartNets collaboration model was
first modeled using the Hybrid Wiki approach in a top-
down manner. The partners in the industrial network of
the project documented their development activities there-
after. The artifacts of the collaboration model include devel-
opment project, development phase, activity type, task, meet-
ing and results which are modeled as type tag definitions in
the Hybrid Wiki system (c.f. [12]). The data owners capture
these project-specific artifacts as instances of the collabora-
tion model enabling a visual representation of the progress
of the project within specific visualizations and dashboards.
For example, the so-called SmartNets Navigator [17, 30] pro-
vides recommendations and support functions for project
partners, e.g., which activity should be performed in a spe-
cific development phase, what is the relevance of an activity
to the current state of the project, and which experts could
help when performing a specific activity.

The application of the Hybrid Wiki approach in the Smart-
Nets project helped to improve the system both from the
point of functionality as well as from the UI perspective
as discussed in Section 4. While defining the collaboration
model during the early phase of the SmartNets project, it
was possible to adapt and update the collaboration model

to meet the needs of all the collaborating network partners.
Furthermore, the off-the-shelf features of the Hybrid Wiki
system such as the users and group management, notifica-
tion of events, version management, and document manage-
ment enabled the SmartNets project initiative to quickly set
up the required IT infrastructure and to focus on the project.

3.3 Collaborative Content Management
The Hybrid wiki approach has been extensively used for

managing the content of organizations in various contexts,
including product management [12], intranets1, issue man-
agement [19], and social event management2. In all these
projects the top-down approach was applied where an ini-
tial user-model was implemented based on the initial set of
requirements from the customers. It should be noted that in
these projects the target model could only be partially de-
rived from the initial set of requirements. However, domain
experts were able to adapt the user-model of the domain
accordingly. Furthermore, there was a clear separation be-
tween the roles of model designers and data owners. The end
users of the above projects are the data owners who focus
on gathering and analyzing the information. The positive
feedback from them include:

• The initial requirements are quickly implemented and
the prototype is available for testing and for improving
the requirements.

• Change requests related to the user-model are easily
incorporated.

• Features including alerts, e-mail notifications, version
control, and user management are readily available
out-of-the-box.

• The spreadsheet-like UI to capture records of instances
of a specific type is user-friendly. Non-technical end
users do not require extensive training.

The critical feedback indicating the need for improvement
in the Hybrid Wiki approach includes:

• Time and effort is required for customizing the system
to meet the UI requirements for individual customers.

• Separate views for model designers and data owners
are required, wherein the views for data owners should
be simple and intuitive.

4. LESSONS LEARNED IN ALIGNING DATA
AND MODEL EVOLUTION

Patton [27] defines lessons learned as the knowledge which
is derived from the screening of a situation and which can be
applied in similar situations in the future. He also defines
the criteria for generating high-quality lessons and formu-
lates them as questions, whose answers in the context of
this paper are described in Table 1.

We distinguish between two types of lessons learned, namely
lessons about (a) how the model of the Hybrid Wiki ap-
proach is adapted and (b) how the Hybrid Wiki system is
presented to the users. In the subsequent subsections we
relate each of the lessons learned to the concrete use-cases
and applications of the Hybrid Wiki approach as discussed
in Section 3.
1intranet.in.tum.de, wwwmatthes.in.tum.de
2informatik-studieren.de

What is meant by a ”lesson”? An issue we faced in one of the applications of the Hybrid Wiki
approach as described in Section 3.

What is meant by ”learned”? Discussion of identified issues and redesign as well as reimplementa-
tion of the Hybrid Wiki approach.

By whom were the lessons learned? By participants of regular workshops for discussing the application
of the Hybrid Wiki system in the respective domain [19], or by a spe-
cific user role which is directly involved in the Hybrid Wiki system’s
application, e.g., the facilitator in CPD [29].

What’s the evidence supporting each lesson? Multiple applications of the Hybrid Wiki approach in different do-
mains with a variety of users in a time-span of more than five years.

What’s the evidence the lessons were learned? Redesign and reimplementation of the Hybrid Wiki approach as well
as its successful application in new research and industry projects.

What are the contextual boundaries around the
lessons?

The lessons apply to model-based collaborative information systems
supporting both the data-first and the model-first approaches.

Are the lessons specific, substantive, and meaning-
ful enough to guide practice in some concrete way?

