Persistent Polymorphic Programming in Tycoon:
An Introduction®

Florian Matthes Sven MuBig J.W. Schmidt

Universitat Hamburg
Vogt-Kolln Strafie 30
D-22527 Hamburg, Germany

{matthes,muessig,J Schmidt}@informatik.uni-hamburg.de

Abstract

This text provides an introduction to Tycoon!, an open persistent polymorphic pro-

gramming environment. The Tycoon language TL is based on expressive and orthogonal
naming, typing and binding concepts as they are required, for example, in advanced
data-intensive applications. The characteristic language mechanisms of TL are first-class
functions and modules, parametric and subtype polymorphism extended to a fully higher-
order type system. Tycoon programs are statically typed but may include explicit dynamic
type variables which can be inspected at run-time.

ACKNOWLEDGEMENTS

The Tycoon system described in this paper was developed by Andreas Gawecki, Bernd
Mathiske, Florian Matthes and Rainer Miiller. Section 12 of this text was written by Bernd
Mathiske who also developed Tycoon’s external language bindings. The authors would also
like to thank Claudia Niederée, Gerald Schroder, Petra Miinnix, Andreas Rudlofl and Dominic
Juhdsz for their careful reviewing of this paper and numerous hints which helped to improve
the presentation of the material.

*This research has been supported in part by the Esprit-III Basic Research Project FIDE-2 and by a grant
from the German-Israel Foundation for Scientific Research and Development.
!Tycoon: Typed Communicating Objects in Open Environments.

Contents
1 Introduction and Motivation
2 Language Classification

3 Lexical and Syntactical Rules
3.1 Symbols
3.2 Reserved Keywords
3.3 Comments oL e e
3.4 Factoring of Expressions L
3.5 Coercion and Overloading L

4 Predefined Values and Functions
4.1 Naming, Binding, and Typing o
4.2 Literals e e e

5 User-defined Values and Functions
5.1 Static Bindings
5.2 Dynamic Bindings

6 Predefined Value and Type Constructors
6.1 Tuple Types o o o e e
6.2 Variant Types L e e e
6.3 Record Types o o o e
6.4 Recursive Data Types e
6.5 Dynamic Data Types e

7 Subtype Relationships and Subtype Polymorphism
7.1 Subtyping on Predefined Types oo oo
7.2 Subtyping on Tuple Types L
7.3 Subtyping on Record Types o
7.4 Subtyping on Function Types oo

8 Parametric Polymorphism
8.1 Polymorphic Functions oo
8.2 Bounded Parametric Polymorphism0 0 0.
8.3 Type Operators o o e
8.4 Abstract Data Types L

9 Imperative Programming
9.1 Mutable Variables
9.2 Subtyping Rules for Mutable Bindings
9.3 Control Structures L
9.4 Arrays and Array Indexing Lo

10 Multi-Paradigm Programming in Tycoon

CU R R W

v Ot

(@)

10
10
11
13
14
15

15
15
16
18
18

19
19
20
21
23

24
24
26
26
31

31

11 Programming in the Large
11.1 Modules and Interfaces.

11.2 Libraries .

12 Persistence and Garbage Collection

13 External C Libraries
13.1 Function Calls from Tycoon to External C Libraries
13.2 Function Calls from External C Libraries to Tycoon

14 Layout and Naming Conventions

14.1 Spelling .

14.2 Punctuation e e e e e e e e e

14.3 Indentation
14.4 Comments

A The TL Grammar
A.1 Syntax Notations o e

A.2 Symbols .

A3 Reserved Keywords o
A.4 Productions e e

B Predefined Identifiers
B.1 Type Identifiers e
B.2 Value Identifierso
B.3 Infix Functions e

B.4 Functions
B.5 Exceptions

Bibliography

Index

II

34
34
36

37

38
38
40

41
42
42
43
44

45
45
45
46
47

49
49
49
50
50
51

52

54

1 Introduction and Motivation

The Tycoon? system is an open persistent polymorphic programming environment based
on higher-order language concepts. It is designed as a robust linguistic and architectural
framework for the definition, integration and interoperation of generic services represented as
polymorphically-typed libraries.

The Tycoon language TL® described in this paper is used for the following two activities
in database application programming (see also [MS93]):

Strongly typed, high-level application programming: TTL is used by application pro-
grammers to implement the full functionality of data-intensive applications which re-
quire a tight and controlled interaction between objects on the screen, objects in main
memory, objects on disk, and objects on the wire. For example, a value from a screen
form may be passed as a parameter to a transaction, be stored in a database and finally
be transmitted to a remote log server. TL supports such programming tasks by provid-
ing uniform and generalized naming, typing and binding concepts that abstract from
the specifics of the underlying object servers like GUI toolkits, programming languages,
database systems and RPC services. In particular, Tycoon’s type system statically de-
tects any attempt to apply an inappropriate operation from one server to an object from
another server. This should be seen in contrast to the current practice in data-intensive
applications where there is virtually no inter-server consistency checking due to the lack
of an integrated typed system model.

Generic server integration: Different from fourth-generation languages, high-level appli-
cation programming in the Tycoon system is not restricted to built-in object types like
tables, forms and reports. By virtue of Tycoon’s polymorphic (higher-order) type sys-
tem it is possible to also integrate pre-existing, independently developed generic servers
(like object-oriented databases, C++ GUI libraries or RPC communication services) as
strongly typed parametric libraries into the Tycoon programming environment. There-
fore, systems developed in TL fit smoothly into open system architectures.

The idea of an open, library-based approach to system construction is currently being pursued
in several system frameworks that are based on C++ or distributed object models of similar
expressiveness. Tycoon aims at a higher system development productivity in a language
framework with the following characteristics:

Improved language orthogonality: All language entities in TL (like values, functions,
modules and types) have first class status. For example, it is possible to write a TL
function that receives a type as its argument and returns a module which aggregates a
set of dynamically constructed functions for a fresh abstract data type. Such higher-
order language concepts are particularly helpful to factor-out repetitive programming
tasks from individual applications into shared, reusable library code.

Increased type system expressiveness: TL combines subtype and parametric polymor-
phism. Furthermore, both forms of polymorphism are generalized to (higher-order) type
operators supporting the type-safe definition of highly polymorphic system libraries.

?Tycoon: Typed Communicating Objects in Open Environments.
3TL: Tycoon Langnage.

Orthogonal persistence abstraction: T1L programmers don’t have to distinguish between
local volatile data and shared global and persistent data. As a consequence, program-
mers can fully abstract from store properties (size of main memory, garbage collection,
transfer between primary and secondary store, data format conversion between nodes
in heterogeneous networks, etc.).

Reflective programming support: Some system tasks in data-intensive applications (e.g.,
query optimization, transaction scheduling, GUI generation) are based on run-time re-
flective programming techniques. Run-time linguistic reflection denotes the ability of
a system to inspect parts of the system (e.g. query expressions, transaction instruc-
tion sequences, type structures) at run-time and to dynamically extend or modify the
system based on the outcome of this inspection [SSSt92]. For example, the TL pro-
gramming environment exports a (strongly-typed) function reflect.optimize that takes
a TL function value, re-invokes the TL compiler back-end on this function, and returns
an optimized version of the function. Contrary to static code optimizations which are
based on a limited static context (a single function or a single module), such dynamic
code optimizations can exploit run-time information available for the dynamic context
of a function (e.g. external function implementations or values of abstract data types).

A more detailed discussion of the rationale behind Tycoon is given in [Mat93] and [MS93].

