
A meta-language for Enterprise Architecture

analysis

Sabine Buckl1, Markus Buschle2, Pontus Johnson2, Florian Matthes1, and
Christian M. Schweda1

1 Chair for Software Engineering of Business Information Systems (sebis),
Technische Universität München,

Boltzmannster. 3, 85748 Garching� Germany
{sabine.buckl,matthes,christian.m.schweda}@mytum.de

2 Industrial Information and Control Systems,
KTH Royal Institute of Technology,

Osquldas v. 12, SE-10044 Stockholm, Sweden
{markusb,pontus}@ics.kth.se,

Abstract. Enterprise Architecture (EA) management is a commonly
accepted instrument to support strategic decision making. The objective
of EA management is to improve business IT alignment by making the
impact of planned changes explicit. The increasing interconnectivity of
applications with other applications and with business processes however
makes it di�cult to get a complete view on change impacts and depen-
dency structures. This information is nevertheless required to support
decision makers. Current meta-languages proposed for the context of
EA management provide only limited support for modelling qualitative
and quantitative dependencies.

In this paper we propose a meta-language, which builds on the Meta
Object Facility (MOF). This meta-language speci�cally accounts for the
requirements of EA analysis. We discuss existing meta-languages from
the �eld of EA management and related areas against these require-
ments. Building on the standard of the OMG, we present an extension of
MOF designed to support EA analysis. The theoretic exposition of the
extension is complemented by an example illustrating the applicability
of the presented meta-language.

1 Introduction and motivation

Today, the strategic management of the Enterprise Architecture (EA) is a com-
monly accepted instrument of modern enterprises. EA is used to keep up with the
increasing demand for �exible IT support and the overall managed evolution of
the enterprise. Therein EA analysis [1] is a means of providing decision support
throughout the management process by making the impact of planned projects
explicit. In the complex and interwoven system �enterprise�, local changes to one
artifact, e.g. a business process or a business application, might have unforeseen
global consequences and potentially detrimental impacts on related artifacts.

2

Therefore, it is di�cult to get a complete view on change impacts and depen-
dency structures, this is nevertheless required to support decision making.

With regards to the increased interest from practitioners, di�erent approaches
to EA management have been developed in academic research [2�4], by practi-
tioners [5, 6], standardization bodies [7, 8], and tool vendors [9]. These approaches
provide frameworks, methods, and models used in the design of an EA manage-
ment function. Thereby, the models typically focus on structural aspects of the
EA, such as dependencies between business processes and business applications.
Decisions about the future of the EA are made based on the analysis of these
dependencies and plans for a managed evolution are created (cf. [10]).

Input to the aforementioned analysis are (parts of the) architectural descrip-
tions of the EA. A variety of modelling techniques and complementing informa-
tion models underlying these architectural descriptions exists. We understand
an information model in line with Buckl et al. in [11] as �a model which speci-
�es, which information about the ea, its elements and their relationships should
be documented, and how the respective information should be structured�. Ex-
isting information models di�er widely with respect to the concepts that they
employ as well as the coverage of the EA that they aim at. This diversity backs
the assumption of researchers in the EA management domain, that information
models represent organization-speci�c artifacts (cf. [11, 12]).

The models described above have in common that they are implicitly or ex-
plicitly based on meta-languages. In the context of EA management a widely
used meta-language for EA information modelling is the general purpose mod-
elling language uni�ed modelling language (UML) [13]. UML and other meta-
languages proposed for the context of EA management provide only limited
support for modelling quantitative and qualitative dependencies. In particular
the latter are of interest in the context of EA management. They express that
some kind of dependency exists between attributes, while not having to indicate
of what kind this dependency is. The aforementioned problem statement that
we seek to address can be summarized as follows:

How does a meta-language look like that supports EA analysis by en-
abling the user to model di�erent types of dependencies and attributes?

In this paper, we propose a meta-language that builds on the Meta Object Fa-

cility (MOF) [14] and speci�cally accounts for the requirements of EA analysis.
This approach was chosen as MOF represents the basis of UML a frequently
used meta-language for the context of EA management [15]. We prepare the
exposition of our solution by eliciting requirements that such a meta-language
should ful�ll in Section 2. Based on the requirements we revisit related work
from the EA management domain and related �elds in Section 3. In Section 4
we discuss an extension of essential MOF (EMOF) as a meta-language for EA
analysis. Our meta-language addresses the afore elicited requirements by provid-
ing means for specifying, that the values of certain attributes are dependent on
other attributes' values without creating the need to provide computable depen-
dency rules. The theoretic exposition of our meta-language is complemented by

3

an example demonstrating applicability of the presented solution in Section 5.
Finally, we conclude the paper with a discussion on further areas of research.

