Appeared in: Proceedings of the 5th Conference on FExtending Database
Technology, EDBT’96, Avignon, France, March 1996. Springer Verlag.

Exploiting Persistent Intermediate Code
Representations
in Open Database Environments*

Andreas Gawecki Florian Matthes

Universitat Hamburg, Vogt-Kolln-Strafie 30
D-22527 Hamburg, Germany
{gawecki,matthes}@informatik.uni-hamburg.de

Abstract. Modern database environments have to execute, store, ana-
lyze, optimize and generate code at various levels of abstraction (queries,
views, triggers, query execution plans, methods, 4GL programs, etc.).
We present TML, an abstract persistent intermediate code representa-
tion developed in the Tycoon® project to fully integrate static and dy-
namic code analysis and rewriting. TML is a continuation passing style
(CPS) language which excels in its explicit, high-level representation of
control and data dependencies. We formally define TML and its core
rewrite rules which unify many well-known optimizing transformations.
We also present Tycoon’s innovative reflective system architecture which
supports modular compile-time as well as global runtime optimizations.
Moreover, we describe how this architecture enables optimizations across
abstraction barriers in large modular persistent applications including
embedded declarative queries.

1 Introduction and Motivation

The traditional focus of database language research has been on high-level lan-
guages for data access and manipulation (query languages, trigger definition
languages, 4th generation languages, script languages) or on implementation-
oriented languages which capture the characteristic operations of a specific target
system at hand (relational algebra, object algebra, structural recursion, ...).

A closer look at tools working on such code representations like query and
program optimizers reveals a large number of common tasks which at present
are addressed with often incompatible technologies:

* This research is supported by ESPRIT Basic Research, Project FIDE, #6309 and
by a grant from the German Israeli Foundation for Research and Development (bulk
data classification, 1-183 060).

2 Tycoon: Typed Communicating Objects in Open Environments.

> Binding analysis: Which entity (table, index, view, function, method, vari-
able, etc.) is denoted by an identifier? Are there multiple references to the
same entity?

> Identifier substitution by a bound value or expression: View expansion, pro-
cedure or method inlining, constant folding, substitution of host program-
ming language parameters, etc.

> Free variable analysis: Does a variable appear in a query predicate? Does a
procedure depend on global variables? Does a query contain programming
language variables? Are there independent subexpressions? Which base re-
lations appear inside an integrity constraint?

After a decade of experience with building integrated database programming
environments [Schmidt 1977; Mall et al. 1984; Schmidt and Matthes 1994] and
successive versions of optimizers for their query languages [Jarke and Schmidt
1982; Jarke et al. 1982; Jarke and Koch 1984; Bottcher et al. 1986; Eder et al.
1991], we made the radical decision to replace special-purpose representations
for queries, programs and scripts with a single, expressive intermediate language.
We thereby avoid incompatibilities and redundancies arising from the repeated
implementation of the above functionality.

In this paper, we present the Tycoon Machine Language (TML), the common
abstract persistent intermediate code representation used for local compile-time
as well as global runtime optimizations in the Tycoon system developed at the
University of Hamburg. The development of TML was influenced heavily by
continuation passing style (CPS) representations found in modern optimizing
compilers for functional, imperative and object-oriented languages [Appel 1992;
Kranz et al. 1986; Kelsey 1989; Teodosiu 1991; Gawecki 1992].

TML inherits the advantages of CPS representations which support a wide
range of algorithmically-complete languages, multiple front-ends and back-ends
and cross-language optimization. To address the specific needs of database en-
vironments, TML also supports optimizations based on runtime bindings to ar-
bitrary complex values in the persistent store and mechanisms to work with
persistent TML terms attached to executable code.

The paper is organized as follows: In section 2 we present the abstract syntax
and semantics of the CPS-based intermediate representation TML. The core
rewrite rules on TML terms are described in section 3. Examples are then given
of innovative code optimization architectures which exploit the availability of
persistent TML terms at runtime (section 4.1. A full description of TML and its
rewrite rules can be found in [Gawecki and Matthes 1994; Kiradjiev 1994]. The
paper ends with a perspective on future research work and on other innovative

application domains for uniform persistent code and query representations in
the spirit of TML.

2 The Tycoon Intermediate Representation TML

This section presents the CPS-based intermediate representation TML (Tycoon
Machine Language) which is used for integrated program and query compilation,

transformation and analysis, both at compile time and at runtime.

2.1 Advantages of CPS Intermediate Representations

Continuation Passing Style (CPS) is a powerful yet simple program representa-
tion technique. Using continuations, various control structures commonly found
in programming languages such as conditionals, (non-block-structured) loops
and exception handling can be expressed quite naturally. While this is also true
for many other intermediate representations such as triples or quadrupels, the
main advantage of CPS lies in the great reduction of the number of program
constructs which have to be handled by the compile-time and runtime optimizer
while preserving much of the structural information of the source language input.

CPS representations are well-suited for machine analysis by making the flow
of control and of data explicit through the uniform use of one language construct:
the procedure call. Since CPS does not have implicit procedure returns, this
language construct can be viewed as a generalized goto with parameter passing
[Steele 1978].

CPS has simple and clean semantics based on the A-calculus. TML is effec-
tively a call-by-value A-calculus with store semantics. A number of predefined
primitive procedures (section 2.3) operate on an implicit, hidden store.

CPS supports higher-order languages, i.e. languages where functions may
take other functions as arguments. For example, the selection operation o,(R)
in relational algebra takes two arguments, a range relation R and a selection
predicate p where p can be understood as a boolean function on the element
type of R.

Like terms in the A-calculus, CPS terms provide an integrated representa-
tion of code fragments and their associated data bindings. To meet the specific
requirements of persistent languages and database languages, TML terms may
contain simple literal values and object identifiers which denote arbitarily com-
plex objects (tables, indices, ADT values) in the persistent Tycoon object store.

