Chapter 3.2.2
The STYLE Workbench:

Systematics of Typed Language Environments

Ingrid Wetzel!, Florian Matthes?, and Joachim W. Schmidt?

! Universitit Hamburg, Vogt-Kélln Strafe 30, D-22527 Hamburg, Germany
2 Technical University Hamburg-Harburg, Harburger SchloBstraBe 20, D-21071
Hamburg, Germany

Summary STYLE is a method to systematically construct a customized devel-
opment environment (CDE) for a given high-level data model by exploiting and
extending an existing persistent programming environment along three dimensions.

On the functional dimension, polymorphic types and higher-order functions are
used to extend the system functionality with new generic services and through the
integration of external tools. On the operational dimension, orthogonal persistence
is provided for application and meta data related to design objects. Finally, on the
modal dimension, reflective capabilities of persistent programming environments
make it possible to view data as executable code and vice versa. This is used in a
CDE to switch dynamically between different modes of a design object.

The STYLE approach is illustrated using a concrete CDE implemented for an
object-oriented data model exploiting and extending the Tycoon persistent pro-
gramming environment. This STYLE workbench provides integrated graphical and
textual modelling tools, generation support and data model animation.

1. Introduction and Overview

One of the remarkable features of persistent programming languages like PS-algol
[3], Napier-88 (see Chapter 1.1.3) and Tycoon (see Chapter 1.1.1) is their rich set
of data structuring facilities. Languages with orthogonal persistence and a sophis-
ticated type system greatly simplify the task of implementing information systems
that have to work with complex, long-lived bulk data structures (see Chapter 1.4.2).

In parallel to the development of persistent programming languages, research
in the area of database and conceptual models led to the development of advanced
data models (see, e.g. [1, 8, 11]) some of which have been integrated into database
programming languages, such as Pascal/R [20], DBPL (see Chapter 2.1.2), Galileo
[2] and Fibonacci (see Chapter 1.1.2).

The STYLE! approach [22] described in this paper clarifies the relationship
between data models and type systems. STYLE is based on the assumption that
high-level data models capture important application semantics that are beyond
the scope of type systems (see section 2 for a more detailed discussion). Therefore,
STYLE proposes a phase-oriented design process for information systems which
involves transformation tools that bridge the gap between a given semantic (con-
ceptual) model and the logical (computational) model underlying a typed program-
ming language [7, 23]. The requirements on these tools are described in section 3.1.
Due to the continuous evolution of data models, the set of transformation tools has
to be tailored to the data model at hand.

! Style: Systematics of TYped Language Environments.

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

STYLE’s main research contribution is a systematic method to construct a
customized development environment (CDE) for a given high-level data model. A
CDE exploits and extends an existing persistent programming environment (PPE)
along three dimensions as discussed in section 3.2. On the functional dimension,
polymorphic types and higher-order functions are used to extend the system func-
tionality through the development of generic services and through the integration
of external tools. On the operational dimension, orthogonal persistence is provided
for application and meta data related to design objects. Finally, on the modal di-
mension, reflective capabilities of persistent programming environments make it
possible to view data as executable code and vice versa. This is used in a CDE to
switch dynamically between different modes of a design object.

In each of these three dimensions, the CDE tools are organized into four levels
(kernel services, database functionality, data model support and data model usage)
that exhibit different degrees of reusability. The resulting matrix architecture of a
CDE is depicted in figure 3.1 and explained further in section 3.3.

In section 4 the STYLE approach is illustrated through a case study, the devel-
opment of an integrated workbench for the high-level object-oriented data model
OM1 [16] using the Tycoon system (see Chapter 2.1.4) as the underlying persis-
tent programming environment. This CDE integrates multiple graphical and tex-
tual modelling tools, application generators and animation support which includes
transactional programming and access to external servers.

2. Added Value through High-Level Data Models

This section discusses the main advantages of enriching a persistent programming
environment by a high-level data model, namely:

— provision of domain-specific conceptual abstractions,
— system-enforced integrity beyond types, and
— enriched generic system functionality.