This text is organized as follows: Section 2 gives a quick overview of the Tycoon language
in comparison with other modern (persistent) programming languages. The subsequent sec-
tions (Section 3-8) provide a step-by-step introduction to Tycoon’s language concepts in a
functional setting (values, types, bindings, signatures, predefined type and value constructors,
user-defined types and type operators, subtype and parametric polymorphism). Section 9 ex-
plains how these concepts interact with the imperative concepts of Tycoon, namely mutable
variables, destructive assignment, sequential execution and exception handling. Section 10
and 11 discuss alternative approaches to the structuring of large Tycoon software systems
into interfaces, modules and libraries. Section 12 and 13 present some important system-
oriented aspects of Tycoon like its transparent persistence management and bindings from
and to external C libraries.

Appendix A and B are intended mainly for reference purposes and summarize the syntax
and the predefined identifiers of the language. Readers interested in the formal definition of
the TL semantics are referred to [MS92].

2 Language Classification

This section is intended primarily for readers who are familiar with the state of the art in
programming language research and who are interested in a rough T1 language classification.

The programming language TL evolved from the experimental languages Quest* [Car89,
Car90] and P-Quest® [Mat91, Miil91, NMM92]. All semantic concepts of these languages are
supported in TL(in a slightly variated syntactic from). TL eliminates some ad-hoc restrictions
of Quest’s language orthogonality. Furthermore, it introduces new language concepts such
as subtyping between type operators, recursive type operators, extensible record values, and
libraries as scopes for modules and interfaces.

*Quest: Quantifiers and Subtypes.
5P-Quest is a Quest System extended by an orthogonal persistence concept

The syntactic structure and the module concept of TL are similar to those of the languages
of the Modula family (Modula-2 [MOD91], Oberon [Wir87], Modula-24+ [RLW85], Modula-3
[Nel91], and Ada [I*83]). Regarding its semantics, T'L is more closely related to the polymor-
phic functional languages of the ML language family [Car89, Car90, Mau91, FH88, Hud&9].
The semantic concepts of TL are derived from the language F< [CMMS91], a widely accepted
formal basis for the study of modern type systems.

Like C [KR77] T1 is intended for application programming and for system programming
tasks. By virtue of its polymorphic type system TL can also be utilized as a data modeling
language. In this respect, TL resembles Lisp development systems [BDMG*88] and commer-
cial object-oriented languages like Smalltalk [GR83]. From integrated database programming
languages like PS-Algol [ACC81], Napier88 [DCBM89], Amber [Car86], and P-Quest, men-
tioned before, Tycoon inherits the orthogonality of elementary kernel concepts for persistence
abstraction, type-complete data structuring, and iteration abstraction [AB87, SM90].

Motivated by an analysis of the conceptual and technological foundations of existing
database languages [MS91a, MS91b], the Tycoon system pursues the idea of a strictly re-
duced kernel language supporting naming, binding and typing of predefined semantic objects
(variables, functions, type variables, type operators). On the other hand, it is possible to
extend the language kernel with external semantic objects (integers, floating-point numbers,
strings, arrays, relations, views, files, windows etc.) and generic functions associated with
these objects in a completely type-safe way (add-on vs. built-in) [MS91b].

TL enables the programmer to use different modeling styles. Functional and imperative
programming are supported directly. Due to the considerable linguistic neutrality several
variants of the object-oriented programming style are supported by TL. Relational and logic-
based programming [Min88] are not supported directly, since unification-based evaluation
models and declarative approaches deviate strongly from functional and imperative structures.

The Tycoon system offers an interactive programming environment. Such environments
are known from functional systems (ML, Lisp). This distinguishes the Tycoon system from
conventional translation systems like, for example, C, Modula-2, or Ada compilers. Due to
the interactive environment, ad-hoc TL database queries are possible in addition to the use
of TL as a database programming language. The persistence concept enables the user to
perform incremental system developments spanning several sessions. At the same time, the
library concept of TL supports the controlled use of shared data and programs by several
users.

3 Lexical and Syntactical Rules

This section introduces the most important lexical and syntactical rules of TL for the con-
struction of symbols, reserved identifiers, and productions. A precise definition of the syntax
of T is given in appendix A.

3.1 Symbols

The character set predefined on a given system is partitioned into the disjoint classes of
letters, digits, delimiters, printable special symbols, and non-printable formatting characters.
On the basis of this classification a sequence of characters is divided into atomic symbols
(e.g., numbers and identifiers).

TL distinguishes alphanumeric identifiers and infix symbols. Alphanumeric identifiers
consist of a character followed by a sequence of characters and digits whereas infix symbols
are composed solely of special symbols. A space is only required between two alphanumeric
identifiers or two infix symbols that appear in direct succession.

3.2 Reserved Keywords

Appendix A.3 lists all reserved keywords and infix symbols of TL. These identifiers must not
be used as user-defined identifiers or infix symbols.

The reserved keywords are written in bold face in the programming examples. This
facilitates the distinction from the rest of the symbols in the examples which are presented
in italics.

Keywords associated with types start with a capital letter whereas all other keywords
begin with lower case characters. It is advisable to adopt this rule as a convention for all
other identifiers to improve the readability of programs. A proposal for the layout and for
further naming conventions in TL programs is described in section 14.

3.3 Comments

In Tv, comments are enclosed in (* and *). Arbitrary nesting of comments is possible. Com-
ments may include arbitrary (printable and non-printable) characters and can span several
lines.

(* This is a comment. *)

3.4 Factoring of Expressions

Operators represented by infix symbols are left-associative and of equal precedence. The
parsing of type and value expressions containing infix symbols can be controlled by the use
of curly brackets. Consequently, the following expressions are equivalent.

3-7%*4

{3-7}*4

(3 7) 4)}
int.mul(int.sub(3 7) 4)
= —16 :Int

Infix symbols starting with a colon (e.g., := and :+) have a weaker precedence than the
other infix symbols. These operators are also left-associative. The bracketed expressions in
the following examples show the factoring of the corresponding expressions without brackets.

x:=a-+b»b
x :={a + b}

X:=y:=2z
{x:=y}:=z

3.5 Coercion and Overloading

Automatic coercions, e.g., of integers to real numbers, are not performed in TL. For example,
a type error is caused by the following expression.

3.0+ 4
= Argument type mismatch: ’_builtin.Int’ expected, 'Real’ found
[while checking function argument ’<anonymous>’]

Neither symbolic nor alphanumeric identifiers may be overloaded. For this reason it is,
for example, necessary to have different operators (infix symbols) for the addition of integers
and real numbers, respectively (see appendix B for details).

247

= 9 :Int
24 4+ 3.8
= 6.2 :Real

4 Predefined Values and Functions

This section presents the basic semantic rules of TL.

4.1 Naming, Binding, and Typing

Contrary to many traditional programming languages neither the base types, nor their con-
stants, nor the functions defined on them are predefined in TL. The identifiers of the base
types (e.g., bool.T'), the constants of the base types (e.g., bool.true and bool.false), and the
functions defined on the base types can be imported explicitly from modules of the standard
Tycoon library. They obey the same syntax, typing, and evaluation rules as user-defined
types, values, and functions. The rationale behind this approach is to give predefined and
user-defined data types equal status in the language.

In order to avoid the notational disadvantages resulting from this approach, the base
types and many functions defined on the base types are bound to symbolic identifiers and
infix symbols, respectively, in an initial context that is defined when the system is started (see
appendix B). Thereby, the identifiers appear to be built into the Tycoon system environment
without including them into the language TL. In the following sections we, therefore, use the
phrases ‘predefined base types’ and ‘predefined functions’.