By representing programs in CPS, many well-known program and algebraic
query optimization techniques become special cases of a few simple and general
A-calculus transformations. These transformations can be applied freely even
in the presence of nonterminating computations and/or side-effecting calls to
primitive procedures. This is due to the syntactical restrictions on CPS terms
(see Sec. 2.2) which require actual parameters to function calls to be constants,
variables or abstractions.

Six different node types are sufficient to represent the data structures for
a TML tree. This simplicity facilitates the construction of compact language
processors like compiler front ends, back ends and optimizers.

2.2 The Minimalistic Abstract TML Syntax

The complete abstract syntax of TML is defined in figure 1. The set of literal
constants (Lit) includes simple values such as integers, characters and boolean

lit € Lit Literal constants (including object identifiers)
t € Temp Temporary variables
c € Cont Continuation variables
prim € Prim Primitive procedures (procedure constants)
v u=t]c Variables
val :=1it | v | abs Values
abs ::= A(v1..vn) app Abstractions, n > 0
app ::= (valp valy..val,) Applications, n > 0
| (primvaly..valy)

Fig. 1. Abstract Syntax for the Tycoon Machine Language TML

values, as well as references (object identifiers, OIDs) to complex objects in
the persistent object store. These wvalues can be bound to language variables
(identifiers) by means of an application. In the following example, an integer
literal, a character constant and an object identifier are bound to variables i, ch
and oid, respectively. These variables might be used as values within the body
app of the A-abstraction (which in turn must be an application):

(A(i ch oid) app
13

1

a
<oid 0z005b4780 >)

Abstractions are also valuesin TML, i.e. TML is a higher-order language. This
means that abstractions may be bound to variables and that these variables may
be used in the functional position of an application (valy on the right hand side of
the production for app in figure 1). In TML, the body of an abstraction must be
an application, and applications are surrounded by parentheses. Therefore, the
scope of the abstraction is unambiguous. In the following example, an abstraction
with a single formal parameter ¢t is bound to the variable fn, and fn is used
immediately within an application of the abstraction, whereby t is bound to an
integer value:

(A(fn) (fn 13)
A(t) app)

Although the semantics of TML is based on the general A-calculus, well-
formed TML programs must satisfy a number of additional constraints?:

1. A value used in the functional position of an application must, at runtime,
evaluate to an abstraction. Furthermore, this abstraction must expect the
same number of value and continuation arguments as the given application,

It is important to note that these constraints are never violated by any of the TML
rewrite rules introduced in section 3.

and it must expect them in the same order?. This property is statically
enforced by the compiler front end which performs the necessary type check-
ing on the input to the TML code generator, rejecting any program which
contains an application which might violate this rule.

2. Similarly, an application of a primitive procedure must obey the calling con-
ventions of the primitive. Again, the compiler front end (which generates
calls to primitive procedures) has to enforce this constraint on any input
program.

3. Continuations may not escape (by binding them to value identifiers), there-

fore, continuations are not first-class values in TML. It is not possible to store
continuations in data structures where they might be retrieved and applied
subsequently. This restriction allows TML procedure calls to be compiled
into efficient (stack based) procedure calls and returns on stock hardware,
i.e. the main motivation behind this restriction lies in the target code gen-
eration techniques we use.
Several CPS-based compilers support continuations as first class values [Ap-
pel 1992: Kranz et al. 1986; Kelsey 1989; Teodosiu 1991]. However, these
compilers have to translate source language constructs which capture the
current continuation, for example, the call/cc of SCHEME [Steele 1986], or
the built-in polymorphic function callcc of ML.

4. Identifiers (value and continuation variables) may not be bound more than
once (unique binding rule), i.e. an identifier may occur only once in at most
one formal parameter list. For example, the following two TML code frag-
ments are not allowed:

A(x x)app

A(x)(A(x)app val)
This means that the TML code generator has to use fresh identifiers for the
parameter list of every new A-abstraction. The TML optimizer (section 3)
and the target code generator rely heavily on this property.

5. Abstractions which are used as values (that is, not as continuations and not
in functional position of applications) may take an arbitrary number of value
parameters, but they must take exactly two continuation parameters: one for
the normal continuation (which receives the computed value) and one for the
exception continuation (which is invoked if a runtime exception occurs).

Abstractions which are used as values correspond to first-class, user level
procedures. In order to make the printed TML representation used in this pa-
per more readable, these procedures (proc abstractions) are differentiated from
continuations (cont abstractions) even though both have the same internal rep-
resentation and the same semantics (A-abstractions). The differentiation is based
on a purely syntactic property of abstractions: a continuation does not take any

* We currently investigate techniques for compiling and type-checking variable-length
argument lists. These techniques would merely weaken the given well-formedness
rule.

other continuation as a parameter. Thus, the parameter lists of continuation ab-
stractions do not contain any continuation variables. The following two syntactic
equivalences reflect these considerations (n > 0):

A(t1..tn) app = cont(ty..t,)app
A(t1.tn e cc)app = proc(ty..ty c. c.) app

2.3 Adaptability through Primitive Procedures

In TML, most of the “real work” needed to implement source language semantics
(e.g. integer arithmetic, query evaluation) is factored out into primitive proce-
dures which are not considered part of the intermediate language itself.

A typical set of primitive procedures used for the compilation of a fully-
fledged imperative, algorithmically-complete polymorphic programming language
(TL [Matthes and Schmidt 1992])) is listed in figure 2. By definition, each prim-
itive calls exactly one of its continuation arguments tail-recursively, passing the
result of its computation, if any. For example, some arithmetic primitives take
two continuations: the normal continuation which receives the calculated result,
and an exception continuation which is invoked if the primitive fails due to over-
flow or division by zero.