2.1 Domain-Specific Abstractions

Data models provide domain-specific abstractions that capture the essential mod-
elling concepts required for the description of information systems. Data models
emphasize the conceptual modelling of an application in terms of user concepts
(e.g., classification, generalization, aggregation) instead of implementation abstrac-
tions (e.g., parameterization, modularization). These concepts are made available in
a user-oriented language with a mnemonic syntax (with keywords chosen are close
to natural language) that is easy to write and to understand. Many data models
also specify an alternative or additional graphical representation.

Data models are a medium for the communication between software engineers
and users during the modelling process and at the same time they should provide
a precise specification of the system to be realized. Therefore, data models tend
to blur the borderline between conceptual and computational perceptions of an
information system.

2.2 System-Enforced Integrity beyond Types

Some data model concepts can be captured directly by type systems, others are
beyond the scope of even the most sophisticated type systems. Nevertheless, it is

The STYLE Workbench: Systematics of Typed Language Environments

possible to provide language and system support for these concepts (like exception
handling, run-time integrity checking or active rules) that leads to a system-enforced
integrity beyond types. The following discussion of object-oriented data modelling
concepts may explain this idea which is central to the STYLE approach.

An object has structural properties described in terms of attributes. An at-
tribute can have a complex structure and it can reference other objects. A special-
ized object may inherit attributes of a more generic object, possibly with restrictions
on their attribute domains. Classical type systems suffice to describe and enforce
such structural object properties (perhaps lacking a user-oriented presentation).
The fact that an object has an immutable identity during its full lifetime is also
captured easily in a typed persistent language.

A class describes objects with the same set of properties. In the context of data
models, a class serves several purposes which are partially incompatible with the
notion of a typed class in object-oriented programming [22]. First, a class gives a
structural description of objects (intensional aspect). In data models a class also
denotes a set of objects with the same structure (estensional aspect). In some
data models, the identification of an object is also based on its class (identification
aspect). Finally, a class provides generic standard methods for creating, deleting,
observing and modifying objects (dynamic aspect).

The interaction between the intensional and the dynamic aspects of a class leads
to the difficult problem of how to handle the restriction of an attribute domain when
an object is specialized. A domain restriction makes perfect sense from a modelling
perspective but implies a covariant method specialization which leads to well-known
difficulties in static type systems for which — up to now — no satisfactory solution
has been found [9].

The extensional aspect of a class also goes beyond pure static type constraints.
At first glance, it appears sufficient to declare a persistent bulk type variable to
store the set of complex objects that make up the extent of a class. However, plain
insert and delete operations on a class extent do not enforce an extensional aspect
of classes, namely that the extent of a subclass is a subset of the extent of all
its superclasses. This subset constraint can be enforced easily by a programming
methodology where, for example, an object inserted in a class is automatically
inserted into its (transitive) superclasses. Similarly, referential integrity constraints
on class extents are introduced if objects in one class reference objects in other
classes. Again, the verification of such inter-class constraints is beyond the scope of
type systems.

Finally, some data models permit an object to migrate between classes that are
not in a subclass relationship at all and to dynamically lose attributes during its life-
time without changing its object identity. Such operations can change dynamically
the type of an object which has been bound to an identifier in a scope different from
the scope of the update operation (for example, in another transaction). Therefore,
such operations cannot be type-checked statically, even in languages with flexible
subtyping or type matching rules. However, by enforcing a programming method-
ology that correctly propagates a type change of an object o to all scopes that
possibly reference o, global application integrity can be ensured at run-time.

2.3 Enriched Generic System Functionality

Data models traditionally provide standard generic methods for objects of any class
(create, delete, update, acquire attribute, lose attribute, ...). These methods have
to satisfy (at least) the model-inherent integrity constraints. As discussed in the
previous subsection, the semantics of these generic methods may depend on global

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

schema information and can therefore not be captured fully by type systems that
rely on local type information only.

As described in [18], the code of such generic methods can be generated au-
tomatically based on the information provided by a data model. In a persistent
programming environment, type-directed reflective programming techniques can
be utilized to simplify this code generation process [22].