4.2 Literals

The following enumeration lists examples of literal values of the base types Int, Real, Char,
String, and Bool, respectively, from left to right (compare appendix A.2).

3 ~3 3.0 ¢’ 7string” true

Note that TL avoids overloading. For this purpose negative integer numbers are marked by
an prefix 7~”. The symbol ”-” is reserved for integer subtraction.

5 User-defined Values and Functions

The binding of a user-defined identifier to a semantic object and the repeated use of this
identifier in ezpressions denoting the bound object is a basic concept in TL. Furthermore,
a signalure assigns static type information in the form of a type expression to an identifier.
A signature restricts the set of possible semantic objects that can be bound to an identifier.
This makes it possible to control the correct use of identifiers in expressions [Mat93].

In this section, the discussion of naming and scoping concepts is restricted to value bind-
ings. The orthogonal extension of these concepts to type bindings, presented in section 6,
gives rise to much of the expressive power of TL.

5.1 Static Bindings
Static value bindings in TL are defined as follows.

let n = 10

After evaluating the term, the variable n is statically bound to the value 10. Every
subsequent use of the identifier n in an expression evaluates to the bound value.

let x =1+ {2 *n}
= 21 :Int

Sequences of bindings are interpreted as sequential bindings in TL.

let n = 10
let x =1+ {2 *n}

The identifier n used in the second binding, therefore, refers to the binding n=10 estab-
lished in the first line of the example above. In order to achieve a simultaneous binding, the
single bindings have to be connected by the keyword and.

let a = 4
let a =123 /3and b = a + 2 and ¢ = true
\/ Ixfalse

The variable b is bound to the value 6 in this expression. The associated binding for an
expression is determined by static scoping rules in TL.

let a = 1.0
begin let a = 'x’ let b = a end
let c = a

The scope of the local identifiers a and b is restricted to the block delimited by the
keywords begin and end (see section 9.3.1). For this reason, the identifier ¢ is bound to the
value 1.0 denoted by the global identifier a, whereas the local identifier b is bound to the
value ’x’ denoted by the local identifier a.

The bindings described above are determined by two basic scoping rules: local declarations
have precedence over global declarations and an identifier in an expression always refers to
the last binding established for this identifier.

A block in TL evaluates to the value of its last binding. This is illustrated by the following
example.

begin let a = 3 let b = true end
begin let a = 3 true end

begin 3 true end

begin end

Evaluation of the first three blocks yields the value true whereas the result of evaluating
the last block is the canonical value ok of type Ok. The second and third example contain
so-called anonymous bindings, i.e, bindings without an identifier.

Signatures assign static type information to bindings; they are ordered sequences of pairs
each consisting of an identifier and a type. The signatures of the bindings established by the
previous example are considered as an illustrative examples.

a :Int b :Bool

a :Int :Bool

:Int :Bool

(* empty signature *)

It is possible to declare the type of the bound value in a binding explicitly. This declaration
is optional. If the type specification is omitted, it is inferred by the compiler from the
expression given in the binding.

let a :Int = 3
let b :Bool = true

Recursive bindings are used for the construction of recursive and cyclic data structures.
In T, pointer types are not necessary for this purpose. Recursive bindings are introduced by
the keyword rec. Examples of recursive value bindings are given in section 5.2.2 and section
6.4 since they have to be used in combination with functions and recursive data types.

The problem of uninitialized identifiers is avoided completely in TL, since identifiers can
only be introduced in bindings and, furthermore, recursive bindings are subject to static
constraints that avoid access to uninitialized variables ([Mat93]).

5.2 Dynamic Bindings

Dynamic bindings are established by passing parameters to functions. In addition to simple
and recursive functions known from other programming languages, TL supports higher-order
functions and polymorphic functions. Simple and recursive functions as well as higher-order
functions are presented in the following sections. The description of the polymorphic functions
is postponed until section 8.1 for didactical reasons.

5.2.1 Simple Functions

Functions are introduced by the keyword fun. In TL, functions can be defined without binding
them to an identifier. Such a function abstraclion consists of an ordered, possibly empty list
of formal parameters (signatures) and an expression defining the body of the function.

fun(x :Int) x + 1

The body of the function (here x + 1) can refer to identifiers of different scopes. The
formal parameters introduced by the signature of the function, the global identifiers present
in the static scope of the function, and the identifiers defined locally inside the function are
all visible in the function body.

let global = 1
fun(x :Int) begin let local = 3 x + global — local end

A function defined by a function abstraction can be bound to an identifier.

let succ = fun(x :Int) x + 1
let add = fun(x :Real y :Real) x ++ y

let succ2 = succ

The first function (succ) expects a parameter of type Int and returns a value of type Int
as its result. It computes the successor of an integer value passed as a parameter. The second
function (add) adds two real numbers. It takes two parameters of type Real and returns a
value of type Real. The third identifier (succ2) is bound to the function denoted by succ.
The syntax of TL also supports the following abbreviated notation.

let succ(x :Int) = x + 1
let add(x, y :Real) = x ++ y

The type of the result can be made explicit improving the readability of the program; if
omitted it is inferred by the compiler.

let succ(x :Int) :Int = x + 1
let add(x, y :Real) :Real = x ++ y

Infix symbols can be chosen as names for functions that can be used as binary infix
operators. In the following example, the function concatenating two strings (string.concat) is
bound to the infix symbol <>.

let <> = string.concat

A function bound to an infix symbol can be applied in two different ways, either using
the standard prefix notation or the infix notation:

<>("concat” "enation”)
“concat” <> "enation”

As shown in the next example, the use of the infix symbol in the prefix notation can lead
to unexpected results because of the factoring rules for expressions.

begin

let a = 3

<>("concat” "enation”)
end

The above expression causes a syntax error since the compiler recognizes an expression of
the form 3 <> (7concat” ”enation”). As usual, such problems can be avoided by the use of
brackets to control the parsing of expressions.

begin

let a = 3

{<>}("concat” "enation”)
end

5.2.2 Recursive Functions

TL supports the definition of recursive functions. Recursive bindings introduced by the key-
word rec are used for this purpose. In contrast to normal bindings where the types of the
bound values can be inferred by the compiler they have to be specified explicitly for recursive
bindings. The well-known computation of the factorial function is an example of a recursive
function binding.

let rec fac(n :Int) :Int = if n == 0 then 1 else n * fac(n — 1) end

As mentioned above, TL does not support the overloading of operators. The operator for
an equality test, therefore, is the doubled equality sign (==) and not the simple equality sign
(=) used in let-bindings. The polymorphic operator == tests simple values like numbers and
booleans for equality whereas it checks structured values like tuples and arrays for identity,
i.e., the equality of the values of the tuple and array components is not tested.