The lessons are mapped to concrete conceptual and technical adap-
tions of the Hybrid Wiki system.

Who else is likely to care about these lessons? Every researcher or practitioner designing or developing a CIS sup-
porting the co-evolution of data and model.

What evidence will they want to see? Section 3 gives an overview over research and industrial projects
where the Hybrid Wiki approach was applied.

How do these lessons connect with other lessons? The lessons described in the following are mostly connected to each
other. Additionally, Section 5 discusses related research approaches
and their similarities and differences compared to the lessons learned
as presented in the current work.

Table 1: Questions for generating high-quality lessons learned by Patton [27], and their answers regarding
the lessons learned as presented in the current work.

4.1 Concept-related Lessons Learned
In this section, we present the changes made to the initial

Hybrid Wiki meta-model. Those changes are founded on
the goal of simplifying the adoption process in industry.

4.1.1 Change in Terminology
The Hybrid Wiki approach was motivated in the context

of Enterprise 2.0 [21] as an extension to the concept of wikis
for lightweight collaborative knowledge management. Con-
sequently, the starting point for defining the terminology
of the Hybrid Wiki meta-model are wikis and wiki pages.
However, these terms already refer to a certain form of rep-
resentation and content creation.

As previously discussed in Section 3, the Hybrid Wiki
approach was not only applied as a means for traditional
knowledge management but also as an user-driven and model-
based repository, e.g., for capturing architecture elements in
an EAM project or tasks and processes in a CPD project.
Consequently, the stakeholders in the respective cases re-
fer to their information objects as Entities instead of wiki
pages, and Workspaces instead of wikis. Furthermore, it
turned out that the model designers rather used the term
EntityType instead of TypeTagDefinition. Therefore, in or-
der to foster the adoption of the Hybrid Wiki approach in
the future projects, we applied those implicitly proposed ter-
minology changes to the Hybrid Wiki meta-model.

Figure 3 shows the adapted Hybrid Wiki meta-model.
The concept of workspaces is a means for clustering and sep-
arating user-models—defined by entity types and attribute
definitions—with their data—constituted by entities and at-
tributes. This means that each entity type and each entity
is contained in one specific workspace. However, the Hy-

Figure 3: The updated version of the Hybrid Wiki
meta-model.

brid Wiki approach also allows cross-workspaces relations
between entities. The semantics of the concepts of the Hy-
brid Wiki meta-model in Figure 3 are still the same as for
the respective counterparts of the initial meta-model as de-
scribed in Section 2.2. Further changes of the meta-model’s
terminology are discussed in Section 4.1.5.

4.1.2 Redesign of Relation from Entity to Entity Type
In the earlier version of the Hybrid Wiki meta-model,

a wiki page could belong to multiple type tag definitions
through the concept of type tags. This allowed users to re-

late a wiki page to more than one type tag definition. Fur-
thermore, model designers were able to create generalization
relationships among type tag definitions. Even though these
features were successfully applied in collaborative content
management projects, stakeholders in the domains of EAM
and CPD reported that this increased the complexity of the
solution. Furthermore, and as also discussed by Matthes et
al. [20], one of the challenges of using generalization is to
manually ensure that each page with a specific type tag is
also assigned to the more general type tag.

To ensure that the Hybrid Wiki system is intuitive and
self-explanatory from an end-user’s perspective and man-
ageable from a model designer’s perspective, we decided to
reduce the complexity of the Hybrid Wiki meta-model by
simplifying the coupling between entities and entity types.
In the Hybrid Wiki meta-model, an entity can be associated
with only one type. The dotted lines between concepts in
the Hybrid Wiki meta-model as shown in Figure 3 indicate
a loose coupling between the respective concepts, i.e., they
are related based on the equality of their type and name
properties respectively. For example, an entity is associ-
ated with a type whose name is equal to the entity’s type
property. Therefore, by removing the concept of type tags,
entities and entity types are now directly connected to each
other. Analogous to this, an attribute is associated with an
attribute definition of the respective entity’s type through
their name. Keeping in mind that the Hybrid Wiki approach
supports both the model-first and data first-approach, data
owners can still create entities without a predefined entity
type. Similarly, data owners can also create attributes that
are not associated with a corresponding attribute definition.