3. Data Modelling with STYLE

As explained so far, the STYLE approach supports a high-level data model by a
customized development environment (CDE) that extends the functionality of a
typed persistent programming environment.

Based on a classification of the tasks and tools in such a CDE given in sec-
tion 3.1, the advantages of the STYLE approach which utilizes the PPE :tself
for the tool implementation are explained in section 3.2. Section 3.3 presents the
generic matrix architecture underlying all CDEs that are built following the STYLE
approach.

3.1 A Classification of Data Modelling Tools and Tasks

A CDE consists of a highly connected and smoothly integrated set of tools that
automate work patterns which are typical for the design and implementation of
an information system using a high-level data model. One can classify these tools
based on the work patterns they support.

Modelling tools: On the data model level a CDE provides schema browsers and
editors for graphical and textual modelling. Additionally, it assists in analyzing
the status and the consistency of a schema through navigation tools (like class
hierarchy, class association and integrity rule browsers) as well as local and
global static schema checkers which are very similar to type checkers. Advanced
CDEs automatically propagate local renaming and restructuring operations
between different components of a large data model to ensure global schema
consistency.

Generator tools: A CDE offers generators that map between different views (or
modes) of a design object. On the data-model level, generators can ensure
the consistency between textual and graphical schema representations. Code
generators bridge the gap between data model and type system by generat-
ing type specifications enriched with procedural or declarative code to ensure
the maintenance of high-level model-inherent and user-defined integrity con-
straints by the generic methods that insert, delete and update objects. Since
the preservation of integrity constraints is central to the STYLE approach [15],
the methods generated have transaction semantics with recovery functionality.
Finally, generators can also be used to provide graphical or textual user inter-
faces that visualize typed persistent objects in a way that is consistent with
the high-level data model.

Integration facilities: A CDE should integrate the modelling and generator tools
described above and should provide analysis and visualization facilities for the
whole design process. In particular, dependency information between design
objects at different levels of abstraction should be recorded and, if possible, be
exploited for automatic view and change propagation.

The STYLE Workbench: Systematics of Typed Language Environments

3.2 Specifics of the STYLE Approach

The systematic and flexible customization of development environments in STYLE
exploits and expands the underlying PPE along three dimensions that should be
orthogonal to each other to achieve maximum modelling and system flexibility [22].

Functional dimension: A rich language semantics including subtyping, polymor-
phism and higher-order functions enables the construction of libraries with
generic services including type-safe wrappers for external design tool integra-
tion.

Operational dimension: Orthogonal persistence (object lifetimes independent
of object types), distribution abstraction, multi-threading and orthogonal mo-
bility of data, code and threads, greatly simplify the construction of CDEs.

Modal dimension: Modern persistent programming environments provide mul-
tiple, typed views onto code and data objects (concrete syntax, abstract syn-
tax, intermediate code, executable code) and flexible bidirectional mappings
between these modes as provided, for example, by extensible grammars (see
Chapter 3.2.3) and reflective programming techniques [21]. This can be ex-
ploited in a design environment to realize flexible mode switches on design
objects.

Each of these dimensions contributes to specific tasks in the construction of a CDE
as follows.

Functional dimension for tool building: The positive consequences of using a
strongly and polymorphically-typed PPE for CDE construction can be sum-
marized as follows.

— Information system construction and design tool construction take place in
the same language and system framework which facilitates code sharing and
code re-use.

— The components of a CDE can be provided as an open set of typed libraries
working on shared persistent data structures and not as a loosely coupled set
of applications that exchange design information in an ad-hoc manner via
files, command-line arguments or message queues. As sketched in figure 3.1,
and discussed further in the next section, these libraries can be organized
systematically into a matrix architecture.

Operational dimension for meta data management and analysis:
Information system development is itself a data-intensive application [12] since
it is necessary to store and retrieve bulk (meta) information about design ob-
jects (like graphical schemata, textual class definitions, or module interfaces)
and design decisions. A design decision is an annotated relationship between
design objects. For example, a design decision may relate a specification and
several alternative implementations to an annotation that explains why a cer-
tain alternative was chosen.

The consequences of utilizing a PPE for CDE construction are obvious.