Mutually recursive functions have to be defined in parallel. In TL the bindings are con-
nected by the keyword and for this purpose. A parity test is given as an illustrative example.

let rec even(x :Int) :Bool =
if x == 0 then true else odd(x — 1) end
and odd(x :Int) :Bool =

if x == 0 then false else even(x — 1) end

5.2.3 Function Types

Since function types are a prerequisite for the definition of higher-order functions, they are
introduced here in anticipation of the discussion in section 6. A function type defines the
signature of function values, i.e. the names and types of their formal parameters and the
function result type. Function types are introduced by the keyword Fun. The types of the
previously defined functions succ, add, and succ2 are given as examples.

succ :Fun(x :Int) :Int
add :Fun(x :Real y :Real) :Real
succ2 :Fun(x :Int) :Int

The following abbreviating notation is also supported in TL.

succ(x :Int) :Int
add(x :Real y :Real) :Real

5.2.4 Higher-Order Functions

Higher-order functions are functions accepting functions as parameters or returning functions
as a result.
The functions twice and newlnc are examples of higher-order functions.

let twice = fun(f :Fun(:Int) :Int a :Int) :Int f(f(a))
let newlnc = fun(x :Int) :Fun(:Int) :Int fun(y :Int) :Int x + y

Again, the functions can be written down more concisely.

let twice(f(:Int) :Int a :Int) = f(f(a))
let newlnc(x :Int)(y :Int) = x + y

The function twice receives two parameters. The first parameter is a function mapping
an integer value to an integer value, and the second parameter is an integer. In the function
body (f(f(a))) of twice, the function passed as a parameter is applied twice to the second
parameter.

twice(succ 3)

= 5 :Int

twice(fun(x :Int) x *x 3)
= 81 :Int

The function newlnc is an example of a function with a function result. An application
of newlnc returns an anonymous function whose application finally computes the addition.

let add2 = newlnc(2)
add2(5)

= 7 :nt
newlnc(3)(5)

= 8 :nt

As illustrated by the example, the application of the function can be performed in a single
step or in two steps (currying).
6 Predefined Value and Type Constructors

The predefined type constructors of TL, tuple, tuple with variants, and record are presented
in this section. Function types have already been introduced in section 5.2.3.

6.1 Tuple Types

The tuple types of TL resemble records in Pascal and in Modula-2 as well as structures in
C. A tuple type is a labeled Cartesian product type. The fields of a tuple are described by
an ordered, possibly empty, sequence of signatures. The signatures may contain anonymous
identifiers.

Let Person = Tuple name :String age :Int end
Let IntPair = Tuple :Int :Int end

10

Tuple values are ordered lists of bindings.

let peter = tuple let name = ”Peter” let age = 3 end
let paul = tuple "Paul” 5 end
let pair = tuple 12 21 end

The scope of the field names name and age is restricted to the block limited by the
keywords tuple and end. Components of tuples are referenced by the dot notation.

peter.age
= 3 :Int

The rules for type compatibility of TL make an a-conversion between anonymous and
non-anonymous field names possible. This conversion takes the order of the fields defined by
the binding into account.

let p :Person = paul
p.name
= ”Paul” :String

let namedPair :Tuple x, y :Int end = pair
namedPair.x
= 12 :Int

In TL it is possible to include functions as fields into tuples. Combining this concept with
recursive bindings makes it possible to capture the concept of methods known from object-
oriented programming. [llustrative examples are presented in the sections 8.4 and 9.1 and in
[Mat93].

6.2 Variant Types

Tuples with variants resemble variant records in Pascal and in Modula-2. Like tuples, tuples
with variants represent ordered sequences of signatures.

Let Address =
Tuple
case national with street, city :String zip :Int
case international with street, city, state :String zip :String
end

The two variants national and international in the example have a common prefix. This
prefix can be extracted from the variants and placed in front of them.

Let Addressl =
Tuple
street, city :String
case national with zip :Int
case international with state :String zip :String
end

11

If all signatures of the variants are empty, the tuple type with variants degenerates to an
enumeration type.

Let Day = Tuple case mon, tue, wed, thu, fri, sat, sun end

The definition of a value of a tuple type with variants consists of the choice of a variant
and the definition of the corresponding bindings.

let addressl =
tuple case national of Addressl with
let street = ”Johnsallee 217
let city = "Hamburg”
let zip = 21234
end

The keyword with in the definition of addressl is optional. It is also possible to use
anonymous bindings in tuples with variants.

let address2 =
tuple case national of Addressl
”Johnsallee 21”7 ”Hamburg” 21234
end

A value of type Day can be defined as follows.
let today = tuple case mon of Day end

The projection on fields in the prefix and on fields of the variants requires two distinct
notations. Fields of the prefix can be accessed using the dot notation as in the case of simple
tuple fields.

addressl.street
= "Johnsallee 217 :String

For the fields of the variants a complete (case of) or an incomplete case analysis (case)
is necessary.

case of address]
when national with n then fmt.int(n.zip)
when international with i then i.zip

end

The use of the complete case analysis avoids unexpected runtime errors by ensuring that
later extensions of a tuple type with new variants are accompanied by corresponding exten-
sions of the case analysis. The incomplete case analysis has the following form.

case addressl
when national with n then fmt.int(n.zip)
end

12

Since an incomplete case analysis can lead to runtime errors, an else-branch can (and
should) be specified in this situation.

case address]
when national with n then fmt.int(n.zip)
else "not national”

end

Finally, two abbreviating notations for the simple test of variants and for the projection
of variants are presented.

address1?national
address1!national

These two examples are equivalent to the following expressions.

case address]
when national then true else false
end

case addressl

when national with n

then n

else raise tupleProject Error with line column ”national” 1 end
end

The variant projection opens the scope of the selected variant.

address1!national.zip
= 21234 :Int

6.3 Record Types

In contrast to tuple types, record types represent unordered, possibly empty sets of non-
anonymous signatures in TL. The names of all fields have to be different.

Let Person = Record name :String age :Int end
Record values are unordered sets of non-anonymous bindings.

let peter = record let age = 3 let name = "Peter” end

Like in tuple values, the scope of the field names name and age is restricted to the block
enclosed by record and end. The fields of a record are accessed using the dot notation.

peter.age
= 3 :Int

Different from tuple values, record values can be extended dynamically by non-anonymous
bindings without losing their identity. The keyword extend is provided for this purpose. In
the process of extending a record, the uniqueness of the field names has to be ensured.

13

let peterAsStudent = extend peter with let semester = 1 end
The infix operator == checks the identity of two values.

peter == peterAsStudent
= true :Bool

The record value peterAsStudent fulfills the following type specifications (see also sec.
7.3)

Record name :String age :Int semester :Int end
Record age :Int name :String semester :Int end
Record semester :Int name :String age :Int end
Record name :String age :Int end

6.4 Recursive Data Types

Recursively defined data structures like lists, sets, and trees play a central role in computing
science. TL provides means for the definition of recursive data types enabling a straightfor-
ward realization of recursively defined data structures.

A recursive type definition is introduced by the keyword Rec in TL. A supertype (e.g.,
IntegerList <:0k) has to be specified when defining a recursive type. The definition of a list
for integer values is considered as an example.

Let Rec IntegerList <:Ok =
Tuple
case nil
case cons with car :Int cdr :IntegerList
end

The following expressions show the construction of an empty list and the construction of
a new list from an existing (possibly empty) list by appending a new element.

let emptyList =
tuple case nil of IntegerList end

let singleList =
tuple case cons of IntegerList with
let car = 7
let cdr = emptyList
end

The next example shows the definition of a recursive value. As in the case of recursive
functions, the type of the value has to be given explicitly.

let rec circularList :IntegerList =
tuple case cons of IntegerList
7 circularList
end

14

6.5 Dynamic Data Types

In data-intensive applications there are programming situations where a context has to use
a value generated by another context although the two context do not share common type
information supporting static checking. In such situations it is desirable to defer the type
checking to well-defined points during program evaluation. In TL, the keywords Dyn and
typecase are provided for this purpose. Their application is illustrated by the following
example.

Let Auto = Tuple Dyn T <:Ok x :T end
let al = tuple Let Dyn T = Int let x = 3 end
let a2 = tuple Let Dyn T = String let x = "Hello” end

let asString(a :Auto) :String =
typecase a.T
when Int then fmt.int(a.x)
when String then a.x
when Tuple name :String end then a.x.name
when Tuple end then "Tuple”
else 77777

end

As discussed in [Mat93] and in [Nel91] structural equivalence is a prerequisite for dynamic
type checking in persistent, distributed systems.