Although the set of predefined primitive procedures is typically chosen to be
rather small, the set does not need to be minimal due to efficiency tradeoffs.
Moreover, it is possible to add new primitive procedures in order to meet the
specific needs of more specialized source languages (e.g., supporting multiple
bulk data types or scientific or statistical databases). The easiest way to sup-
port such complex instructions in TML is to define new primitives which are
mapped directly to corresponding abstract machine instructions during target
code generation.

New primitive procedures can be defined at back end compile-time by pro-
viding the following information to the generic TML rewriting tools:

1. A function to generate target machine code for a given call. This function
is used by the code generator to map TML primitive procedure calls into
sequences of target machine instructions or calls to the underlying runtime
system.

2. A meta-evaluation function to perform optimizations on TML nodes repre-
senting calls to this primitive procedure. This function is used by the op-
timizer to perform constant folding and dead code elimination. To give an
example, the primitive procedure '+’ has an associated function which is
able to reduce the TML application node

(+12¢c c)
into an application of the continuation which represents normal (i.e. non-
exceptional) execution with the result:

(cc 3)

3. A function to estimate the runtime cost of a given call (represented by a TML
node) to the primitive procedure, measured in the number of instructions
necessary to implement the primitive on an idealized abstract machine. This
function is used by the optimizer to estimate the possible savings resulting
from the inlining of a TML procedure containing calls to the primitive.

4. A collection of attributes useful for the optimizer, for example commutativ-
ity, side effect classes [Gifford and Lucassen 1986), and flags to enable or
disable certain optimization rules. There is a default value for any of these
attributes, representing the worst possible case (i.e no further information
available) for the optimizer.

Note that exception handling is expressed in TML by passing continuations: Ev-
ery function accepts an additional argument, the exception continuation, which
is normally passed through to other functions called. To install a new excep-
tion handler, however, a new continuation function which handles exceptions in
the callee’s body is passed. The ’old’ handler is stored automatically within the
lexical environment.

This approach makes control flow explicit even in the presence of exceptions,
with the advantage that exception handling can be optimized immediately with-
out special optimization rules. This becomes important when the optimizer is
inlining functions which perform extensive exception handling, which is quite
common in high-level value-oriented languages.

The primitive procedure Y is a multiple-value-return CPS version of the
lambda-calculus fixed point operator. The abstraction given to the Y-primitive
takes n abstraction arguments v;..v, and a continuation abstraction c¢g, and re-
turns n+ 1 abstractions. As usual in CPS, this multiple-value-return is expressed
by calling the continuation ¢ with the desired return values.

The Y-primitive computes the least fixed point of its abstraction argument.
This fixed point is a vector of mutually recursive procedures and/or continua-
tions. In other words, the effect of the Y-primitive is that the n + 1 abstractions
cont()app and abs;..abs, are bound to the variables ¢y and vy..v,, respectively,
and that these bindings are visible within the abstractions themselves. Moreover,
the continuation cont()app which is bound to ¢q is invoked tail-recursively (by
Y) after all the recursive bindings have been established.

To give a simple example, a loop which iterates from 1 up to 10, written in
the Tycoon Language as for i = 1 upto 10 do f(i) end is expressed in TML as
follows:

(Y proc(co for ¢)

(c
cont() ; continuation, bound to cg
(for 1) ; loop entry
cont(i) ; loop head, bound to 'for’
(> 110 cc cont() ; loop exit
(f i ce cont(tl) ; loop body

(+ 11 ce cont(t2)
(for £2)))))) ; recursion

p valy valz ce c.)

p valy vals ¢1 c2)

p valy vals ¢)
char2int val c)
int2char val c)

array valy ...val, c)
vector valy ...val, c)
new val; valy c)

(
(
(
(
(
(
(
(

($Snew valy valz c)

valy valy c)

:= valy val; vals ¢)
valy valy vals c)

]
]:= valy vals vals)

valy ...val,
Cl1...Cn [Cn+1])

(
(size val c)

(move valy ... vals c)
($move wvaly ... vals)
(

(pushHandler ¢; cz)

(popHandler c¢)

(raise val)

ccall valfm: valesn 1 c2)

integer arithmetic, p € {+, —, %, /, %}

integer comparison, p € {<, >, <=, >=}

bit operations on integers, p € {<<,>>,&,|,",”
convert a byte to an integer value

convert an integer to a byte value

create a mutable array holding » object references
create an immutable array

create a mutable array holding vali object
references, initialized with valz

create a mutable byte array holding valy simple
byte values, initialized with vals

array access: indirect indexed load

array update: indirect indexed store

byte array access

byte array update

case analysis based on object identity with. ..
values and. ..

branches (optional else branch)

Y A(co valy ...val, ¢)app) the Y combinator

array or byte array size (in slots)

move array contents

move bytearray contents

C language function call

Install continuation c; as a new
exception handler, continue with ¢
Remove the topmost exception handler,
continue with ¢

Raise exception

Fig.2. TML primitives for the compilation of an imperative programming language

As usual, cc and ce represent the current normal and the current exception
continuation, respectively. The introduction of the Y-primitive obviates the need
to extend the intermediate language with a special recursive binding operator
similar to the letrec special form of SCHEME. A similar primitive is used in the
ORBIT compiler [Kranz et al. 1986).

The set of TML primitives is described in more detail with additional exam-
ples in [Gawecki and Matthes 1994; Kiradjiev 1994].

3 Analysis and Rewriting of TML Intermediate
Representations

We have organized the TML optimizer into two separate passes, namely a re-
duction pass and the ezpansion pass. During the reduction pass, a number of
generic rewrite rules are applied to the TML tree until no more rules are appli-
cable. Termination is guaranteed because each of the rewrite rules reduces the

size of the TML tree if it is applied.