4.1.3 Free Attributes
Irrespective of the application domain, the ability to un-

fold the user-model of its application domain through the
involvement of end-users for capturing knowledge is one of
the most appreciated features of the Hybrid Wiki approach.
In the initial version of the Hybrid Wiki system, the cre-
ation and management of wiki pages was supported by at-
tribute suggestions from the system, which were generated
based on explicitly defined attribute definitions. For exam-
ple, if a type tag definition contains an attribute definition,
wiki pages having a corresponding type tag are assumed to
have a respective attribute. Furthermore, the similarity of
wiki pages was used for generating suggestions for attributes.
This means that a wiki page is likely to have the same at-
tributes as similar ones. In this context, similarity between
wiki pages is determined through their type tags, i.e., the
more type tags they share, the more similar they are.

In the updated version of the Hybrid Wiki meta-model,
the reduction of the complexity of the relationship between
entities and entity types by discarding the type tag concept
results in a rapprochement of the user-model and its data,
i.e., from a conceptual perspective, the relationship between
entities and entity types is more direct, since there is no
intermediary concept type tag anymore. The same is true
for attributes and corresponding attribute definitions. As a
consequence, this emphasizes the distinction between those
attributes which have a corresponding attribute definition,
and those which do not. With respect to this distinction,
the notion of free attributes referring to attributes without
corresponding attribute definitions established itself in dis-
cussions with users of the Hybrid Wiki system.

4.1.4 Inverse Role Names
A main feature of the Hybrid Wiki approach is the dis-

coverability of semantic relations between entities through
inverse links, i.e., each entity knows which entities are refer-
ring to it. For example, in the PMS example in Section 3,
there is a relation conference from entity type Publication
to Conference, i.e., each publication refers to the conference
in which it was published. At the same time, the Hybrid
Wiki system generates an inverse relation following a simple
naming pattern, namely “{role name} of”. For the PMS ex-
ample, the inverse relation from conferences to publications
would be named conference of.

However, as observed in many projects of different do-
mains (c.f., Section 3), this name generation pattern does
not always produce meaningful names, in particular if users
are using verbs for role names instead of nouns, e.g., “pub-
lished in” instead of“conference” in the PMS example, which
would result in “published in of”. Furthermore, using a lan-
guage other than English for the definition of the user-model
also yields to undesirable names for inverse roles. In order to
address this issue, we extended the Hybrid Wiki meta-model
and in particular the attribute definitions concept with the
property Inverse Role Name enabling model designers to
take control of the naming of inverse roles.

4.1.5 Extension of Constraints and Validators
The initial Hybrid Wiki meta-model supported two types

of attribute values: TextValues and LinkValues. Thereby,
end-users were able to attach either textual information to
wiki pages, or to relate them with other wiki pages through
links. At the same time, model designers could refine at-
tribute definitions by creating MultiplicityValidators and Type-
Validators. The multiplicty validators constraint the num-
ber of values for the respective attributes (e.g., “exactly one
value”, or“at least one value”), whereas type validators spec-
ify the set of valid types for corresponding attributes. Ini-
tially the Hybrid Wiki meta-model only supported type val-
idators for links, texts, and enumerations. The enumeration
validator enforces specific TextValues for corresponding at-
tributes, while the type validator can be further refined to
make sure that corresponding attributes only refer to wiki
pages with a certain type tag. Referring again to the PMS
example in Figure 2, a model designer could define an at-
tribute definition conference for the type definition Publi-
cation. Thereby, multiplicity and type validators can be
specified to ensure that each publication must have exactly
one LinkValue to a wiki page with the type tag Conference.

However, the application of the Hybrid Wiki system in dif-
ferent domains—particularly in EAM—revealed that more
attribute types are required, e.g., Number, Date, and Boolean.
Therefore, we extended the Hybrid Wiki meta-model by
respective specializations of AttributeValues, e.g., Number-
Value, DateValue, and BooleanValue. At the same time,
the concept of Validators was redesigned. In the updated
Hybrid Wiki meta-model, attribute definitions have a prop-
erty multiplicity for specifying cardinality constraints, and
a typeConstraint relation for specifying the value type of
corresponding attributes. The set of concrete type con-
straints was extended in accordance to the newly defined at-
tribute values, i.e., NumberConstraint, DateConstraint, and
BooleanConstraint. Furthermore, those type constraints can
be refined type-specifically, e.g., the model designer can use
regular expressions in TextConstraints to ensure that only

strings of a particular format can be entered to correspond-
ing attributes.