7 Subtype Relationships and Subtype Polymorphism

In TwL, a signature of the form x :A is considered a partial specification. A value bound to
the variable x has to fulfil at least the specification defined by the type A. The underlying
partial order on types (B is more precise than A) is described explicitly by an inductively
defined subtype relationship (B <:A, B is subtype of A).

The supertype of all non-parameterized types is Ok [Mat93]. It represents the trivial
specification that is fulfilled by all values. The following example illustrates the use of the
type Ok. The functions fst and snd both discard one of their parameters. The type of this
parameter needs just a trivial specification.

let fst(a :Int b :0k) :Int = a

let snd(a :Ok b :Int) :Int = b

fst(3 4) fst(3 true) snd(34) snd(true 4)
= 3 :nt 3 :nt 4 :Int 4 :Int

The kind of polymorphism represented by the functions fst and snd is called subtype poly-

morphism. According to the subsumption principle the dynamic binding of formal parameters
of a static type A to values of an arbitrary subtype B <:A is possible.

7.1 Subtyping on Predefined Types
All predefined base types fulfil the trivial specification (<:0k), e.g.:

15

Int <:0k

Real <:0k

Fun(:Int) :Int <:Ok
Tuple :Int end <:0k

Non-trivial subtype relationships, e.g., of the form Int <:Real do not exist between the
base types of Tycoon. It is, however, possible to define subtypes of these types in the Tycoon
libraries as, for example, directory. T <:String. Values of the type directory. T represent
syntactically correct path names of the operating systems and thereby also strings. The
reverse is not true.

7.2 Subtyping on Tuple Types

In TL, subtyping on tuple types is based on structural compatibility. Subtype relationships
are not only defined between two tuple types without variants and two tuple types with
variants, but also between a tuple type without and a tuple type with variants.

A tuple type B without variants is a subtype of a tuple type A without variants if the
signatures of B are a prefix of the signatures of A, e.g., for

Let Student = Tuple name :String age :Int semester :Int end
Let Person = Tuple name :String age :Int end

Let Car = Tuple name :String age :Int end

Let Machine = Tuple name :String fuel :String end

Let NamedThing = Tuple name :String end

the following subtype relationships hold

Student <:Person Person <:NamedThing
Car <:NamedThing Machine <:NamedThing

but also
Car <:Person Person <:Car

On the other hand, it is described in [Mat93] how the Tycoon subtype relationship can

be restricted systematically to explicitly defined subclasses ensuring, for example, that car.T
&£:person.T holds.

A subtype of a tuple type can also be defined by specializing the types of tuple fields. For
example, the definition

Let Student2 = Tuple name :0Ok age :Int semester :Int end

implies the following subtype relationship.

Student <:Student?2

In Ti, a subtype can be defined without repeating explicitly all the components of the

supertype. The keyword Repeat is used for this purpose. A definition of the type Student
on the basis of the type Person may look as follows.

16

Let Student = Tuple Repeat Person semester :Int end

This notation is applicable wherever signatures are expected, e.g., in function signatures.
A corresponding construct exists on the value level. The keyword open supports the repeti-
tion of existing bindings. The value peter defined in section 6.1, for example, can be extended
by specifying its semester.

let peterAsStudent :Student = tuple open peter let semester = 6 end

The major advantage of subtyping is the fact that functions working on a type also accept
values of arbitrary subtypes of this type. Thereby, subtyping facilitates a later extension of
programs, in particular, the extension of data structures with new components. Functions
written for the original type are also applicable to values of the new type. These values
are recognized as instances of the old type. A function expecting two parameters of type
NamedThing also works on values of the types Student, Car, or Machine.

let sameName(x, y :NamedThing) :Bool =
string.equal(x.name y.name)

let fiat :Machine = tuple let name = ”Uno” let fuel = "unleaded” end

sameName(peter fiat)
= false :Bool

A tuple type B with variants is a subtype of a tuple type A with variants, if the ordered
sequence of variant names of B is a prefix of the sequence of variant names of A and the sig-

natures S; of each variant of B are tuple subsignatures of the corresponding variant signatures
S;" of A. For example, the relationship RGBColor <:Color holds for

Let RGBColor = Tuple case red, green, blue end
Let Color = Tuple case red, green, blue, cyan, yellow end

and the relationship Address <:Address2 holds for the type Address declared in section
6.2 if Address2 is defined, for example, as follows:

Let Address2 =
Tuple
case national with street, city :String zip :Int
case international with street, city, state :String zip :String
case unknown
end

Finally, a tuple type without variants having signatures S is a subtype of a tuple type
A with variants if the signatures S are tuple subsignatures of the signatures S’ of the first

variant of A. The relationship AddressTuple <:Address2, therefore, holds for

Let AddressTuple = Tuple street, city :String zip :Int end

17

7.3 Subtyping on Record Types

As in the case of tuple types, subtypes of record types can be constructed by specialization of
types of existing components as well as by extension with new components. Additionally, the
fact that the signatures of record types are not ordered is taken into account by the subtyping
rules. A record type B with signatures S is a subtype of a record type A with signatures S’
if the signatures S contain a subset of signatures S which are subsignatures of §’.

Let Person = Record name :String age :Int end

Let Student = Record name :String semester :Int end

Let Employee = Record ssno :String salary :Real end

Let Tutor = Record name, ssno :String age, semester :Int salary :Real end

For these types the following subtype relationships hold in TL,
Tutor <:Person Tutor <:Student Tutor <:Employee

enabling the application of functions which are defined for arguments of the types Person,
Student, or Employee to values of the type Tutor. Furthermore, it becomes possible to
construct heterogeneous data structures consisting, for example, of values of the types Person,
and Tutor. Subtyping hierarchies over record types are not restricted to tree structures as
in the case of tuple types. Other directed acyclic graphs are also possible, thus making the
representation of multiple inheritance hierarchies possible.

7.4 Subtyping on Function Types

The interpretation of types and signatures as partial specifications and of subtypes and sub-
signatures as specification refinements implies the well-known contravariance rule for the
subtyping on function types. According to this rule a function type with signatures S for
its formal parameters and result type B is a subtype of a function type with signatures 5’
and result type A iff B <:A and §’ are subsignatures of S. In other words, a function F is
a specialization of a function F., if under the assumption, that the preconditions of F5 hold,
the postconditions of F; fulfil at least the postconditions of F, and the preconditions of F
are not more restrictive than the preconditions of Fy [Mat93].

For example, assuming the relationship Student <:Person the relationship GetRichestStu-
dent <:GetRichestPerson holds for the following function types because the result types of
the function types are in covariance relationship.

Let GetRichestPerson = Fun() :Person
Let GetRichestStudent = Fun() :Student

However, for the function types

Let HirePerson = Fun(:Person) :Ok
Let HireStudent = Fun(:Student) :Ok

the relationship HirePerson <:HireStudent holds because the types of the function pa-
rameters are contravariant.

18

8 Parametric Polymorphism

The type system of TL supports two kinds of polymorphism: subtype polymorphism and
parametric polymorphism. Subtype polymorphism is presented in the previous section. Para-
metric polymorphism is the topic of this section. It makes the introduction of explicit type
parameters into function and type definitions possible.

Function definitions with parameters describe polymorphic functions, whereas the intro-
duction of type parameters into type definitions results in type operators. Type operators are
functions mapping types to types. They introduce parametrization into type declarations.