2 Requirements on the meta-language

This section presents requirements on the meta-language we propose. In the
previous chapter we already described the fact that the language should extend
MOF. This implies that the meta-language should feature classes that can be
linked via relations, and are characterisable through attributes. These character-
istics are taken from MOF right away. Besides those requirements several more
prerequisites need to be considered with regards to the EA domain. These needs
have been derived from [16] and [17], which both explicitly state requirements
on an expressive meta-language for EA analysis. Especially the characteristics
of attributes are discussed in both previously mentioned publications.

It has been stated in [16] and [18] that EA models are likely to become
(partly) out-dated after short time periods. The fact that a certain application
might for example be phased-out and replaced, is not necessarily resulting in
an immediate update of the EA model. If such a discrepancy between the sta-
tus quo in the real world and the model is not eliminated it is likely that the
architectural model does not any longer represent the con�guration that is in
use. This phenomenon has also been identi�ed in [17] and described as empirical
uncertainty.

An expressive meta-language is required to be able to capture whether a
model is likely to re�ect the setting it is meant to describe (Requirement R1).
This means that a meta-language should allow to annotate each modeled class
with a probability that this modeled entity still is in use (Requirement R1.1).
To consider only the entities of a model is however not su�cient, moreover it
needs to be considered whether the modeled concepts are still related to the
same entities i.e. whether they still interact in the same manner with their en-
vironment as it was described. Here one could think of a modeled application
that in comparison to when it was described in a model nowadays supports a
billing business process instead of a order handling process. This means that the
application's relation to the order handling process does not exist any longer.
The implication is that not only entities but also their relations should be de-
scribable with regards to their existence (Requirement R1.2). Therefore both
entities and their relations need to be equipped with an additional build-in exis-

tence attribute re�ecting the probability that the concept is still employed and
collaborating with the artifacts it is related to.

A second aspect of relevance that was identi�ed targets the expressiveness
of the attributes o�ered by the meta-language. While typical general purpose
modelling languages as UML can be used to model discrete phenomena, e.g. the
number of components of an application system, creating EA models is often
accompanied by uncertainty about the actual value of an attribute. The build-in
data-types o�ered by UML and thereby MOF, for example Boolean or Integer,
can be used to describe properties of classes, e.g. a Boolean attribute can be

4

either true or false but never in an intermediate state. This means also that
attributes in MOF are considered to be �xed i.e one is sure that a property is
in a certain state. To use distributions and thereby describe uncertainty that for
example the attribute availability of a system is 95 ± 2% cannot be captured.
The usefulness of continuous variables going along with the ability to describe
distributions within the domain of EA analysis has been exempli�ed in [19] and
[20]. In both publications distributions are used to describe modeled entities.
These distributions then were used as input to perform EA analysis. In [19] the
usage of parametric dependencies for performance prediction is suggested. On
the other hand Närman et. al. [20] notes that reliability can be captured through
the usage of continuous attributes. In order to support this kind of evaluation
a power-full EA meta-language based on MOF needs to extent the attribute
concept through an introduction of attributes that are capable to describe dis-
tributions and thereby express uncertainty (Requirement R2).

The third needed extension to MOF that was identi�ed is the capability to
express dependencies between attributes (Requirement R3). Attribute rela-
tionships are part of the Probabilistic Relational Models (PRM) formalism [21]
(see explanation provided in 3.3), which has been proven to be a powerful mecha-
nism to use for EA analysis. In [22] PRMs have been applied for (cyber) security
analysis, whereas in [23] PRMs have been used to perform reliability evaluation.
Thirdly in [24] PRMs are used to de�ne patterns for quantitative EA analysis.
The support of EA analysis using a formalism similar to PRM would facilitate
the previously mentioned evaluations. This can be achieved for MOF through
the introduction of relations between attributes (Requirement R3.1) and thus
the modelling of their e�ects on each other (Requirement R3.2).

3 Related work

In this section we discuss two modelling approaches targeting enterprises and
their architectures, respectively. Thereby, we do not focus on the concepts pro-
vided by the approaches, but put emphasis on the meta-languages that under-
lie these approaches. We discuss if and how these meta-languages address the
requirements as stated in Section 2. In addition to these approaches, we also
explain probabilistic relationships models as a promising means to incorporate
uncertainty in domain models and to express relations between attributes.