4.2 UI-related Lessons Learned
In this section, we present the UI-related aspects that

should be considered while developing a CIS. The usabil-
ity of the system is one of the critical quality attributes
for such complex systems that involve different stakehold-
ers performing both modeling and data gathering tasks in a
collaborative manner. We elaborate the most important UI
changes that we introduced in the Hybrid Wiki system in
the subsequent subsections.

4.2.1 Displaying Empty Attributes
The Hybrid Wiki approach relies on the feature of at-

tribute suggestion, i.e., when creating new attributes for a
wiki page belonging to a specific type tag, the user was of-
fered a list of attribute names. The generation of those
suggestions is based on the defined type tag and attribute
definitions on the one hand, and on the structure of similar
wiki pages on the other. Similarity between wiki pages is
defined by the number of type tags they are sharing. Con-
sidering again the PMS example in Figure 2, when creating
a new publication, the system suggests to add the attributes
title, abstract, and conference. However, those suggestions
were only visible when the user had the permission to edit
the wiki page. If a user does not provide an abstract, the
corresponding attribute would not even be displayed to users
without write access to the wiki page, giving them the im-
pression that this attribute does not exist.

The Hybrid Wiki projects have shown that this is not a de-
sirable behavior of the system, i.e., the system should show
at least all attributes which have a corresponding attribute
definition, even if they have no values. In this sense, enti-
ties should reflect the user-model as defined by the model
designer. Therefore, the updated Hybrid Wiki system not
only shows attributes with at least one value in the respec-
tive entity’s view, but also shows a dummy field for each
of the corresponding type’s attribute definition, for which
the entity does not have any value. Regarding the afore-
mentioned PMS example this would mean that the abstract
attribute is still shown on the publication view, although it
does not have any value.

4.2.2 Optional Deactivation of Free Attributes
As observed in the projects similar to the CPD [12] in

which customers had a clear specification and the domain
model was first captured and finalized by model designers,
the stakeholders felt that allowing free attributes is unnec-
essary for data owners when gathering application data. In
the model-first approach, the user-model captures the de-
sired structures of the data, wherefore the option of free
attributes would only distract data owners while capturing
data. To ensure a strict top-down approach, we included an
option to disable free attributes. Thereby, only attributes
which have corresponding attribute definitions can be main-
tained by data owners. This option is configurable at run
time, which allows model designers to control the strictness
of the modeling approach, i.e., to switch from a data-first
approach to a purely model-first approach seamlessly.

4.2.3 Strict Validation
In the Hybrid Wiki approach, all constraints imposed on

the attributes by their corresponding validators including
cardinality and data type validators were implemented as
soft constraints. In other words, users could capture the
attribute values for a wiki page defined by the attribute
definition of its corresponding type tag definition without
necessarily fulfilling their constraints.

A clear indication from our industry partners was to en-
sure that these cardinality and type constraints were sat-
isfied by data owners while capturing information so as to
reduce inconsistencies in the system. The rationale behind
this change request was the reduction of distraction for data
owners and to enforce them to capture the data as mod-
eled by model designers in the user-model. Since free at-
tributes provide the flexibility for data owners to add new
attributes if they are unable to capture the application data
using the predefined user-model, we decided to enforce strict
validation rules for attributes which have a corresponding
attribute definition. For instance, if the data type of the
attribute submissionDeadline is defined as date, then data
owners are only allowed to enter date values. Furthermore,
the detailed decisions regarding the data types of attributes
could either be determined up-front in a model-first ap-
proach or could emerge through contributions from data
owners in a bottom-up approach. Moreover, it should also be
noted that these strict integrity constraint rules are only ap-
plied when the entities are manually created or updated by
the users. However, the system still allows to import infor-
mation from other data sources (e.g., from Microsoft Excel)
without being restrained by the aforementioned constraints.
The inconsistencies that could arise within the system due
to such data import needs to be consolidated by users as
further explained in Section 4.2.5.