If a type is restricted explicitly to a subtype of a given type, this kind of polymorphism
is called bounded parametric polymorphism.

8.1 Polymorphic Functions

A function is made polymorphic (generic) by extending its signature by one or more type
parameters. The type parameters are instantiated with type expressions when the function
is applied.

The polymorphic identity function is a simple example of a polymorphic function.

let id(A <:Ok a:A):A=a

Such a function is called with a type (e.g.,:Int) and a value (e.g., 7) of this type as actual
parameters.

id(:Int 7)
= 7 :nt
id(:String ”Peter”)
= ”Peter” :String

The specification of the type argument can be omitted in most cases because it can be
inferred by the system from the value passed as parameter (type inference).

id(7)

= 7 :Int
id(”Peter”)

= ”Peter” :String

The instantiation of type parameters is not restricted to base types. Arbitrary user-
defined types (e.g., the type Person with the value peter) can be chosen as parameter for a
polymorphic function

id(peter)
= tuple name = "Peter” age = 3 end :Person

Parametric polymorphism makes it possible to write functions working uniformly for ar-
bitrary types. Polymorphic functions, therefore, can be used to describe type-independent
behavior. Separate functions for each considered parameter type would be necessary for this
purpose in languages like C or Modula-2.

19

Much of the power of TL results from the possibility to combine the concepts of polymor-
phic and higher-order functions with each other. This is illustrated by a polymorphic sorting
function. The pure sorting process, i.e. the permutation of the elements, is type-independent.
Therefore, it can be described by a polymorphic function. On the other hand, the compari-
son of the elements during the sorting process is type-dependent. This task can be solved by
passing a function whose application compares two elements as a parameter to the polymor-
phic sorting function. The signature of a polymorphic function sorting arrays of an arbitrary
element type could look as follows.

let sort(A <:Ok a :Array(A) order(a, b :A) :Bool) :Array(A) = ...

In order to sort an array of a specific type, it is sufficient to write a function for the
element comparison of this array. The sorting of persons by ascending age is considered as
an example.

let older(a, b :Person) :Bool = a.age >= b.age

The following call of the function sort sorts an array of persons according to their age.
sort(:Person personArray older)

Again, the type parameter can be omitted.

sort(personArray older)

Further examples of polymorphic functions can be found in the sections 8.3 and 8.4.

8.2 Bounded Parametric Polymorphism

Bounded parametric polymorphism, a restricted form of parametric polymorphism, is in-
troduced into polymorphic functions by specifying a type as a bound for the formal type
parameter in the signature. Only subtypes of the given type can be passed as parameter to
such functions. Employing subtype polymorphism, a function comparing the component age
of two values of an arbitrary subtype of the type Person can be defined in the following way.

let chooseOlder(pl, p2 :Person) :Person =
if pl.age > p2.age then pl else p2 end

let peter :Student =
tuple let name = ”Peter” let age = 24 let semester = 3 end

let paul :Student =
tuple let name = ”"Paul” let age = 29 let semester = 6 end

chooseOlder(peter paul)
= tuple let name = ”Paul” let age = 29 end :Person

Considering the function result displayed by the system, it can be seen that the attribute
semester of paul is missing. This is a consequence of the fact that type information is lost
at compile time. In order to avoid the loss of attributes of subtypes, chooseOlder has to be
defined as a polymorphic function.

20

let chooseOlder(P <:Person pl, p2:P):P =
if pl.age > p2.age then pl else p2 end

chooseOlder(peter paul)
= tuple name = "Paul” age = 29 semester = 7 end :Student

As a result of integrating enough type information into the function definition, all at-
tributes are taken into account. By introducing the specification P <:Person, the function
chooseOlder is made polymorphic, but in contrast to the unrestricted parametric polymor-
phism, the polymorphism is restricted to subtypes of the type Person. The type variable P
makes the intended relationship between the type of the formal parameters and the type of
the result of the function explicit.

8.3 Type Operators

Polymorphic functions support the description of type-independent behavior. Similarly, type-
independent patterns on the type level lead to generic type expressions in the form of type
operators, which can be instantiated with concrete types.

8.3.1 Simple Type Operators

A simple example of a type operator is an identity function on the type level corresponding
to the polymorphic identity function presented above.

Let Id = Oper(A <:0Ok) A
Similar to the function definition, the following abbreviated notation is also possible.
Let Id(A <:0k) = A

The operator Id maps the type passed as parameter to itself.

:Id(Int)

= :Int
:Id(1d(Bool))
= :Bool

A more practical application of the type operators is the description of optional values.

Let Opt(A <:0k) =
Tuple
case nil
case notNil with val :A
end

The syntax for the application of a type operator is equivalent to the syntax for the
function application.

Opt(Person)
Id(Opt(Id(Person)))

21

Symbolic identifiers bound to type operators can be used in infix notation. These infix
operators on the type level are all left-associative and of the same precedence. The classical
binary type operators of functional programming languages can be introduced into TL in the
following way.

Let —>(X, Y <:0k) = Fun(:X) :Y
Let *(X, Y <:0k) = Tuple fst :X snd :Y end
Let +(X, Y <:0k) = Tuple case fst with x :X case snd with y :Y end

The preceding examples are restricted to first-order type operators. T1L also supports
the definition of higher-order type operators. Higher-order type operators are, for example,
type operators accepting a type operator as parameter and applying it to different types in
the body. Other examples are type operators generating type operators as result based on
non-parametrized types passed as parameters. The coding of case selections on the type level
is considered as an illustrative example.

Let Boolean(Then, Else <:0k) = Ok

Let True(Then, Else <:Ok) = Then

Let False(Then, Else <:0k) = Else

Let Cond(If <:Boolean Then, Else <:Ok) = If(Then Else)

let i :Cond(True Int String) = 3
let s :Cond(False Int String) = ”Peter”

8.3.2 Recursive Type Operators

In addition to recursive types TL supports recursive type operators. The type operator List
maps a type E to the type of a list with elements of type E. For this purpose a type parameter
is introduced into the definition of lists presented in section 6.4.

Let Rec List(A <:0k) <:Ok =
Tuple
case nil
case cons with car :A cdr :List(A)

end
The corresponding list operations can be implemented by polymorphic functions.

let new(A <:Ok) :List(A) =
tuple case nil of List(A) end

let cons(A <:Ok head :A tail :List(A)) :List(A) =
tuple case cons of List(A) with head tail end

The polymorphic functions new generates empty lists of arbitrary types. Elements can
be added at the beginning of the list by the function cons.

In contrast to traditional programming languages, generic list, set, and tree types and
polymorphic operations on these types can be defined in TL reducing the number of functions
that have to be implemented.

The concepts of polymorphic functions and type operators complement each other. Generic
code can be used for the description of structures as well as of behavior.

22

8.4 Abstract Data Types

An abstract data type (ADT) consists of a data type and of a set of operations defined on
this data type. Only the name of the type and the names and signatures of the operations are
visible to programs that use the ADT. The implementation of the type and of the operations
are hidden by the ADT. The operations provided by the ADT are the only possible and legal
ones on the ADT. This protects the values of the ADT against undesired manipulations.

Since the implementation is hidden, it can be changed locally without invalidating pro-
grams that use the ADT. If different implementations exist for an ADT, these implementations
can be exchanged dynamically.

A general functional stack is presented as an example. The stack is declared employing a
polymorphic abstract data type.