— Meta data of complex structure can be stored persistently without the need
for complicated transformations into a canonical repository data format.

— Schema analysis and browsing tools can utilize tailored bulk data structures
and high-level iteration abstractions to query meta data.

— It is possible to define declarative views on a design object that correspond to
different levels of abstraction in a graphical schema or to multiple refinements
of a design object.

— Change propagation can be realized by meta data analysis and updates
exploiting integrity constraints defined for the meta data model.

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

Modal dimension for generation support: In STYLE, the graphical repre-
sentation of a class, its textual description, its corresponding module and its
GUI to visualize class instances are regarded as different modes of a single
design object. Each mode has its own operations and tool support. Switches
between different modes are implemented by parsers and generators that typ-
ically make use of the modal base services of a PPE.

A key characteristic of STYLE is the integration of the CDE tools as typed modules
in an open persistent programming environment. This makes it possible to imple-
ment flexible cross-calls between tools for navigation purposes and to factor-out
shared functionality like queries on meta data, generators or dependency tracking.
A shared, strongly-typed and persistent meta data repository also contributes to a
tight tool integration. Furthermore, external services can be integrated seamlessly
by means of wrapper modules with strongly-typed interfaces.

3.3 The STYLE Matrix Architecture

On each of the three dimensions identified in the previous section, the CDE tools
are organized into four layers (kernel services, database functionality, data model
support and data model usage) that exhibit different degrees of reusability. The
resulting matrix architecture of a CDE is depicted in figure 3.1.

High-Level A
Data Model application model
modelling support generation support
STYLE
Workbench
Customized
Development programming support integration support
Environment
¢ i i il 4 |
v v v v \
functionality operationality modality application library
data model usage
tools meta data mode change
DM specifics DM specifics DM code generation | Bl generated
interfaces user-defined

DB kernel services and modules || transactions
IC check application data optimization -

Persistent
Programming
Environment

| data model functionality
| kernel platform

bulk, iter, GUI threads program representation

Fig. 3.1. The architecture of a STYLE customized development environment

The CDE is realized as a layered library of typed modules of the target persistent
programming environment. The services of higher library layers are implemented
based on services of lower library layers.

For example, the kernel services bulk and iter provide multiple bulk data struc-
tures (lists, sets, bags) and iteration abstractions (selection, projection, join) that

The STYLE Workbench: Systematics of Typed Language Environments

are utilized by a generic integrity checking layer IC check that implements pred-
icative integrity checking on multiple bulk types. These services are specialized
further in the next layer to support the inherent integrity constraints of a specific
data model. The topmost layer is responsible for the presentation of these services
to the user.

A similar layering applies to the operational and modal dimension. Some of the
modules are simply wrappers for external tools (like text editors or graph editors)
and external services (like SQL databases or GUI libraries).

A typical user of a CDE environment is not aware of the fine-structure of these
tools but interacts directly with an integrated STYLE workbench that provides
modelling, generation, programming and integration support.

An application described in a given high-level data model is transformed with
the help of the CDE tools into a self-contained but open application library in
the target language TL. This library consists of generated TL interfaces and mod-
ules which exploit the type system of the target language and utilize at run-time
modules of the CDE itself to provide system integrity beyond typing. This depen-
dency between applications and the CDE is indicated by horizontal arrows from
the application library to the three lower levels of the CDE library.

4. A CDE for an Object-Oriented Data Model

In this section, the STYLE approach is illustrated by the description of a spe-
cific CDE, an integrated workbench for the high-level object-oriented data model
OM1 [16] using the Tycoon system (see Chapter 2.1.4) as the underlying persistent
programming environment.