The subsequent expansion pass tries to substitute bound A-abstractions (pro-
cedures or continuations) at the positions where they are applied. Effectively, this
CPS transformation performs procedure inlining in terms of traditional compiler
optimization or view expansion in database terminology. The decision whether
a given use of a bound abstraction is to be substituted is based on a heuristic
cost model similar to the one described by [Appel 1992].

When one or more abstractions are substituted during the expansion pass,
there usually is the opportunity to perform more reductions on the TML tree
(this is indeed the main reason why inlining is performed in programming lan-
guages at all), so each expansion pass is followed by a reduction pass. Likewise,
the reduction pass may reveal new opportunities to perform expansions, so the
two passes are applied repeatedly until no more changes are made to the TML
tree. To guarantee the termination of this process even in obscure cases, a penalty
is accumulated at each round of the reduction/expansion phases. The optimiza-
tion process stops when this penalty reaches a certain limit.

In the following, we give a formal definition of the core TML rewrite rules.
We present these rules using the notation

(precondition) :

A rule name, p

indicating that the TML expression A may be rewritten to the TML expres-
sion B if precondition evaluates to true. By convention, an empty precondition
evaluates to true.

A key feature of CPS-based representations is the fact that control and data
dependencies are captured uniformly by the concept of bound variables (variable
occurrences inside the scope of a binder). In the precondition, we denote the
number of occurrences of a variable v in an TML expression E with |E|,. This
function is defined inductively on the abstract syntax of TML as follows:

vy =1
|lit|, =0
|prim|, =0

1o, =0 (01 # v3)
|A(v1-vn) apply = |apply
|(valy valy..valy)|y = Y rq |vali]y

Similarly, on the right side of a TML rewrite rule, we use the notation
Elval/v] which denotes the expression E where every occurrence of the variable
v is replaced by the value val. Name clashes cannot occur during substitution
because each variable is bound only once in a TML tree (unique binding rule).
This property is achieved by the a-conversion performed during TML code gen-
eration, and is never violated by any of the TML rewrite rules, except in one
case: if, in an application of the substitution rule, the value substituted is an
abstraction, the formal parameters of this abstraction occur temporarily at two

different places within the TML tree. However, this does not do any harm be-
cause the first occurrence of the abstraction will be removed immediately (by
an application of the rewrite rule remove) since the substituted variable is not
referenced any more.

Variable substitution is defined inductively on the abstract syntax of TML
as follows:

{A(v1..v,) app}val/v
(valy valy ..valy)[val /v

= A(v1..v,) {applval/v]}
= (valg[val/v] vali[val/v]..val, [val /v])

v[val/v] = val
Vval/v] = v (v #v')
lit[val/v] = lit
prim['val/'v% = prim
]

Values bound to A-variables may be substituted freely within the TML tree
since, due to CPS, they are not allowed to contain nested primitive or function
calls which may cause side effects in the store.

The complete set of the TML rewrite rules which is currently implemented
as a part of the reduction pass is given below. The expansion pass uses a variant
of the subst rewrite rule in order to perform procedure inlining. Although each
individual rule is fairly simple, the combination of these rules is surprisingly pow-
erful. Many of the well-known standard program optimizations like constant and
copy propagation, dead code elimination, procedure inlining or loop unrolling are
just special cases of these general A-calculus transformations.

The subst rewrite rule replaces each occurrence of a bound variable v; with
the corresponding value val;. Note that the precondition of this rule states that,
if the value val; 1s an abstraction, the variable v; must be referenced exactly
once. This precondition prevents the TML code from growing arbitrary large:

(val; & Abs V |apply, = 1) :
(AM(vy..v..0,) app subst, (A(v1..v5..00) applval; [v

valy ..val;. val,) valy .val;..val,)

The remove rewrite rule strikes out a bound variable v; which 1s not refer-
enced any more. The corresponding value val; is also removed. Note that this is
possible because, due to syntactical restrictions (cf. figure 1), val; cannot be an
application, and, therefore, cannot contain any calls to side-effecting primitive
procedures:

(lappls, = 0) :
(A(v1..v5..05)app TEROYE (N(vy..0;_1 Vip1..0,) app
valy ..val;..val,) valy .val;_1 valiyq..valy)

The reduce rewrite rule simply removes applications of A-abstractions which
do not bind any variables:

reduce
(AQ)app) ——> app

The n-reduce rewrite rule removes unnecessary abstractions:

(Vizl...n |Ual|v, = 0) .
)‘(Ul“vn)('l}al Ul..‘Un) m& val

The fold rewrite rule uses an evaluation function eval which knows details of
the semantics of primitive procedures:

(prim valy ..valy) 1o eval(prim, valy, .., valy,)

Given an application of a certain primitive, it may be able to meta-evaluate
the call, yielding a somewhat simpler TML tree than the original call. For exam-
ple, if the evaluation function detects that a given call to a primitive will always
compute the same value and invoke always the same continuation, it reduces the
primitive call to an application of the continuation to the result. Typically, this
is possible if some of the arguments are literal constants:

1
+ 120 e) 227 (3

To give another example, a call to the object identity primitive will fold if
the value to be compared is identical to one of the case tags:

(:: 2123 Cc1 C2 CS) fL::D (02)

If the eval function cannot perform any useful meta-evaluation, it simply
returns the original call to the primitive.