Let Stack =

Tuple
T(E <:0k) <:Ok
new(E <:0k) :T(E)
empty(E <:0k stack :T(E)) :Bool
push(E <:Ok element :E stack :T(E)) :T(E)
pop(E <:Ok stack :T(E)) :T(E)
top(E <:Ok stack :T(E)) :E

end

In the following an implementation of this interface based on the module list® is presented.

let listStack :Stack =

tuple
Let T(E <:0k) <:0k = list.T(E)
let new(E <:0k) :T(E) = list.new(:E)
let empty(E <:0k stack :T(E)) :Bool = list.empty(stack)
let push(E <:Ok element :E stack :T(E)) :T(E) =

list.cons(element stack)

let pop(E <:Ok stack :T(E)) :T(E) = list.tail(stack)
let top(E <:Ok stack :T(E)) :E = list.head(stack)

end

In this example, T is defined as a type operator and the operations new, empty, push,
pop, and fop are implemented as polymorphic functions. Therefore, stacks for arbitrary data
types can be generated.

ADTs are based on the concept of type signatures in tuple types. This leads to the
concept of semi-abstract data types in TL. As an example, the signature of the type operator
in the ADT Stack above can be modified in order to exhibit more information about the

implementation of the ADT.

Let Stack2 =
Tuple
T <:list. T

Slist is a module of the standard library implementing polymorphic lists and the according operations.

23

end

let listStack2 :Stack2 =
tuple

end

Users of the ADT Stack2 can apply operations that expect values of the type list.T' on the
values of type listStack2.T in addition to the functions defined for the stack. On the other
hand, a value of type list.T is incompatible with functions defined by listStack.

In TL, a subsignature relationship between signatures of ADTs is defined:

Stack2 <:Stack

Finally, a tuple signature can make a local type binding visible globally.

Let Stack3 =
Tuple
Let T = list. T

end

Such type definitions are particularly useful in interfaces of modules when programming
libraries (compare section 11.1).

9 Imperative Programming

The discussions in the previous sections are restricted to the functional concepts underlying
the language TL. The imperative programming features are described in this section.

Imperative programming is based on mutable variables in a global (possibly persistent)
store. The flow of control between operations as allocation, inspection, and destructive update
of objects in the store is determined by constructs for sequences and loops.

9.1 Mutable Variables

Binding a value to an identifier by the let-construct is equivalent to the definition of a constant
because no update of the value bound to the identifier is possible. A further binding of an
existing identifier to a new value employing the let-construct establishes a new constant.

In T1, bindings of identifiers to mutable variables are marked by the keyword var. Sub-
sequently, an existing mutable variable can be updated with new values employing the de-
structive assignment :=.

let var x = 3
let var y = 4
Xy

= 3 :Int 4 :Int

24

X:=y

= ok :0k

Xy

= 4 :Int 4 :Int

y:=5
= ok :0k
Xy

= 4 :Int 5 :Int

For anonymous variables, e.g., inside of tuple values, the keyword var precedes the value
used to initialize the variable.

tuple var "text” var 3 end

The destructive assignment is a globally defined function with the following signature.

:=(A <:Ok var [Value :A rValue :A) :0Ok

The signature of the function defines that the assignment evaluates to the trivial value
ok of type Ok as it is the case for the empty block. Note that the infix symbol := is not a
keyword. Therefore, it can be bound locally to a user-defined polymorphic function.

TL realizes two parameter passing mechanisms for functions, namely the concept of value
parameters (call by value) presented in section 5.2.1 and the concept of variable parameters
(call by reference). The latter concept is illustrated by the following example.

let swap(A <:Ok varx,y:A) =
begin let tmp =x x:=y y:= tmp end

let var a = 3 and var b = 5
swap(:Int a b)

ab

= 5 :nt 3 :Int

When applied, the function swap references the L-values of the mutable variables a and b
through the formal parameters in the signature. On return from the function, the values of
the mutable variables are swapped.

The concept of higher-order functions presented in section 5.2.4 supports the dynamic
generation of encapsulated state variables, which can be shared by several functions (shared

variables). In the following example, the variable state can be updated and inspected, re-
spectively, by the three defined functions only.

let newCounter() =
begin
let var state = 0
tuple
let reset() :0Ok = state := 0
let inc() :Ok = state := state + 1

25

let value() :Int = state
end
end

let cntrl = newCounter() and cntr2 = newCounter()
cntrl.inc() cntrl.value() cntr2.value()
= ok :Ok 1 :Int 0 :Int

Mutable function bindings enable the programmer to override functions.

let var f{x :Int) = x + 1
1(3)
= 4 :Int

:= fun(x :Int) x - 1

1(3)

= 2 :Int

9.2 Subtyping Rules for Mutable Bindings

The details of the interaction between the subtyping rules and the destructive assignment
are very important for the type-safety of polymorphic programming languages. T1L follows
the example of the language Quest (and loosely related concepts in C++) and disallows the
application of the subsumption rule to mutable variables. For this reason

Fun(x :Person y :Person) :0k <:Fun(x :Student y :Student) :Ok
Tuple x :Int end <:Tuple x :0k end

holds, but the following subtyping relationships do not hold in Tr [Mat93]:

Fun(var x :Person y :Person) :Ok <:Fun(var x :Student y :Student) :Ok
Tuple var x :Int end <:Tuple var x :Ok end

However, the concept of the bounded parametric polymorphism supported in TLmakes
the definition of a type-safe polymorphic function update working uniformly for arbitrary
subtypes of type Person possible.

let update(P <:Person var a, b :P)=a:=b

Finally, it is possible in TL to type a mutable variable in an aggregate as a non-mutable
value. As a consequence, the more liberal subtyping rules can be applied for the read-only
access to value variables, e.g.,

Tuple var x :Int end <:Tuple x :Int end <:Tuple x :0Ok end

9.3 Control Structures

In addition to sequences, TL offers control structures for conditional expressions, three kinds
of loops and a structured ezceplion handling supporting a flexible imperative programming
style. For the sake of completeness, concepts already introduced in previous sections are
mentioned again.

26

9.3.1 Sequences

A sequence describes the sequential execution of expressions. As mentioned in section 5.1,
expressions are enclosed by the keywords begin and end in order to form a block. The type
of a sequence is determined by the type of the last expression or binding in the block.

begin
let s = "text”
let x = 1

end

= 1 :Int

9.3.2 Conditional Expressions

The simplest form of a conditional expression is described by an if-expression in TL. The
result types of all then-branches and the else-branch have to be compatible.

if x == 0 then
0

elsif x < 0 then
-1

else
1

end

Several conditions can be conjuncted by andif and orif operators in TL.

if x == 0 andif y == Q orif x != 0 andif y != 0 then
0

else
be

end

Since andif and orif have the same precedence and are evaluated from left to right as,
above expression is equivalent to the following more complex expression:

if x == 0 then
if y == 0 then
0
else
if x !I= 0 then
if y != 0 then
0
else
X
end
else
X
end

27

else
X
end
else
X
end

Two further constructs for conditional expressions are provided in TL (compare section
6.2 und 6.5).

let weekDay(d :Day) :Bool =
case d
when mon, tue, wed, thu, fri then true
else false
end

let asString(Dyn A <:Ok a :A) :String =
typecase A
when Int then fmt.int(a)
when String then a

else 7777”7
end
9.3.3 Loops

Loops enclose sequences of expressions for the purpose of iteration. The most general kind of
loop is introduced by the keyword loop. The result type of loops of this kind is Ok.

loop
X:=x+4+ 2
if x > 100 then exit end
x:=x-1

end

Furthermore, there are two more special forms of loops, the prechecking while-loops and
the enumerating for-loops. The function computing the greatest common divisor of two
integers is considered as an example of a prechecking loop.

let ged(n, m :Int) :Int =
begin
let var vi = n and var vimn = m
while vn != v do
if vo > vm then vn := vo % vm end
if vo < vm then vin := vm % vn end
end
Vil
end

28

Two versions of enumerating loops are distinguished in TL, one counting upwards (upto)
and the other counting downwards (downto).

let var x = 0
for i = 50 downto 1 do

X:=x4+1
end
X
= 1275 :Int

Note, that it is not necessary to declare the loop variable i which has local scope. In
section 9.4, an example of a loop counting upwards is presented.