3.1 ArchiMate (ORM)

The ArchiMate modelling language has a long history as an approach to model
EAs. In the early work [25], the approach was based on an informally de-
�ned meta-language consisting of �things� and �relationships�. In the most re-
cent publications [26] this meta-language is replaced with the Object-Role Model

(ORM) [27]. ORM supports basic modelling concepts grounded in the dichotomy
between instance and corresponding entity type. Entity types can participate in

5

n-ary relationships with each other and with value types, which are used to desig-
nate properties in an object-oriented sense. Additional facilities in ORM enable
to model interrelationships between di�erent relationships, e.g. describing that
the set of values of one relationship, i.e. its tuples, is a subset of another rela-
tionship's values. In [4] Lankhorst et al. describe how architectural models based
on ORM can be augmented with dependency information used for quantitative
analyses of EAs. The modelling mechanisms are applied exemplarily, calling for
an intuitive understanding of the underlying concepts. These concepts, which
would contribute an extension to ORM, are contrariwise not discussed in detail.
ArchiMate as presented in [4] does not use attributes, whereas modelling tools
that support ArchiMate for example BiZZdesign Architect3 allow to use pro�les
in order to describe classes. However this tool does not provide to model rela-
tions between attributes and is therefore not capable to ful�ll the requirements
as they have been stated in chapter 2.

3.2 MEMO Meta-Language

Frank discusses multi-perspective enterprise modelling (MEMO) [3] as an ap-
proach to integrate di�erent perspectives on the enterprise. These perspectives
are represented in di�erent languages e.g. the ITML [28] modelling IT systems
and resources. The languages are based on a common meta-language, theMEMO

metamodelling language (MML) [29]. This language o�ers the syntactic primi-
tives and model elements that are needed to describe EA conceptual models of
the di�erent special purpose languages. Basically, MML is an object-oriented
metamodelling language introducing the meta-concepts MetaEntity, MetaAssoci-

ationLink, and MetaAttribute to designate classes, associations, and properties.
Thereby, �classic� capabilities of object-oriented metamodelling facilities are pro-
vided, e.g. cardinalities or primitive data-types. A particular extensions is the
intrinsic meta-concept. Frank furthers the discussion of Atkinson and Kühne
in [30], who elaborate on the di�culties of describing di�erent meta-levels within
an object-oriented metamodel. Any modelling facility pursuing the paradigm of
object-orientation centers around the dichotomy of meta-level, i.e. the level of
the meta-concepts, and instance-level, on which the objects reside. Modelling do-
mains that supply more than one level of ontological instantiation can hence not
directly be covered by object-oriented modelling facilities. In order to avoid that
language users introduce conceptually unclear `workarounds' to the metamodels
as the type-item-pattern, Frank adopts the idea of the deep-instantiation. He dis-
tinguishes the concepts along their potency in terms of Atkinson and Kühne [30].
A concept of potency n is instantiated to a concept of potency n − 1, whereas
concepts of potency 0 designate objects, instantiated associations, and bound
attributes. Normal meta-concepts are of potency 1. Intrinsic meta-concepts are
of potency 2, which are instantiated to normal meta-concepts.

The mechanism of the intrinsic concept is used by Frank et al. for the Score-
ML, a language for de�ning (business) indicator systems within enterprise mod-

3 http://www.bizzdesign.com/products/architect.html

6

els [31]. The Score-ML de�nes the concept of the Speci�cIndicator that measures
a ReferenceObject. Such reference object can be an arbitrary element in an meta-
model underlying a particular enterprise modelling language, i.e. perspective on
the enterprise. On the level of the indicator de�nition, the speci�c indicator can
supply benchmarks for interpreting the particularValue of the indicator as mea-
sured at an instance of the reference object. Figure 1 shows the corresponding
cutout from the metamodel of the Score-ML. Therein, we use the stereotype �i�
to designate intrinsic meta-concepts.

SpecificIndicator
benchmark:Decimal
«i» particularValue:Decimal
«i» created:Date

ReferenceObject

 1..*
*

measures

 **

«i» measures

Fig. 1. Cutout of the indicator model of the Score-ML

In addition the Score-ML also supplies specialized relationship types that
can be used to describe the dependencies between di�erent indicators as well as
between an indicator and a goal. One indicator can be computed from another
indicator or can be similar to another one. These relationships are used during the
design of the indicator system in di�erent ways. Firstly, similar indicators can be
exchanged with each other, in case one indicator is not measurable in the speci�c
utilization context. Computational references are further operationalized during
the design of an indicator system to actual computation rules that aggregate
indicator values. Score-ML does not put particular emphasis on the notion of
uncertainty, nor does it facilitate to introduce distributions acting as surrogates
for actual indicator values.