4.1 Overview of the OM1 Data Model

The data model OM1 is based on concepts of semantic data models [11, 6] which
emphasize the structural definition of objects. In addition, it provides additional
constructs for formulating inter-object integrity constraints. Furthermore, OM1 is
influenced by a formalization of object-oriented data models that supports both,
structured values and objects [4, 5, 16, 19]. An application schema consists of a set
of type and class definitions. Values are grouped into types describing immutable
sets of values with a uniform structure together with operations defined on such
values. Objects are abstractions of real-world entities and have an identity. This
identity is independent of the values which are used to describe objects. Object
identifiers are immutable during an object’s lifetime. Objects with the same struc-
ture and behaviour are grouped into classes providing mutable collections as well as
abstractions of individual objects. Relationships between objects are expressed by
reference attributes. The description of multiple aspects or roles of the same object
is modelled by simultaneous membership of an object in more than one class and
by the migration of objects between classes.

OM1 has the usual model-inherent subclass and referential integrity constraints
and supports the formulation of user-defined integrity constraints.

Application-specific object behaviour is expressed in the OM1 data model us-
ing a calculus derived from formal specification languages [10, 13] [17]. It is not
necessary to specify standard query and update methods that satisfy the integrity
constraints. Instead of this, integrity-preserving implementations for these methods
are provided by the data model.

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

Class PackageTour

Relationships

Specialization
isA Tour fix

Dependencies
deleteDependentOn Hotel with removePackageTourWithHotel,
deleteDependentOn Flight ...

Structure

Attributes
key region : > Region,
key town : > Town,
hotel : > Hotel,
flights : [forth : > Flight, back : > Flight]

Constraints

Static
HotelFlight:
(this.hotel.region = this.flights.forth.dest Airport.region) A
(this.hotel.region = this.flights.back.depAirport.region),
(* the forth flight’s destination airport and the return flight’s
departure airport must belong to the same region as the hotel *),

Methods

Transactions
removePackageTourWithHotel
(packageTour : > PackageTour date : Date) =
begin
Actualized Tour.modify WithPackageTour(packageTour date);
removePackageTour(packageTour)
end

End

Fig. 4.1. A class definition in the object-oriented data model OM1

The STYLE Workbench: Systematics of Typed Language Environments

Figure 4.1 gives an example of a textual OM1 class definition. The class Package-
Tour is part of a larger information system for travel agencies. The main classes of
this application are flights, hotels and package tours (see also the nodes and arcs
in the schema graph depicted in figure 4.2). Each package tour consists of a pair of
back and forth flights together with hotel information. A user-defined integrity con-
straint states that the area specified for the flights has to match the area specified
for the hotel.

4.2 User-Oriented Modelling Tools

The actual implementation of the OM1 CDE integrates the following modelling
tools, some of which are visible in figure 4.2.

=

Airpeot

inCountry

=l OM1 Graphic Reference Editor [Tracy] =l OM1 Class Editor [Tracy]
Choice =| view: Layerst| layerz Grid | s File v Editor v) Queries =) _Processing v] Information
country Class : PackageTour,
Structure
County Attributes

key tourNo : Int,

constant key country : ref Country,

trave|Time : TravelTime,

constant area : ref Area,

constant town : ref Town,

constant hotel : ref Hotel,

flights : Record forth : ref Flight, back: ref Flight end,

4] »|

Town
Constraints
destairport depairport area location Hote\thht (this hotel.area is this flights.forth.route, destairport.area) AND
e (this.hotel.area is this.flights. hack route.depairport.ares), ~
TraveltimeOi (thic.ravel Time start after s notel trave ITime start) AND
(this.travelTime.start after
hic:Fights forth fravelTime.s tarb) AND
area ((this.trave | Time start after
this. flights.back trave Time.start) AND
(this.trave|Time till before this. hotel.trave Time.til) AND
- Package Tour Hatel ((this. travelTime,till befere
rne & ThightsBack == (=] Text Editar V3 - PackageTour I, dir; /tmp_mmt7local/nse/teamwar |
File =) Wiew ©) Edit v} Find
= - e it) Find+
ol flight-Input . f T
Tnterface Packagerour
. B o) (Uow o) Thport 9 -
packageTour 0M10hje<t :Iter :Type :Country :Area :Hotel :Flight
- * fowr town Flight hotel ares country
. . o || export
flightNo: 707, /I error iexcention with end
T <:tol
T OM1 Instance Browser weekday: Monday, BEtKEy Fun(n
awauua] n(m(kw KEVT k2 :keyT) :Bool
Classes Methods t ITime: _Display... oaokup :Funk :KeyT.
TGS (Bl) Tackupobisct : Fun(n ommhjea T
— . te :F
Tour oI [Tereate route: _Display..) create shunly Inuth -
PackageTour rermove FronTouf : Fun(% tus:rTv 1AddT) o T
i 3 i quotaTable: Display.. getTourko :Fun(o :T) :Tnt
ActualizedTour faedi Dieplay..) gettountry :Funo :T) :country,
Hotel I lookup . 5] getTravelTine :Funla :) ng Travemme
Flight elements o= JGEE, getArea :Funfo :T) :are
- getToun tFunCo :T) ot T
) getHotel : hotel.T