4.2.4 Type-specific Configurable Views
A typical requirement from users of a CIS is the ability

to adapt the view of wiki pages to suit their needs. This re-
quirement not only includes changing the logo, color scheme,
and fonts but also to be able to (un)hide specific informa-
tion in wiki pages or to restructure the view of the content
in the wiki pages. For instance, stakeholders of the intranet
projects as described in Section 3.3 preferred to hide meta in-
formation such as last modified date, person responsible for
updating an entity, associated tags, and versions of entities,
as they felt those details would distract the user. Similarly,
users requested to place the list of an entity’s attributes
(similar to the fact-box of Semantic MediaWiki) at their
preferred location, e.g., at the top, bottom, or right side of
the page, or to not even show them at all.

The lesson learned through our aforementioned projects
regarding the configuration of views is that the respective
users want to adapt not only the view of a single wiki page,
but the views of all entities of a specific type. For example,
the view of an entity representing a publication should be
configured only once at type-level. To address this issue in
a generic way, we provided features for model designers to
be able to configure the view of all entities belonging to a
specific type.

4.2.5 Searchable Inconsistencies
A CIS that supports both the evolution of the user-model

and its data will have inconsistencies between the user-model
(if already defined) and its associated data at some point of
time. For example, when the model designer changes the

Figure 4: Highlighting inconsistencies of an entity’s
attributes.

Figure 5: Search facets for supporting the identifi-
cation of inconsistent entities.

cardinality or an attribute definition’s type constraint this
could result in inconsistencies in the existing entities of that
type. As discussed before, the system also allows incon-
sistencies when creating an entity during data import (c.f.
Section 4.2.3). With this regard, one of the most important
lessons learned is that while developing such CIS one should
make informed decision not only about when and where to
allow inconsistencies but also how to handle these incon-
sistencies, and how the system should support its users in
the consolidation process. As discussed in the earlier ver-
sion of the Hybrid Wiki approach, validation messages are
presented to the users when a wiki page is displayed (c.f.,
Figure 4). Those validation messages help data owners to
ensure that the data in the system is consistent with the cor-
responding user-model. As these validation messages were
only visible when respective wiki pages were visited, it was
difficult for users to identify inconsistencies and to handle
them appropriately.

To better support the consolidation process, we extended
the search functionality of the Hybrid Wiki system with the
option to search explicitly for inconsistent entities. There-
fore, we added two search facets as depicted in Figure 5 for
limiting the set of search results by specific criteria, namely
one for identifying invalid values and one for identifying in-
valid links. In this context, invalid values refer to entities
which do not conform to user-model, while invalid links refer
to entities which have broken links, i.e., relations to entities
which were deleted. Additionally, consolidators can store a
search and its parameters, and embed its results in a wiki
page. By doing this, users can create and persist their own
consolidation views which further facilitates the consolida-
tion process.

5. RELATED WORK
In this section we discuss two types of related work: First,

we outline the literature on lessons learned, design princi-
ples, or experiences with similar approaches to collaborative
information management. Subsequently, we describe further
work on adaptions of the Hybrid Wiki meta-model which we
do not consider as lessons learned, but as extensions to this
concept.

5.1 Design Principles and Studies on Related
Approaches

As already pointed out by Matthes et al. [20], there are
many semantic wiki approaches related to Hybrid Wikis. All
of them share a common set of design principles as defined
by Cunningham [7]. For example, one design principle for
wikis is the requirement to be organic, which refers to the
fact that wiki’s data and the underlying model has to be
open for editing and evolution. At the same time, the de-
sign principle of convergence implies that the evolution of
the wiki data and model has to be guided by the system in
order to converge to a consistent state. In this sense, those
design principles already refer to the alignment of data and
model evolution as well as respective tool support. However,
they do not describe in detail how to achieve the goal of de-
veloping an organic but convergent knowledge management
system.

Research about the authoring of wikis investigates how to
support the consistent evolution of data and model. For ex-
ample, Kousetti et al. [15] studied the convergence of ontolo-
gies in semantic wikis. They compare existing wiki systems
regarding their support for both the data-first and model-
first approaches, and propose an approach for fostering the
alignment of data and model in the Semantic MediaWiki
system. They conclude that respective tool-supported guid-
ance to data and model creation (e.g., suggestions or warn-
ings when editing the data or the model) can foster the con-
vergence of the data and its model. However, their study
lacks conceptual and technical details of concrete guidelines
which should be considered to achieve better alignment of
data and model.