3.3 Probabilistic Relational Models

As stated in the introduction of Section 3 PRMs serve as a guideline for the
treatment of attributes, both in terms of support for uncertainty and relations
between attributes. PRMs employ probabilistic reasoning to perform quanti-
tative analysis of architecture properties. The main advantage of using PRMs
instead of other probabilistic graphs, such as Bayesian networks [32] is their
ability to also model objects of the world and their relations to each other in a
manner similar to Entity-Relationship diagrams.

A PRM [21] speci�es a template for a probability distribution over an ar-
chitecture model. The template describes the metamodel for the architecture
model, and the probabilistic dependencies between attributes of the architecture

7

objects. A PRM, together with an instantiated architecture model of speci�c ob-
jects and relations, de�nes a probability distribution over the attributes of the
objects. The probability distribution can be used to infer the values of unknown
attributes, given the values of some attributes.

An architecture metamodel M describes a set of classes, X = X1, . . . , Xn.
Each class is equipped with a set of descriptive attributes and a set of reference
slots. The set of descriptive attributes of a class X is denoted A(X). Attribute
A of class X is denoted X.A and its domain of values is denoted V (X.A). For
example, a class Business Process might have the attribute Availability, with
domain {Up,Down}. The set of reference slots of a class X is denoted R(X).
We use X.ρ to denote the reference slot ρ of class X. Each reference slot ρ is
typed with the domain type Dom[ρ] = X and the range type Range[ρ] = Y ,
where X;Y ∈ X . A slot ρ denotes a relation from X to Y . Slots are similar
to the relations in Entity-Relationship diagrams. For example we might have a
class Business Process with the reference slot uses whose range is the class
Business Application. For each reference slot ρ we have an inverse reference
slot ρ−1 denoting the inverse relation. In the prior example, the class Business
Application has an inverse reference slot uses−1 to Business Process.

An architecture instantiation I (or an architecture model) speci�es the set
of objects of each class, the values for the attributes, and the references of the
objects. It speci�es a particular set of data objects, business processes, business
applications, etc., along with their attribute values and references. We also de�ne
a relational skeleton σr as a partial instantiation which speci�es the set of objects
in all classes as well as all the reference slot values, but not the attribute values.

A probabilistic relational model Π speci�es a probability distribution over all
instantiations I of the metamodelM. This probability distribution is speci�ed
similar to a Bayesian network [32], which consists of a qualitative dependency
structure and associated quantitative parameters.

The qualitative dependency structure is de�ned by associating each attribute
X.A a set of parents Pa(X.A) through attribute relations. Each parent of X.A
is de�ned as X.τ.B where B ∈ A(X.τ) and τ is either empty, a single slot ρ or
a sequence of slots ρ1, . . . , ρk such that for all i, Range[ρi] = Dom[ρi+1]. In our
example, the attribute BusinessProcess.Availability may have BusinessAppli-
cation.Availability (i,e. Pa(BusinessApplication.Availability) = BusinessPro-
cess.Uses−1.Availability) as parent, thus indicating that the Availability of
an Business Process depends on the availability performed by the Business

Application, which realize the Business Process. Note that X.τ.B may refer-
ence a set of attributes rather than a single one. In these cases, we let A depend
probabilistically on some aggregated property over those attributes, such as the
logical operations MIN or MAX. Considering the quantitative part of PRMs,
given a set of parents for an attribute, we can de�ne a local probability model
by associating a conditional probability distribution (CPD) with the attribute,
P (X.A|Pa(X.A)). We can now de�ne a PRM Π for a metamodelM as follows.
For each class X ∈ X and each descriptive attribute A ∈ A(X), we have a
set of parents Pa(X.A), and a CPD that represents PΠ(X.A|Pa(X.A)). Given

8

a relational skeleton σr (i.e. a metamodel instantiated to all but the attribute
values), a PRM Π speci�es a probability distribution over a set of instantiations
I consistent with σr:

P (I|σr, Π) =
∏

x∈σr(X)

∏
A∈A(x)

P (x.A|Pa(x.A))

where σr(X) are the objects of each class as speci�ed by the relational skeleton
σr. A PRM thus constitutes the formal machinery for calculating the probabili-
ties of various architecture instantiations. This allows us to infer the probability
that a certain attribute assumes a speci�c value, given evidence of the rest of
the architecture instantiation.