The case-subst rewrite rule substitutes variables in case statements with the
tag value of the corresponding branch:

case-subst
(:: v _— > (:: v
valy ..val, valy..val,
valf . val?) val§[valy [v]..valg[valy, [v])
case-subst
(:: v e (:: v
valy..val, valy..val,
valf..valy, val | ;) val§[valy /v]..val; [val, [v] val;,)

Finally, there are two rewrite rules which operate on calls to the primitive
procedure Y. The Y-remove rewrite rule strikes out any recursive procedure
which is not referenced from within the bodies of the other (mutually) recursive
procedures, whereas the Y-reduce rewrite rule removes empty Y applications:

(|app|v, =0 /\ng] |’Ualj|vi = O) :
(Y Meo v1.vivq ¢) LLEMOVE (v X(c vy.0;_1 vi41..0p)

(¢ cont()app (¢ cont()app
abs; absy
absl ;l.bsi_l
.. abs;y1
absy)) .
absy))
(lapple, = 0) :

(Y Mo ¢)(c cont()app)) Y-reduce, app

4 Exploiting Persistent TML Representations

The TML intermediate representation and the TML rewrite rules described so
far can be utilized fairly straightforward to build a static optimizer for a given
source language and target architecture. Additionally, TML supports innovative
code optimization scenarios which we describe in the following subsections.

4.1 Optimization across Abstraction Barriers

Today’s applications are constructed incrementally, with heavy re-use of modular
software components defined in shared program libraries or application frame-
works. At the same time, many binding decisions are delayed until runtime. Ab-
straction barriers (module interfaces, class interfaces, schema layers) severely re-
strict the binding information available to local static program optimizers which
become less effective with increasing modularization.

Effective optimization of highly modular languages and of database languages
therefore requires the analysis and rewriting of CPS terms which have been
declared and compiled in separate scopes (logical schema, physical schema, query
modules, embedded query, application program), at different times and most
often by different users.

In the following, we explain by an example how the Tycoon system achieves
optimizations across abstraction barriers. Given a uniform representation of pro-
grams and queries, the “trick” to eliminate these abstraction barriers is (1) to
wait until link or execution time, when all the bindings between the contributing
parts of a persistent application are established (database schemata, application
modules, program libraries, program parameters, etc.), and (2) to keep suffi-
ciently abstract code and binding information until that point in time. Based on
this approach it is rather straightforward to collect (via transitive reachability)
all declarations which contribute to a given TML term (for example an embed-
ded query) into a single scope (represented again as a TML term) and to invoke
the TML optimizer to generate a globally optimized TML term.

TML - PTML
Reduce Expand <:| Reflective
Optimizer
Compiler
:> Front End |:> v v
Core TML Analysis and Rewrite Routines Compiler
L | Evaluator
Source ™ML ':> Back End |:>

Integrated Static and Dynamic Optimizer | TML Target Machine Code
with attached PTML

Fig. 3. Interaction between compilation, optimization and evaluation in the Tycoon
system

Since the compiler (and, therefore, the optimizer) is an integral part of the
Tycoon persistent programming environment, it is not difficult to call the Tycoon
compiler at runtime.

For each exported source code function f in a compilation unit, the com-
piler back end augments the generated code for f with a reference to a compact
persistent representation of the TML tree (Persistent TML, PTML) for f. At
runtime, it is possible to map PTML back into TML, re-invoke the optimizer
and code-generator, link the newly-generated code into the running program,
and execute it (Fig. 3).

The mapping from PTML back to TML also returns the set of R-value bind-
ings ([identifier, OID] pairs) established at runtime. These bindings correspond
to free variables (module names, database names, table names, function names,
constant names, etc.) in the source text and they naturally give rise to context-
dependent, inter-procedure and inter-module optimizations (optimization across
abstraction barriers).

To speed up repeated optimizations of (shared) functions, the optimizer at-
taches several derived attributes (costs, savings, ...) to the generated code which
also become part of the persistent system state.

For example, the following Tycoon module complex exports a (hidden) ab-
stract data type complex.T and encapsulated accessor functions complex.x(),
complex.y(), ... on values of that type:

module complex export
Let T = Tuple x,y :Real end
let new(x,y :Real):T = tuple x y end
let x(complex :T) :Real = complex.x
let y(complex :T) :Real = complex.y

end
Here is a function abs which uses the functions exported from the module:

let abs(c :complex.T) :Real =
sqrt(complex.x(c) * complex.x(c) + complex.y(c) * complex.y(c))

In the static context of this function, the implementation of the module (the
binding to the module value) is not available. Only after module linkage (Tycoon
has first class modules), the dynamic context of abs contains bindings to the
exported function.

The programmer can obtain a (dynamically created) function optimizedAbs
which is equivalent to the original function abs but which executes faster than
the original by explicitly invoking the optimizer on abs:

let optimizedAbs = reflect.optimize(abs)

In our current implementation, the reflective dynamic optimizer inlines the bod-
ies of complex.x and complex.y, i.e., optimizedAbs is equivalent to:

let optimizedAbs(c :complex.T) :Real = sqrt(c.x*c.x + c.y*c.y)

Finally, the optimized function which takes advantage of the particular encap-
sulated implementation of complex numbers can be applied:

optimizedAbs(complex.new(3 4))

The main extension which is necessary to be able to carry out this kind of
dynamic optimization is to re-establish, in TML, the R-value bindings of global
variables as they are stored in the closure record of the runtime representation
of a given procedure. For the example above, this means that the values of
the variables complex, '+’, "*’ and sqrt which are global to the function abs
are fetched from the closure record of abs and are bound to the corresponding
identifiers before the (original) body of abs is processed by the optimizer®:

proc(c_10 c_11)

(A(complex_6 *_7 +_8 sqrt_9)
([] complex_6 2 cont(t_12) ; begin of the original body of abs
(t-12 c_10 cont(t_13)

([] complex_6 2 cont(t_14)
(t-14 c_10 cont(t_15)

(*_7 113 t_15 cont(t_16)
([] complex_6 3 cont(t_17)
(t-17 c_10 cont(t-18)
(+-8 t-16 t_18 cont(t_19)
([] complex_6 3 cont(t_20)
(t-20 c_10 cont(t_21)

(*_-7 t.19 t_21 cont(t_22)
(sqrt_9 t_22 cont(t_23)

(c11 23NN ; end of the original body of abs
<oid 0200554780 > ; value of module complex
< otd 0200154044 > : value of function ¥’
<oid 0x001564024 > . value of function '+’
<oid 0z00993d28 >) ; value of function sqrt

® This is a TML listing similar to the output of our TML pretty-printer. Note that,
during a-conversion, each identifier name is appended with a unique number in order
to distinguish it from any other identifier.