On a related note, Chau and Maurer [6] studied the use a
wiki-based experience repository named MASE for manag-
ing both structured and unstructured information. One of
the features of this tool is its capability for supporting self-
organization of users in maintaining the data and its corre-
sponding model. However, they do not elaborate on techni-
cal measures for improving the support for self-organization
of users and alignment of the data with the model.

Apart from research on semantic wikis and corresponding
authoring mechanisms, there are also guidelines for collab-
orative information systems in general. For example, Kraut
and Resnick [16] as well as Nielsen [26] propose social design
principles for building successful online communities. How-
ever, those principles are of an organizational nature (e.g.,
”Introducing newcomers to a community to members in-
creases interactions”, or ”Keep few tasks active at any given
time”) and they are not concrete technical guidelines on how
to build such a system.

5.2 Related Adaptions of Hybrid Wikis
Apart from the lessons learned as described in Section 4,

recent research projects revealed the opportunities for two
extensive extensions to the Hybrid Wiki approach.

The first extension of the Hybrid Wiki approach is the im-
plementation of an expression language for defining queries
and rules based on the user-defined data model [24]. The re-
quirement for such an expression language originated from
the domain of EAM: EA stakeholders wanted to be able
to define EA metrics [13] based on the EA data they were
maintaining and designing in the Hybrid Wiki system. Con-
sequently, Monahov et al. [24] and Reschenhofer et al. [31]
designed a language fulfilling the respective requirements.
Thereby, they extended the Hybrid Wiki meta-model by
concepts for integrating the designed expression language,
e.g., DerivedProperty to define attributes whose values are
automatically computed by the system, or CustomFunction
to define reusable and parameterizable functions implemented
by the expression language. By using this language, enter-
prise architects are also able to analyze the temporal evolu-
tion of the defined EA metrics [4].

The second research initiative based on the Hybrid Wiki
approach is a data-centric approach by Hauder et al. [10]
to support knowledge-intensive processes [8]. Again, this
extension to the Hybrid Wiki meta-model was motivated
from applications in EAM [11], and introduces the concept
of Tasks for guiding users in maintaining the Hybrid Wiki’s
data. Furthermore, Hauder et al. define TaskDefinitions
representing reusable work plans. Those work plans can be
refined iteratively, and define a light-weight process struc-
ture consisting of tasks potentially having dependencies be-
tween each other. In this sense, tasks and work plans are
the process analogies to the entity and type concepts of the
Hybrid Wiki meta-model in Figure 3.

6. CONCLUSION
This work presents the lessons learned from five years of

applying the collaborative Hybrid Wiki approach in multi-
ple industrial and research projects in the domains of En-
terprise Architecture Management, Collaborative Product
Development, and Collaborative Content Management. We
understand lessons as challenges and issues we faced in those
projects regarding the co-evolution of data and model, and
how those were addressed by concrete conceptual and tech-
nical adaptions of the applied Hybrid Wiki approach. While
we relate the lessons learned to applications of the Hybrid
Wiki meta-model as well as to concrete adaptions of the
same, we believe that they also hold for similar approaches
to systems which combine data- and model-first approaches
in a collaborative manner. In this sense, they constitute the
answers to both research questions raised in Section 1.

There are three main conclusions which we draw from our
experiences from the applications of the Hybrid Wiki ap-
proach. First, for software systems supporting a collabora-
tive approach to model and data evolution, finding the right
balance between data- and model-first approaches to model-
ing is decisive. The practical applications of the Hybrid Wiki
approach revealed that in early stages of the user-model de-
sign, a focus on the data-first approach enables model de-
signers to harness collective intelligence among the system’s
users and to utilize each individual’s domain-specific knowl-
edge. However, as soon as the user-model reaches a certain
degree of maturity, the design space should be restricted in
order to enforce a convergence of the user-model, implying
a shift to a stricter model-first approach.

Second, the co-evolution of both the user-model and its
data yields to inconsistencies between them. One impor-

tant success factor of software systems supporting this co-
evolution is the integration of adaquate data consolidation
tools and techniques. For example, such a software sys-
tem should support users in identifying inconsistent data,
aligning it to the user-model, and—whenever possible and
reasonable—in automating certain consolidation steps.