(Eppl) _Reset)

ne i) Shatord forth :Flight.T back :f1ight.T end

unfo’:T travelTime :Type.TravelTine) :
setFliahts : n(n :T flights :Record Forth :Flight.T back
FTighe.T. end)

Fig. 4.2. Integration of components in a STYLE workbench

— A graphical schema editor is used to define class and type nodes with class
reference arcs and inheritance links between classes. The editor supports views
of different granularity.

— A class and type browser is used to select class and type names defined in a
schema, for example, to invoke a text editor on a class.

— A textual class editor and a textual type editor are used to specify class compo-
nents and type structures.

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

— Additional tools support the parsing, consistency checking and the generation of
pretty-printed LaTeX documents for (parts of) an OM1 schema.

— A generator maps graphical OM1 class diagrams into corresponding textual OM1
class definitions.

— A toolbox provides additional local and global consistency checks and mecha-
nisms to propagate changes in an OM1 schema (for example, class or attribute
renaming). These algorithms can be invoked interactively from virtually all CDE
tools.

4.3 Application Generators

interface PackageTour
import
:OM10Object :Iter :Type :Country :Area :Hotel :Flight :Town
tour town flight hotel area country
export
error :Exception with end
T <:tour. T

getKey :Fun(o :T) :KeyT
keyEqual :Fun(kl :KeyT k2 :KeyT) :Bool
lookup :Fun(k :KeyT) :T
lookupObject :Fun(o :OM1Object.T) : T
create :Fun(v :InputT) :T
remove :Fun(o :T) :Ok
fromTour :Fun(o :tour.T v :AddT) : T
getTourNo :Fun(o :T) :Int
getCountry :Fun(o :T) :country. T
getTravelTime :Fun(o :T) :Type.Travel Time
getArea :Fun(o :T) :area.T
getTown :Fun(o :T) :town.T
getHotel :Fun(o :T) :hotel. T
getFlights :Fun(o :T) :Record forth :flight. T back :flight. T end
setTravelTime :Fun(o :T travelTime :Type.TravelTime) :Ok
setFlights :Fun(o :T flights :Record forth :flight. T back :flight. T end) :Ok
elements :Fun() :Iter. T(T)
classInfo :Tuple name :String end
end;

Fig. 4.3. A typed Tycoon implementation of the OM1 class packageTour

An OMI1 class definition consists of structure, constraint and method specifications
and is implemented by typed interfaces and modules in the Tycoon language TL
(see figure 4.3). The TL implementation defines encapsulated objects with standard
methods that satisfy the model-inherent and user-defined constraints. Access to the
TL objects is only possible through the generated standard methods. User-defined
class methods correspond to transactions of the information system and are built
on top of the standard methods. As indicated in figure 4.3, the standard methods
raise exceptions to signal integrity violations which can then be handled by the
application code without breaking the encapsulation of the object.

The STYLE Workbench: Systematics of Typed Language Environments

The interfaces and modules created for class definitions extend the Tycoon
environment with an application-specific library. The generated modules can be
kept concise by utilizing pre-existing data-model-specific libraries of the CDE to
factor out repeating tasks from the generated code. The provision of data-model-
specific libraries is termed situative lifting of the target language in the STYLE
approach.