Given these value bindings, the optimizer is able to perform substitution,
constant folding and procedure inlining in the usual way, yielding a result which
is equivalent to the above Tycoon code for optimizedAbs.

4.2 Towards Integrated Program and Query Optimization

There is a strong interest in improving the interface between query languages and
programming languages. For example, the ODMG standard document explicitly
states that “object database management systems provide an architecture which
is significantly different than other DBMSs — they are a revolutionary rather
than an evolutionary development. Rather than providing only a high-level lan-
guage such as SQL for data manipulation, an ODBMS transparently integrates
database capability with the application programming language” [Catell 1994].

Following this rationale, the syntax of many modern query languages allows
programming language variables, function and method calls to appear in the
select and where clauses of SQL statements. Furthermore, the body of element-
at-a-time iterators (for each statements) and of database triggers may refer
to programming language statements. User-defined data types lead to further
interaction between query expressions and programming language expressions.

Since traditional query optimizers do not have access to an abstract represen-
tation of these program fragments, they have to work under worst-case assump-
tions (dependencies between subexpressions, side-effects) or they have to rely
on programmer-supplied information (commutativity, idempotence, side-effects)
which is difficult to keep consistent in large, long-lived systems. In particular,
current query representations do not cover any form of control flow (condition-
als, case analysis, loops, exceptions) which is “inherited” through embedded
programming language expressions.

Given an integrated database language where user-defined code and query
expressions are fully integrated [Matthes and Schmidt 1991], query and program
optimization have to interact closely (see Fig. 4): Whenever the program opti-
mizer encounters an embedded query construct like a set-at-a-time (bulk) query
or update, an element-at-a-time iterator, or a view definition, it invokes the
query optimizer on the respective TML subtree with a TML environment which
describes the global bindings (free variables) for that expression. Similarly, the
query optimizer invokes the program optimizer to analyze and optimize nested
programming language expressions which appear in query constructs (target list,
selection predicate, iterator body). Again, binding information for free variables
(e.g., range variables in queries or loop control variables in for each iterators)
is passed along with the respective TML subtree. Recursive declarations of func-
tions, values, or queries are represented uniformly through applications of the
fixpoint combinator Y and do not lead to repeated traversals of TML terms.

In general, since the optimization of query expressions depends on runtime
bindings (for example, knowledge about index structures), we have to delay query
optimizations until runtime as described in the previous section. The translation
of a declarative query construct embedded in the source language into a TML

nested Queries T™L - PTML
Program Query Reflective

Optimizer nested Optimizer <::| Optimizer
Compiler Expressions
:> Front End :> \L ‘l’
Core TML Analysis and Rewrite Routines Compiler
TL Evaluator
Source TML |:> Back End E‘>
Integrated Query and Program Optimizer | TML Target Machine Code
with attached PTML

Fig.4. Embedded Query Optimization

term is rather straightforward and resembles the usual approach of mapping a
relational query 1:1 into a tree of algebraic operators [Ullman 1989].
For example, the SQL statement

select Target(x) from Rel x where Pred(x)

can be represented by the following TML term which uses the primitive proce-
dures project and select as defined by the relational algebra:

(select A(x ce cc) (Pred x ce cc)
Rel
ce
cont(tempRel)
(project A(x ce cc) (Target x ce cc)
tempRel
ce

o))

The scope of the SQL correlation variable x is captured in TML by having two
A-abstractions with the bound variable x in addition to the two continuation
variables ce and cc. The data dependency between the selection and projection
is made explicit by introducing a named variable tempRel in the continuation for
the selection which is then used as an argument to the projection. Since the vari-
able ce which describes the current exception handler is simply passed through,
exceptions which are raised during selection or projection are propagated to the
enclosing block.

As can be seen in the simple example above, CPS focuses on data and control
dependencies, but leaves much freedom in the choice of the particular primitive
procedures to be used for the representation of declarative queries. Instead of
relational algebra operators, more general operators can be utilized, for example
the higher-order-functions proposed for the optimization of generalized queries
over multiple bulk types in [Trinder 1991; Breazu-Tannen et al. 1991; Fegaras
1994].

For a given set of primitive procedures, algebraic and implementation-oriented
query optimization rules can be expressed quite naturally in CPS, for example,
the simple equivalence o,(04(R)) = opag(R) can be written as:

merge-select
—_—

(select (select
A(ry ceq cep) A(ry ceq cep)
(g r1 cer cep) (p r ceq
R cont(ty)
ce (g 1 cen
cont(tempRel) cont(tz)
(select (and t1 t2 cer cep)))
A(rg cea cea) R
(p ro ceq cca) ce
tempRel cc)
ce

cc))

In particular, scoping restrictions which limit the applicability of certain
rewrite rules are also directly expressible using the notation introduced in section
3. For example, if the variable z does not appear in the predicate p of the
quantified expression 3z € R : p, this predicate is equivalent to p A (R # @).
This rule is written as follows, using CPS notation and the predefined procedures
and, exists and empty:

Iple=0):
(exists AMLULa-e15ts, (empty R
Az ce’ ed)p ce
R cont(ty)
ce (A(ce' ec)p
ec) ce

cont(ts)
(and t1 ta ce cc)))

Note that the resulting TML tree will be further reduced and optimized using
any other applicable rewrite rule.