4 Extending the Meta Object Facility

The meta-object facility (MOF) [33] is an OMG standard that provides a multi-
purpose metamodel for de�ning object-oriented models based on the UML in-
frastructure [34]4. According to the �ndings in [16], MOF is prevalent as meta-
model for de�ning EA information models with the exceptions as discussed in
Section 3. With respect to requirements R1-R3 MOF does not o�er dedicated
modelling mechanisms, neither for modelling existential uncertainty, uncertainty
concerning values, nor dependencies between architectural properties. Below we
introduce an extension to MOF that addresses the requirements. This extension
builds on EMOF that de�nes basic concepts for object-oriented metamodels.
Following Figure 2 displays the stack of meta-levels on which our modelling
approach builds and indicates on which meta-level our extended EMOF resides.

RequirementR1.1 is addressed by a model extension that allows to designate
an existence probability for an instance of a particular class, i.e. for an Instance-
Speci�cation in terms of MOF. An additional attribute exProbability can be used
to describe that an instance has a lower existence probability than the default
value 1. This value is retained to ensure compatibility with `normal', i.e. non-
extended, MOF models. The existential uncertainty with respect to relationships
between instances as well as the uncertainty with respect to the value of a prop-
erty are addressed in a uniform manner. This abides to the fact that in EMOF,
the concept property is used to describe both simple properties but also unidirec-
tional relationships. The reference property.opposite is used to designate that two
such unidirectional relationships constitute a bi-directional relationship in the
sense of conceptual modelling. The value of a property at a particular instance
is re�ected in a slot which in turn is assigned a valueSpeci�cation containing
the actual value. Di�erent types of value speci�cations are supplied by MOF,
of which three are of particular interest for our extension. IntegerExpression and
FloatExpression are used to specify values for Integer and Float properties, re�ec-
tively. We introduce these types of expressions as specializations to the generic
ValueExpression of MOF that allows to specify untyped values. Both specialized
expressions contain an attribute uncertainty that allows to specify, the degree of

4 MOF can also be used to `boot-strap' itself, i.e. the concepts of MOF can be explained
as instances of MOF concepts.

9

M3

M2

M1

M0

(E)MOF

extended

EMOF

EA information

model

EA model

Fig. 2. Meta-modelling stack

uncertainty in terms of the variance. We thereto assume two speci�c distributions
for discrete and continuous properties, namely the binomial distribution and the
normal distribution, correspondingly. The InstanceValue designates the instance
speci�cation assigned to a non-primitive, i.e. referencing, property. It further
assigns a probability for the corresponding value assignment being correct. Using
these mechanisms, we address requirements R1.2 and R2, respectively. The fol-
lowing constraint is needed to ensure that properties representing bi-directional
relationships are consistent with respect to their assigned probabilities:

context: InstanceValue

inv: InstanceValue->forall(i|self.owningSlot.definingFeature.opposite ==

i.owningSlot.definingFeature implies

self.proability == i.probability);

We ful�ll R3.1 through the introduction of the PropertyRelationship concept.
A PropertyRelationship is a directed relationship between two properties that
speci�es in�uence from the source to the dependent property. The two properties
may be owned by the same class or by transitively associated ones. In the latter
case, the property relationship further speci�es, which relationship path between
the classes is in�uencing the dependency from the source to the target property.
This means that the following constraints have to hold:

context: PropertyRelationship

inv: targetPath()->forAll(c|isSelfOrSub(c,sPath().at(tPath().indexOf(c))))

inv: sourceProperty.type.oclIsType(DataType)

inv: dependentProperty.type.oclIsType(DataType)

inv: dependencyPath->forAll(c|dependencyPath->count(c) == 1)

inv: sourceProperty <> dependentProperty

In these constraints we build on auxiliary operations:

context: AttributeRelationship

10

allSuperClasses(c:Class):Collection

allSuperClasses = c.superClass->collect(c|allSuperClasses(c)).flatten()

context: PropertyRelationship

isSelfOrSub(Class sub, Class super):Boolean

isSelfOrSub = (sub == super) or allSuperClasses(sub).contains(super)

context: PropertyRelationship

sPath():Sequence

sPath = dependencyPath->collect(p|p.type).prepend(sourceProperty.class)

context: PropertyRelationship

tPath():Sequence

tPath = dependencyPath->collect(p|p.class).append(dependentProperty.class)

Finally requirement R3.2 is addressed through a link between PropertyRela-

tionship and OpaqueExpression. The standard [13] de�nes an opaque expression
as �an uninterpreted textual statement that denotes a (...) set of values when
evaluated in a context�. Using such expressions, we establish de�nitory depen-
dencies between di�erent properties, i.e. designate that and how one property
can be computed from another.