Third, as revealed by the concept-related lessons learned,
a conceptual model enabling the co-evolution of user-model
and data has to have the right balance between simplicity
and expressiveness. For example, based on the feedback
from users of the system, we had to reduce the complex-
ity of the initial Hybrid Wiki meta-model by simplifying
the entity-type relationship. However, at the same time
we added expressiveness by extending the meta-model with
additional attribute types. This indicates that the basic
concepts of a pragmatic approach to model and data co-
evolution should be usable and understandable by a broad
spectrum of both data owners and model designers. In the
context of the Hybrid Wiki approach, this refers to the con-
cepts Entity, Attribute, Type, and Attribute Definition. More
elaborated features and concepts improving the expressive-
ness of such an approach should be reserved for experienced
users, and hidden from the others, e.g., type-specific con-
straints as described in Section 4.1.5.

In addition to the presented lessons learned, the appli-
cation of the Hybrid Wiki approach revealed that in many
cases users would like to have stakeholder-specific views and
case-specific logic based on the foundations provided by the
Hybrid Wiki approach. Therefore, one focus of our future
research activities is the endeavor to design a platform im-
plementing the Hybrid Wiki system and making its services
reusable and integratable into other software systems.

7. REFERENCES
[1] F. Ahlemann, E. Stettiner, M. Messerschmidt, and

C. Legner. Strategic Enterprise Architecture
Management. Springer-Verlag, 2012.

[2] C. Atkinson and T. Kühne. Model-Driven
Development: A Metamodeling Foundation. IEEE
Software, 20(5):36–41, 2003.

[3] C. Batini, M. Lenzerini, and S. B. Navathe. A
Comparative Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys,
18(4):323–364, 1986.

[4] M. Bhat, T. Reschenhofer, and F. Matthes. Tool
Support for Analyzing the Evolution of Enterprise
Architecture Metrics. Proceedings of the International
Conference on Enterprise Information Systems, 2015.

[5] S. Buckl, F. Matthes, C. Neubert, and C. M. Schweda.
A Wiki-based Approach to Enterprise Architecture
Documentation and Analysis. Proceedings of the
European Conference on Information Systems, 2009.

[6] T. Chau and F. Maurer. A Case Study of Wiki-based
Experience Repository at a Medium-sized Software
Company. Proceedings of the International Conference
on Knowledge Capture, pages 185–186, 2005.

[7] W. Cunningham. Wiki Design Principles, 2011.

[8] T. H. Davenport. Thinking for a Living: How to Get
Better Performances and Results from Knowledge
Workers. Harvard Business Press, 2013.

[9] X. L. Dong and D. Srivastava. Big Data Integration.
Proceedings of the International Conference on Data

Engineering, pages 1245–1248, 2013.

[10] M. Hauder, R. Kazman, and F. Matthes. Empowering
End-Users to Collaboratively Structure Processes for
Knowledge Work. Proceedings of the International
Conference on Business Information Systems, 2015.

[11] M. Hauder, D. Münch, F. Michel, A. Utz, and
F. Matthes. Examining Adaptive Case Management to
Support Processes for Enterprise Architecture
Management. Proceedings of the Enterprise
Distributed Object Computing Conference Workshops
and Demonstrations, pages 23–32, 2014.

[12] M. Hauder, S. Roth, F. Matthes, A. Lau, and
H. Matheis. Supporting Collaborative Product
Development Through Automated Interpretation of
Artifacts. Proceedings of the International Symposium
on Business Modeling and Software Design, 2013.

[13] M. Hauder, S. Roth, C. Schulz, and F. Matthes.
Current Tool Support for Metrics in Enterprise
Architecture Management. Proceedings of the DASMA
Software Metrik Kongress, 2013.

[14] A. R. Hevner, S. T. March, J. Park, and S. Ram.
Design Science in Information Systems Research.
Management Information Systems Quarterly,
28(1):75–105, 2004.

[15] C. Kousetti, D. E. Millard, and Y. Howard. A Study
of Ontology Convergence in a Semantic Wiki.
Proceedings of the International Symposium on Wikis
and Open Collaboration, pages 17:1–17:10, 2008.

[16] R. E. Kraut, P. Resnick, S. Kiesler, M. Burke,
Y. Chen, N. Kittur, J. Konstan, Y. Ren, and J. Riedl.
Building Successful Online Communities:
Evidence-based Social Design. MIT Press, 2012.