The cooperation between TL code generators and the generic CDE services can
be exemplified by the integrity checking task of a CDE. For a specific OM1 integrity
constraint (e.g., referential integrity between two classes), preconditions and delayed
conditions have to be generated for the insert and delete methods of the classes
involved. Instead of hard-wiring these conditions into the method’s implementation
code, a generic TL library for constraint handling is utilized. It provides dynamic
collections of constraints (implemented as bulk collections of function values in TL)
that can be attached dynamically to methods. As a consequence, the constraint
handling is fully separated from the OM1 interface and module generation process.
Global OM1 constraints are transformed into boolean TL predicates which are then
attached dynamically to the relevant methods.

The main benefit of this approach is locality. A local update of a single class
definition leads to a local update of the corresponding TL class implementation
and a reinitialization of the constraint database. No other method code needs to
be recompiled.

4.4 Animation Support

An animation component provides a generic database browser to create, delete
and update individual objects (instances of classes) and to navigate through the
persistent object base following the (set-valued) associations between objects. The
animation tool uses the generated application modules to guarantee the enforcement
of integrity constraints specified in the data model. The type-specific visualization
code is also generated automatically.

4.5 Integration with Tycoon Transaction Code

Arbitrary user transactions can be implemented on top of the generated class im-
plementations using the algorithmically-complete persistent programming language
TL. For example, a user-defined method removeHotel can extend the functionality
of the hotel.remove operation by rebooking all package tours prior to the removal
of a hotel. See [14] for a discussion on how generic methods and user-defined trans-
action code have to interact to maintain the consistency in an object base.

The language TL also provides mechanisms to enable interoperability of OM1
applictation code with existing (legacy) database systems like Ingres, Oracle and
ObjectStore.

4.6 Application Development Using the Integrated Prototype

Figure 4.4 sketches the main modelling steps supported by the OM1 customized
development environment. First, the structural schema information is modelled
using the graphical editor.

Based on this information the structural part of the textual class definitions is
generated. Interactive queries at the schema level can be utilized to detect incom-
plete schema information, e.g. references to undefined classes. Integrity constraints

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

and user-defined class methods are also added at this stage using a structured-
text editor. Navigation facilities to referenced and referencing classes simplify the
formulation of inter-class integrity constraints.

The programming layer is automatically populated with the generated class
interfaces and modules implementing the standard methods. The application pro-
grammer implements the user-defined methods on top of these interfaces. If neces-
sary, user-defined methods can also override standard methods.

The animation component supports the validation of an OM1 model by popu-
lating a persistent object base with sample objects and by invoking standard and
user-defined methods on these objects. The visualization code generated for the
animation can also be reused and adapted for use after the prototype phase.

graphical modelling
nodes, arcs,
value attributes,
isa__links

textual modelling

object structures, ICs,
isa relationships methods

programming

types,
standard methods,

animation

top level,
db interaction

Fig. 4.4. Tasks and tools involved in the OM1 modelling process

5. Concluding Remarks

The customized development environment for the OM1 data model clearly demon-
strates that persistent programming environments are a suitable platform for both
the construction of data-intensive applications utilizing a high-level data model as
well as for the construction of tightly integrated design and modelling tools.

The STYLE Workbench: Systematics of Typed Language Environments

The distinction between functional, operational and modal requirements was of

great use in the organization of the STYLE tool infrastructure. It remains to be
verified how much of this infrastructure can be re-used for the construction of other

CDEs.

Acknowledgement This research is supported by ESPRIT Basic Research, Project
FIDE, #6309.

References

10.

11.

12.

13.

14.

J.-R. Abrial. Data semantics. In J.W. Klimbie and K.L. Koffeman, editors,
Data-Base Management. North-Holland, Amsterdam, 1974.

A. Albano, L. Cardelli, and Orsini R. Galileo: A strongly-typed, interactive
conceptual language. ACM Transactions on Database Systems, 10(2):230-260,
1985.

. M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-algol: An algol with a

persistent heap. ACM SIGPLAN Notices, 17(7), July 1981.
C. Beeri. A formal approach to object-oriented databases. Data and Knowledge
Engineering, 5:352-382, 1990.

. C. Beeri. New data models and languages — the challenge. In Proceedings of

the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 1992.