Figure 3 shows the extended metamodel and highlights added or adapted
meta-classes.

EMOF::Class
isAbstract:Boolean=false

EMOF::Property
lower:Integer=1
upper:Integer=1

0..1 0..*

 0..1 1

opposite

EMOF::Type

A::I::InstanceSpecification
exProbability:Probability=1

A::I::Slot

 *

classifier
 1

 *

definingFeature
 1

1 *

A::E::ValueSpecification

A::I::Expression
value:String
uncertainty:String="0"

A::I::InstanceValue
probability:Probability=1

instance
 1

*

owningSlot
 0..1

value

0..1

type

PropertyRelationship1 dependent

1 source

*
path

1 expression

A::E::OpaqueExpression
symbol:String

 0..1

*
operand

Fig. 3. Metamodel of the EMOF extension

11

5 Exemplifying the language for EA analysis

The basis for EA analysis are architecture models, which provide abstractions
from the real world concepts. Dependencies between the modeled concepts play,
as alluded to above, an important role in EA documentation and analysis. The
subsequent example is concerned with metrics for application landscapes, which
are an important part of the overall EA. The presented model, similar to the
model introduced by Lankes in [35], discusses the availability of services o�ered
by a business application in respect to the services used by the business appli-
cation. Thereby, the aspect of failure propagation in the application landscape
can be modeled on an abstract level.

The classes, attributes, and associations introduced therein are de�ned as
follows:

BusinessApplication refers to a system, which is implemented in software,
deployed at a speci�c location, and which provides support for at least one
of the company's business processes. As consequence of the (not modeled)
dependency of a business application to an underlying hardware device, the
application has a certain level of availability (modeled as the probability for
being available). In performing the business support, a business application
may depend on other applications, which is modeled by two associations to
the o�ered or used interfaces. The availability of the business application is
thus dependent on the availability of the underlying hardware (not modeled)
as well as on the availability of the interfaces used.

Interface is o�ered by a business application to provide a service for external
use by one or more other applications or business processes. As a consequence
of the provision by an application, the interface has an availability associated
to the availability of the o�ering application.

BusinessProcess refers to a sequence of individual functions with connections
between them. A business process as used in this model should not be identi-
�ed with a single process step, but with high-level processes at a level similar
to the one used in value chains. The execution of the process is dependent
on the availability of the applications used.

Figure 4 shows the interplay between these concepts.
The dependencies between the values of the di�erent availability attributes of

the business application, the interface, and the business process class, which are
informally de�ned in the textual descriptions, are visually indicated using the
aforementioned notation for property relationships. In addition, the dependency
between the availability of an interface and of the o�ering business application's
availability can be expressed in simple terms, i.e. they are equal. A value speci-
�cation can express this type of relationship. Figure 5 shows an instantiation of
the information model and calculates the probabilities for the availability given
the corresponding uncertainties. Thereby, especially the uncertainty with respect
to the interface LOG is taken into account. According to the current knowledge,
this interface exists with a probability of 50% (exProbability = 0.5).

12

BusinessApplication
name:string
availability:probability
/availability:probability

Interface
name:string
/availability:probability

BusinessProcess
name:string
/availability:probability

1 *

offers

* *

uses

 *

 *

uses

Fig. 4. Information model of the example

purchasing:BusinessProcess
/availability = 0.6885 {+/-0.03}

CRM:BusinessApplication
availability = 0.9 {+/-0.02}
/availability = 0.9 {+/-0.02}

GO:BusinessApplication
availability = 0.9 {+/-0.01}
/availability = 0.765 {+/-0.01}

LOG:Interface {0.5}
/availability = 0.7

GOLOG:BusinessApplication
availability = 0.7
/availabiliy = 0.7

offers

uses

uses

uses

Fig. 5. Instance model of the example

6 Outlook

During the description of current states of the EA and the development of future
states of the EA (cf. [36] for typical activities of EA management) two di�er-
ent types of uncertainty have to be considered: uncertainty with respect to the
described current state, i.e. is the gathered information correct, or uncertainty
with respect to a future state, i.e. is the plan to come true or did we make the
right assumptions with respect to the future evolution. Are the right projects
selected to come true. Combinations of the aforementioned uncertainties are also
possible. In the approach only the describe uncertainty is discussed.