5 Related Work

The issue of uniform intermediate code representations in database environments
arose in the integration of program and query optimization.

Freytag [Freytag and Goodman 1989] investigated the problem of translating
relational queries into iterative programs which are quite effectively simplified
using a set of transformation rules. Queries are rewritten into nested applications
of stream operators which are similar to our polymorphic higher-order iterator
functions. The transformation process is based on purely algebra-based relational
query specifications which may neither contain embedded (user-defined) function
calls nor side effects.

Lieuwen and DeWitt [Lieuwen and DeWitt 1991] have applied loop trans-
formations on queries written in the database programming language O++

[Agrawal and Gehani 1989] which provides constructs to iterate through a set in
an unspecified order. Similar constructs can be found, for example, in Pascal/R
[Schmidt 1977] and DBPL [Schmidt and Matthes 1994]. Lieuwen and DeWitt
focus on the reordering of joins which are expressed via nested set iterations.
Iterations may contain embedded function calls and output statements which
constrain reorderings. However, they do not interact with the program opti-
mizer. They have developed their own query tree representation which is quite
different from the AST used by the compiler.

Breazu-Tannen et al. [Breazu-Tannen et al. 1991] propose a programming
paradigm based on structural recursion on sets which comes close to both the
semantic simplicity of the relational algebra and the expressive power of al-
gorithmically complete programming languages. The authors suggest that this
conceptual unification of queries and functional programs will contribute to the
optimization problem.

The work which is most closely related to ours is described in [Poulovassilis
and Small 1994]. This work investigates algebraic query optimization techniques
for database programming languages in the context of a purely declarative func-
tional language which supports sets as first-class objects. Within the language,
it is possible to use user-defined functions as query predicates and as target
expressions. Since the language is computationally complete, the possibility of
non-termination and the construction of infinite data structures must be taken
into account, while problems concerning side-effects are avoided. As in our frame-
work, all optimizations can be fully exploited for all subexpressions of a query
since no distinct languages are used to represent query trees and programming
language expressions. In contrast to our work, the query language is not inte-
grated into a general-purpose persistent programming environment.

6 Concluding Remarks

We have presented the syntax and generic rewrite rules for TML, a persistent
intermediate code representation. We also reported on our experience building
reusable TML analysis and rewrite tools to carry out the core tasks in symbolic
code manipulation like binding analysis, identifier substitution, and free vari-
able analysis. Due to its parameterization by user-defined primitive procedures,
TML is virtually independent of the Tycoon language TL and Tycoon’s bulk
data library and can be tailored with little effort to other program or query lan-
guages. By utilizing TML, innovative optimizers like reflective code optimizers
and integrated query and program optimizers can be constructed systematically.

The current version of the Tycoon system fully implements dynamic reflec-
tive optimization across abstraction barriers based on CPS representations as
described in this paper. In particular the static and dynamic optimizers share
the same code for TML analysis and rewriting. As described in more detail in [Ki-
radjiev 1994], performing local program optimizations on standard benchmarks
for imperative programs (the Stanford Suite) do not yield a significant speedup in
the Tycoon database programming language. The reason for this is the fact that

even operations on integers and arrays are factored out into dynamically bound
libraries and therefore not amenable to local optimization. However, a move to
dynamic (link-time or runtime) optimization more than doubles the execution
speed of the standard benchmarks as well as of most larger Tycoon programs we
have experimented with (including the compiler itself, consisting of 98 modules
containing more than 29,000 lines of high-level Tycoon code). On the down side,
due to the space requirements for the additional persistent encoding of the TML
tree for each function, the code size doubles at the same time (1.2MB vs. 600kB
for the complete Tycoon system). We are currently investigating techniques to
reconstruct a TML representation by examining the persistent executable code
representation of a procedure, effectively inverting the target machine code gen-
eration process. In general, the TML tree reconstructed this way will not be
isomorphic to the original TML tree which we currently encode in PTML. The
interesting question is whether this has an impact on the possible optimizations,
in particular in the presence of nested recursive function bindings.

More work is required to evaluate the effectiveness of query optimization
exploiting the availability of a uniform program and query representation at
runtime. We are also very interested in exploiting TML for other tasks in data-
intensive applications, like code shipping in distributed systems [Mathiske et al.
1995], synchronization of persistent threads [Matthes and Schmidt 1994], access
control and security issues [Rudloff et al. 1995].

References

Agrawal and Gehani 1989: Agrawal, R. and Gehani, N.H. Rationale for the design
of persistence and query processing facilities in the database programming language
O+4+. In Proceedings of the Second International Workshop on Database Program-
ming Languages, Salishan, Oregon, June 1989.

Appel 1992: Appel, A. W. Compiling with Continuations. Cambridge University
Press, 1992.

Béttcher et al. 1986: Bottcher, S., Jarke, M., and Schmidt, J.W. Adaptive predicate
managers in database systems. In Proceedings of the Twelfth International Confer-
ence on Very Large Databases, Kyoto, Japan, 1986.

Breazu-Tannen et al. 1991: Breazu-Tannen, V., Buneman, P., and Naqvi, S. Struc-
tural recursion as a query language. In Proceedings of the Third International Work-
shop on Database Programming Languages, Nafplion, Greece. Morgan Kaufmann
Publishers, September 1991.

Catell 1994: Catell, R.G.G., editor. The Object Database Standard: ODMG-93. Mor-
gan Kaufmann Publishers, 1994.

Eder et al. 1991: Eder, J., Rudloff, A., Matthes, F., and Schmidt, J.W. Data construc-
tion with recursive set expressions in DBPL. In Proceedings of the Kiev Fast/West
Workshop on Next Generation Database Technology, volume 504 of Lecture Notes in
Computer Science, April 1991.