[17] H. Matheis. SmartNet Navigator and Application
Guidelines. Seventh Framework Programme, 2013.

[18] F. Matthes and C. Neubert. Enabling Knowledge
Workers to Collaboratively Add Structure to
Enterprise Wikis. Proceedings of the European
Conference on Knowledge Management, 2011.

[19] F. Matthes and C. Neubert. Wiki4EAM - Using
Hybrid Wikis for Enterprise Architecture
Management. Proceedings of the International
Symposium on Wikis and Open Collaboration, 2011.

[20] F. Matthes, C. Neubert, and A. Steinhoff. Hybrid
Wikis: Empowering Users to Collaboratively Structure
Information. Proceedings of the International
Conference on Software and Data Technologies, 2011.

[21] A. P. McAfee. Enterprise 2.0: The Dawn of Emergent
Collaboration. MIT Sloan Management Review,
47(3):21–28, 2006.

[22] S. McGinnes and E. Kapros. Conceptual
Independence: A Design Principle for the
Construction of Adaptive Information Systems.
Information Systems, 47:33–50, 2015.

[23] T. D. Meijler, J. P. Nytun, A. Prinz, and
H. Wortmann. Supporting Fine-grained Generative
Model-driven Evolution. Software & Systems
Modeling, 9(3):403–424, 2010.

[24] I. Monahov, T. Reschenhofer, and F. Matthes. Design
and Prototypical Implementation of a Language
Empowering Business Users to Define Key
Performance Indicators for Enterprise Architecture
Management. Proceedings of the Trends in Enterprise

Architecture Research Workshop, 2013.

[25] A. I. Mørch, G. Stevens, M. Won, M. Klann,
Y. Dittrich, and V. Wulf. Component-based
Technologies for End-user Development.
Communications of the ACM, 47(9):59–62, 2004.

[26] M. Nielsen. Reinventing Discovery: The New Era of
Networked Science. Princeton University Press, 2012.

[27] M. Q. Patton. Evaluation, Knowledge Management,
Best Practices, and High Quality Lessons Learned.
American Journal of Evaluation, 22(3):329–336, 2001.

[28] E. Rahm and P. A. Bernstein. An Online Bibliography
on Schema Evolution. ACM SIGMOD Record,
35(4):30–31, 2006.

[29] S. Rehm, T. Reschenhofer, and K. Shumaiev. IS
Design Principles for Empowering Domain Experts in
Innovation: Findings From Three Case Studies.
Proceedings of the International Conference on
Information Systems, 2014.

[30] T. Reschenhofer, I. Monahov, and F. Matthes.
Application of a Domain-Specific Language to
Support the User-Oriented Definition of Visualizations
in the Context of Collaborative Product Development.
Proceedings of the International Conference on
Interoperability for Enterprises Systems and
Applications, 2014, 2014.

[31] T. Reschenhofer, I. Monahov, and F. Matthes.
Type-Safety in EA Model Analysis. Proceedings of the
Trends in Enterprise Architecture Research Workshop,
2014.

[32] J. F. Roddick, L. Al-Jadir, L. Bertossi, M. Dumas,
H. Gregersen, K. Hornsby, J. Lufter, F. Mandreoli,
T. Männistö, and E. Mayol. Evolution and Change in
Data Management - Issues and Directions. ACM
SIGMOD Record, 29(1):21–25, 2000.

[33] S. Roth, M. Hauder, and F. Matthes. Collaborative
Evolution of Enterprise Architecture Models at
Runtime. Proceedings of the Workshop on Models at
Runtime, 2013.

[34] M. Spahn, C. Dörner, and V. Wulf. End User
Development: Approaches Towards a Flexible
Software Design. Proceedings of the European
Conference on Information Systems, pages 303–314,
2008.

[35] M. van Oosterhout, E. Waarts, and J. van
Hillegersberg. Change Factors Requiring Agility and
Implications for IT. European Journal of Information
Systems, 15(2):132–145, 2006.

[36] P. Vitharana. Risks and Challenges of
Component-based Software Development.
Communications of the ACM, 46(8):67–72, 2003.

[37] V. Wulf and M. Rohde. Towards an Integrated
Organization and Technology Development.
Proceedings of the Conference on Designing
Interactive Systems, 1995.