. A. Borgida, J. Mylopoulos, and J. Schmidt. The TaxisDL software description

language. In M. Jarke, editor, Database Application Engineering with DAIDA,
pages 65—84. Springer-Verlag, 1993.

. R.P. Bragger, A. Dudler, J. Rebsamen, and C.A. Zehnder. Gambit: An in-

teractive database design tool for data structures, integrity constraints and
transactions. In C.A. Zehnder, editor, Database Techniques for Professional
Worskstations, pages 65-96. Department Informatik, ETH Zirich, Switzerland,
September 1983.

M.L. Brodie, J. Mylopoulos, and J.W. Schmidt, editors. On Conceptual Mod-
elling, Perspectives from Artificial Intelligence, Databases, and Programming
Languages. Springer-Verlag, 1984.

. W. Cook. A proposal for making eiffel type-safe. In ECOOP 90 Proc. European

Conference on Object Oriented Programming, 1989.

E.W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1989.

R. Hull and R. King. Semantic database modeling: Survey, applications, and
research issues. ACM Computing Surveys, 19(3), 1987.

M. Jeusfeld, M. Mertikas, . Wetzel, Jarke. M., and J.W. Schmidt. Database
application development as an object modelling activity. In Proceedings of the
Sixzteenth International Conference on Very Large Databases, Brisbane, Aus-
tralia, August 1990.

G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on
Programming Languages and Systems, 11(4):517-561, October 1989.

K.-D. Schewe. Specification of Data-Intensive Application Systems. PhD thesis,
Technische Universitat Cottbus, 1994.

15

16.

17.

18.

19.

20.

21.

22.

23.

Ingrid Wetzel, Florian Matthes, Joachim W. Schmidt

. K.-D. Schewe, J.W. Schmidt, D. Stemple, B. Thalheim, and 1. Wetzel. A re-
flective approach to method generation in object oriented databases. Rostocker
Informatik Berichte Nr. 13, Fachbereich Informatik, Universitait Rostock, Ger-
many, 1992.

K.-D. Schewe, J.W. Schmidt, and I. Wetzel. Identification, genericity and con-
sistency in object-oriented databases. In J. Biskup and R. Hull, editors, Pro-
ceedings of the International Conference on Database Theory, volume 646 of
Lecture Notes in Computer Science, pages 341-356. Springer-Verlag, October
1992.

K.-D. Schewe, J.W. Schmidt, I. Wetzel, N. Bidoit, D. Castelli, and C. Megh-
ini. Abstract machines revisited. FIDE Technical Report Series FIDE/91/11,
FIDE Project Coordinator, Department of Computing Sciences, University of
Glasgow, Glasgow G128QQ, March 1991.

K.-D. Schewe, B. Thalheim, J.W. Schmidt, and I. Wetzel. Integrity enforcement
in object-oriented databases. In U. Lipeck, editor, Proc. 4th Int. Workshop on
Foundations of Models and Languages for Data and Objects, Volkse, Germany,
October 19-22, 1992.

K.-D. Schewe, B. Thalheim, and I. Wetzel. Foundations of object-oriented
database concepts. Informatik Fachbericht FBI-HH-B-157/92, Fachbereich In-
formatik, Universitat Hamburg, Germany, November 1992.

J.W. Schmidt. Some high level language constructs for data of type relation.
In Proceedings of the ACM-SIGMOD International Conference on Management
of Data, Toronto, Canada, August 1977.

D. Stemple, T. Sheard, and L. Fegaras. Linguistic reflection: A bridge from
programming to database languages. In Proceedings 25th Annual Hawaii Inter-
national Conference on System Sciences, pages 46-55, 1992.

I. Wetzel. Programmieren mit STYLE: Uber die systematische Fntwicklung
von Programmierumgebungen. PhD thesis, Fachbereich Informatik, Universitat
Hamburg, Germany, July 1994.

1. Wetzel, K.-D. Schewe, J.W. Schmidt, and A. Borgida. Specification and
refinement of databases. In M. Jarke, editor, Database Application Fngineering
with DAIDA, pages 283-318. Springer-Verlag, 1993.