Fegaras 1994: Fegaras, L. Efficient optimization of iterative queries. In Beeri, C.,
Ohori, A., and Shasha, D.E., editors, Database Programming Languages, New York
City, 1993, Workshops in Computing, pages 200-225, 1994.

Freytag and Goodman 1989: Freytag, J.C. and Goodman, N. On the translation of
relational queries into iterative programs. ACM Transactions on Database Systems,
14(1), March 1989.

Gawecki and Matthes 1994: Gawecki, A. and Matthes, F. The Tycoon Machine Lan-
guage TML - an optimizable persistent program representation. FIDE Technical
Report FIDE/94/100, Fachbereich Informatik, Universitit Hamburg, Germany, July
1994.

Gawecki 1992: Gawecki, A. An optimizing compiler for Smalltalk. Bericht FBI-HH-
B-152/92, Fachbereich Informatik, Universitit Hamburg, Germany, September 1992.
In German.

Gifford and Lucassen 1986: Gifford, David K. and Lucassen, John M. Integrating
functional and imperative programming. In Proceedings of the ACM Conference
on Lisp and Functional Programming, Cambridge, Massachusetts, August 4-6, 1986,
pages 28-38, 1986.

Jarke and Koch 1984: Jarke, M. and Koch, J. Query optimization in database sys-
tems. ACM Computing Surveys, 16(2):111-152, 1984.

Jarke and Schmidt 1982: Jarke, M. and Schmidt, J.W. Query processing strategies in
the Pascal/R relational database management system. In Proceedings of the ACM-
SIGMOD International Conference on Management of Data, 1982.

Jarke et al. 1982: Jarke, M., Koch, J., Mall, M., and Schmidt, J.W. Query optimiza-
tion research in the database programming languages (DBPL) project. IEEE — Data
Engineering, pages 11-14, September 1982.

Kelsey 1989: Kelsey, R.A. Compilation by program transformation. Technical report,
Yale University, Department of Computer Science, May 1989.

Kiradjiev 1994: Kiradjiev, P. Dynamische Optimierung in CPS-orientierten Zwischen-
sprachen. Diplomarbeit, Fachbereich Informatik, Universitat Hamburg, Germany,
December 1994.

Kranz et al. 1986: Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams,
N. ORBIT: an optimizing compiler for Scheme. ACM SIGPLAN Notices, 21(7):219-
233, July 1986.

Lieuwen and DeWitt 1991: Lieuwen, Daniel F. and DeWitt, David J. Optimizing
loops in database programming languages. In Proceedings of the Third International
Workshop on Database Programming Languages, Nafplion, Greece, Nafplion, Greece,
September 1991. Morgan Kaufmann Publishers.

Mall et al. 1984: Mall, M., Reimer, M., and Schmidt, J.W. Data selection, sharing
and access control in a relational scenario. In Brodie, M.L., Myopoulos, J.L., and
Schmidt, J.W.| editors, On Conceptual Modelling. Springer-Verlag, 1984.

Mathiske et al. 1995: Mathiske, B., Matthes, F., and Schmidt, J.W. Scaling database
languages to higher-order distributed programming. In Proceedings of the Fifth In-
ternational Workshop on Database Programming Languages, Gubbio, Italy. Springer-
Verlag, September 1995. (Also appeared as TR FIDE/95/137).

Matthes and Schmidt 1991: Matthes, F. and Schmidt, J.W. Bulk types: Built-in or
add-on? In Proceedings of the Third International Workshop on Database Program-
ming Languages, Nafplion, Greece. Morgan Kaufmann Publishers, September 1991.

Matthes and Schmidt 1992: Matthes, F. and Schmidt, J.W. Definition of the Tycoon
Language TL - a preliminary report. Informatik Fachbericht FBI-HH-B-160/92,
Fachbereich Informatik, Universitat Hamburg, Germany, November 1992.

Matthes and Schmidt 1994: Matthes, F. and Schmidt, J.W. Persistent threads. In
Proceedings of the Twentieth International Conference on Very Large Data Bases,
VLDB, pages 403-414, Santiago, Chile, September 1994.

Poulovassilis and Small 1994: Poulovassilis, A. and Small, C. Investigation of alge-
braic query optimisation for database programming languages. In Proceedings of the
20th International Conference on Very Large Databases, Santiago, Chile, September
1994.

Rudloff et al. 1995: Rudloff, A., Matthes, F., and Schmidt, J.W. Security as an add-
on quality in persistent object systems. In Second International East/West Database
Workshop, Workshops in Computing. Springer-Verlag, 1995. (to appear).

Schmadt and Matthes 1994: Schmidt, J.W. and Matthes, F. The DBPL project: Ad-
vances in modular database programming. Information Systems, 19(2):121-140,
1994.

Schmidt 1977: Schmidt, J.W. Some high level language constructs for data of type
relation. In Proceedings of the ACM-SIGMOD International Conference on Manage-
ment of Data, Toronto, Canada, August 1977.

Steele 1978: Steele, Guy L. Rabbit: A compiler for SCHEME. Technical report, Mas-
sachusetts Institute of Technology, May 1978.

Steele 1986: Steele, Guy L. The revised® report on the algorithmic language Scheme.
ACM SIGPLAN Notices, 21(12):37-79, December 1986.

Teodosiu 1991: Teodosiu, Dan. Hare: An optimizing portable compiler for Scheme.
ACM SIGPLAN Notices, 26(1):109-120, January 1991.

Trinder 1991: Trinder, P. Comprehensions, a query notation for DBPLs. In Pro-
ceedings of the Third International Workshop on Database Programming Languages,
Nafplion, Greece. Morgan Kaufmann Publishers, September 1991.

Ullman 1989: Ullman, J.D. Database and Knowledge-Base Systems, vol. 2. Computer
Science Press, 1989.