13

Reality

© sebisBuilding blocks for enterprise architecture management solutions 1

describe

uncertainty

enterprise enterprise

as-is to-be

transform

plan uncertainty

Models

enact

Fig. 6. Di�erent types of uncertainty

Another interesting direction for future work targets the exact nature of the
relationships between properties. The current model can describe that a rela-
tionship exists and can detail this relationship with an expression for their com-
putation. On a more �ne-grained level, we could distinguish between de�nitory
dependencies and causal dependencies, of which the former are used to de�ne
a property, whereas the latter describe that a property depends on the value of
another one. In both cases, it would also be possible to specify the direction of
the dependency, i.e. to designate, whether dependent and depending property
behave opposite or similar. While such speci�cation is less expressive than the
an actual computable expression, it can be used for qualitative analyses on the
dependencies and the mutual reaction on changes.

Finally, the presented approach would bene�t from an implementation. There-
fore, existing tools (cf. [1]) can be extended to incorporate the MOF extension as
presented in this paper. The implementation would further enable the evaluation
of the meta-language in practice.

References

1. Buschle, M., Ullberg, J., Franke, U., Lagerström, R., Sommestad, T.: A tool for
enterprise architecture analysis using the PRM formalism. In: CAiSE2010 Forum
PostProceedings. (2010)

2. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F.: Enterprise Architecture Manage-
ment Pattern Catalog (Version 1.0, February 2008). Technical report, Chair for
Informatics 19 (sebis), Technische Universität München, Munich, Germany (2008)

3. Frank, U.: Multi-perspective enterprise modeling (memo) � conceptual framework
and modeling languages. In: 35th Hawaii International Conference on System Sci-
ences (HICSS 2002), Washington, DC, USA (2002) 1258�1267

4. Lankhorst, M.M.: Enterprise Architecture at Work: Modelling, Communication
and Analysis. 2nd edn. Springer, Berlin, Heidelberg, Germany (2009)

5. Dern, G.: Management von IT-Architekturen (Edition CIO). Vieweg, Wiesbaden,
Germany (2006)

6. Niemann, K.D.: From Enterprise Architecture to IT Governance � Elements of
E�ective IT Management. Vieweg+Teubner, Wiesbaden, Germany (2006)

14

7. The Open Group: TOGAF �Enterprise Edition� Version 9. http://www.togaf.org
(cited 2010-02-25) (2009)

8. Department of Defense (DoD) USA: DoD Architecture Framework Version 2.0:
Volume 1: Introduction, Overview, and Concepts � Manager's Guide. http://www.
defenselink.mil/cio-nii/docs/DoDAF\%20V2\%20-\%20Volume\%201.pdf (cited
2010-02-25) (2009)

9. Matthes, F., Buckl, S., Leitel, J., Schweda, C.M.: Enterprise Architecture Manage-
ment Tool Survey 2008. Chair for Informatics 19 (sebis), Technische Universität
München, Munich, Germany (2008)

10. Murer, S., Worms, C., Furrer, F.J.: Managed evolution. Informatik Spektrum
31(6) (2008) 537�547

11. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A pattern based
approach for constructing enterprise architecture management information mod-
els. In Oberweis, A., Weinhardt, C., Gimpel, H., Koschmider, A., Pankratius, V.,
Schnizler, eds.: Wirtschaftsinformatik 2007, Karlsruhe, Germany, Universitätsver-
lag Karlsruhe (2007) 145�162

12. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In Re-
ichert, M., Strecker, S., Turowski, K., eds.: 2nd International Workshop on Enter-
prise Modelling and Information Systems Architectures (EMISA 2007). LNI, Bonn,
Germany, Gesellschaft für Informatik (2007) 143�161

13. Object Management Group (OMG): Omg uni�ed modeling languageTM(omg uml),
superstructure � version 2.3 (formal/2010-05-05) (2010)

14. Object Management Group (OMG): Meta object facility (mof) core speci�cation,
version 2.0 (formal/06-01-01) (2006)

15. Buckl, S., Matthes, F., Schweda, C.M.: A meta-language for ea information model-
ing � state-of-the-art and requirements elicitation. In Bider, I., Halpin, T., Krogstie,
J., Nurcan, S., Proper, E., Schmidt, R., Ukor, R., eds.: Enterprise, Business-Process
and Information Systems Modeling. Lecture Notes in Business Information Sys-
tems, Springer (2010) 169�181

16. Buckl, S., Matthes, F., Schweda, C.: A meta-language for EA information
modeling�state-of-the-art and requirements elicitation. Enterprise, Business-
Process and Information Systems Modeling (2010) 169�181

17. Johnson, P., Lagerström, R., Närman, P., Simonsson, M.: Enterprise architecture
analysis with extended in�uence diagrams. Information Systems Frontiers 9(2)
(2007) 163�180

18. Aier, S., Buckl, S., Franke, U., Gleichauf, B., Johnson, P., Närman, P., Schweda,
C., Ullberg, J.: A survival analysis of application life spans based on enterprise
architecture models. In: 3rd International Workshop on Enterprise Modelling and
Information Systems Architectures, Ulm, Germany. (2009) 141�154

19. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Systems and Software 82(1) (2009) 3�22

20. Närman, P., Buschle, M., König, J., Johnson, P.: Hybrid Probabilistic Relational
Models for System Quality Analysis. In: Enterprise Distributed Object Computing
Conference (EDOC), 2010 14th IEEE International, IEEE 57�66

21. Friedman, N., Getoor, L., Koller, D., Pfe�er, A.: Learning probabilistic relational
models. In: International Joint Conference on Arti�cial Intelligence: Stockholm,
Sweden. Volume 16., Citeseer (1999) 1300�1309

22. Sommestad, T., Ekstedt, M., Johnson, P.: A probabilistic relational model for
security risk analysis. Computers & Security 29(6) (September 2010) 659�679

15

23. König, J., Nordstrom, L., Ekstedt, M.: Probabilistic Relational Models for as-
sessment of reliability of active distribution management systems. In: Probabilis-
tic Methods Applied to Power Systems (PMAPS), 2010 IEEE 11th International
Conference on, IEEE (2010) 454�459

24. Buckl, S., Franke, U., Holschke, O., Matthes, F., Schweda, C., Sommestad, T., Ull-
berg, J.: A pattern-based approach to quantitative enterprise architecture analysis.
In: 15th Americas Conference on Information Systems (AMCIS). (2009)

25. Lankhorst, M.M.: Introduction to enterprise architecture. In Lankhorst, M., ed.:
Enterprise Architecture at Work, Berlin, Heidelberg, New York, Springer (2005)

26. Jonkers, H., van den Berg, H., Iacob, M.E., Quartel, D.: Archimate
extension for modeling togaf's implementation and migration phases.
http://www.bizzdesign.com/index.php/component/docman/doc_download/18-

archimate-extension-for-modeling-togafs-implementation-and-migration-

phases (2010)
27. Halpin, T.: Object-role modeling (ORM/NIAM). Handbook on Architectures of

Information Systems (2006) 81�103
28. Kirchner, L.: Eine Methode zur Unterstützung des IT-Managements im Rahmen

der Unternehmensmodellierung. PhD thesis, Universität Duisburg-Essen, Berlin,
Germany (2008)

29. Frank, U.: The memo meta modelling language (mml) and language architecture
(icb-research report). Technical report, Institut für Informatik und Wirtschaftsin-
formatik, Duisburg-Essen, Germany (2009)

30. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Soft-
ware and Systems Modeling (2007) 345�359

31. Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing and utilising busi-
ness indicator systems within enterprise models � outline of a method. In: Model-
lierung betrieblicher Informationssysteme (MobIS 2008) � Modellierung zwischen
SOA und Compliance Management 27.-28. November 2008, Saarbrücken, Germany
(2008)

32. Jensen, F., Nielsen, T.: Bayesian networks and decision graphs. Springer Verlag,
New York (2007)

33. Object Management Group (OMG): Meta object facility (mof) speci�cation, ver-
sion 2.0 (2006)

34. Object Management Group (OMG): Omg uni�ed modeling languageTM(omg uml),
infrastructure � version 2.3 (formal/2010-05-03) (2010)

35. Lankes, J.: Metrics for Application Landscapes � Status Quo, Development, and a
Case Study. PhD thesis, Technische Universität München, Fakultät für Informatik,
Munich, Germany (2008)

36. Buckl, S., Matthes, F., Schweda, C.M.: Towards a method framework for enterprise
architecture management � a literature analysis from a viable system perspective.
In: 5th International Workshop on Business/IT Alignment and Interoperability
(BUSITAL 2010). (2010)