9.3.4 Exception Handling

Exception handling is a further important structuring facility. In TrL, it is also integrated
smoothly into the type system. Exceptional situations that have to be handled cannot only
be caused by partially defined functions as, for example, int.div (division by zero), but also
by an overflow of a partially represented domain. Furthermore, the projection on variants
described in section 6.2 can raise exceptions in TL.

Each exception returns an exception package containing a string which supports the iden-
tification of the exception on the top level.

3/0

= Exception: ”Int error”

If an exception occurs inside a composite expression, the further evaluation is aborted and
the exception package is propagated.

let safeDiv(x, y :Int) :Int =
try x / y else int.maxValue end

In this example, the further propagation of an exception is stopped by the try-construct.
As in the case of the if-construct, the result types of both blocks have to match.

In addition to the standard exceptions, TL also supports user-defined exceptions. The
definition of an exception includes the identifier of the exception and, optionally, a signature
for exception arguments. The definition is introduced by the keyword exception.

let noCredit = exception "No Credit” with overdrawn :Int end
The type of an exception defines only its signature not its identity.
noCredit :Exception with overdrawn :Int end

A raise-expression returns an exception package as its result, which encapsulates the iden-
tity of the exception. Depending on the exception signature it can contain further bindings.

29

let withdraw(var account :Int amount :Int) =
if amount <= account then
account := account — amount
else
raise noCredit with let overdrawn = amount — account end
end

Exception packages propagate through nested expressions along the dynamic call hierarchy
until an exception block enclosed by try and end or the main program is reached.

try
withdraw(petersAccount 300)
print.string(” Transfer succeeded”)
when noCredit with exc then
print.string(”Overdrawn by ” <> fmt.int(exc.overdrawn))
else
print.string(” Unexpected exception occurred”)
end

Similar to the case-expressions a local value variable (here exc) in a when-branch of the
try-construct can be used to access the bindings of the exception package in a type-safe way.

A handled exception can be propagated explicitly by reraising it (reraise). The following
example also shows that exceptions raised by functions exported from 7Tycoon-libraries are
bound to exported identifiers enabling the user to define handlers for these exceptions.

tryx /vy

when int.overflow then int.maxValue

when int.error then print.string(” Division by zero”) reraise
end

Types in TL only specify the values of terminating computations. For this reason an
arbitrary type can be assigned to terms containing raise, reraise, or exit (see section 9.3.3),

e.g.,

if a then 3 else raise int.overflow end :Int
if a then "String” else raise int.overflow end :String

This fact is reflected by the type rules raise ...end :Nok, reraise :Nok, and exit :Nok,
where Nok denotes the subtype of all non-parametrized types in TL, i.e.,

A <:0Ok = Nok <:A

This property of the type Nok is frequently used for the definition of polymorphic null
elements.

Let Rec AnyStream <:0k =
Tuple empty() :Bool get() :Nok rest() :AnyStream end
let emptyExc = exception “Empty Stream”

30

let emptyStream :AnyStream =
tuple
let empty() :Bool = true
let get() :Nok = raise emptyExc
let rest() :AnyStream = raise emptyExc
end

9.4 Arrays and Array Indexing

An array is an ordered, possibly empty sequence of anonymous bindings to mutable variables
of a common supertype indexed by non-negative integers (i >= 0). The size of an array is
fixed statically when it is generated. The size cannot be modified dynamically, whereas the
elements of an array can be updated dynamically by destructive assignments. A check of the
index bounds is performed at runtime only.

In Tr, array types are defined using the constructor Array(A) and array values are ini-
tialized enumerating their elements inside of an array-end-block. The elements of an array
are accessed by indexing. The indices are expressions of type Int enclosed in square brackets.

let a :Array(Int) = array 012 34 5 end
af0] := afl] + 7

Using the for-loop it is possible to define, for example, a summation function accepting
arrays of an arbitrary size.

let sum(arr :Array(Int)) :Int =
begin
let var result = 0
for i = 0 upto extent(arr) do
result := result + arrfi]
end
result
end

Finally, examples for the application of the function sum are presented illustrating the
listfiz notation that can be used for functions on arrays in TL.

sum(array 1 2 3 4 end)
sum of 1 2 3 4 end

10 Multi-Paradigm Programming in Tycoon

It has been one of the design goals of the Tycoon system to support generic, model-independent
naming, binding, and typing schemata providing an environment that is open for external
services. TL can be used to support programming styles, which differ substantially from each
other (see [Mat93]). This is illustrated here by the realization of two concepts: abstract data
types and object-oriented encapsulation.

The different programming styles and concepts are not supported by special language
constructs but are realized using the TL primitives for naming, binding, and typing.

31

In order to implement the concept of abstract data types the primitives of TL can be
combined in three different ways. It is possible to aggregate an opaque type together with
the functions working on this type”. This approach can be implemented purely functionally
or state-based resulting in the first two realization variants. The third variant aggregates
methods that work on a hidden, internal state. The different realization alternatives are

called
e functional encapsulation,
e imperative encapsulation, and
e method-based encapsulation.

A generic stack implementation is used to compare the three different realization alter-
natives. Each of them provides a type operator that maps the element type of the stack to
a tuple type. In the first two cases this tuple type aggregates the opaque stack type 7, the
common stack operations empty, push, pop, top, and a parameterless function new for the
creation of new empty stacks. For the third alternative, the tuple type aggregates only the
stack operations. It represents the type of a stack. The function new has to be defined outside
this type signature.

Functional Encapsulation In the functional realization the modified stack is returned by
the the update operations. Therefore, the result type of these functions is the opaque type

T

Let FunStack (E <:0k) =

Tuple
T <:0k
new() :T
empty(stack :T) :Bool
push(element :E stack :T) :T
pop(stack :T) :T
top(stack :T) :E

end

The data type is implemented by a parametrized variable. It provides a tuple value
consisting of a definition of the representation type and of the functions of this type. The
generic service (list) providing the list type and the operations on this type is also based on
a functional implementation.

let listStack (E <:0k) : FunStack(E) =
tuple
Let T <:0k = list.T(E)
let new() :T' = list.new(:E)
let empty(stack :T) :Bool = list.empty(stack)
let push(element :E stack :T) :T = list.cons(element stack)
let pop(stack :T) :T = list.tail(stack)

"This is comparable to an implementation of abstract types in Modula-2 using the module concept of this
language.

32

let top(stack :T) :E = list.head(stack)
end

Using this realization a new stack with elements of type Int containing the element 4 can be
created by the following function call:

let intStack = listStack(:Int)
let myStack = intStack.push(4 intStack.new())

Imperative Encapsulation In the imperative realization the update operations change
the state of the stack passed as parameter via side-effects. In contrast to the functional
solution, the modified stacks are not returned as function result. For this reason the result
type of these operations is Ok.

Let ImpStack (E <: Ok) =

Tuple
T <: Ok
new() : T

empty(stack :T') :Bool
push(element :E stack :T) :Ok
pop(stack :T) :Ok
top(stack :T) :E

end

The representation type of the implementation is defined as a tuple type with a mutable
component. The update operations are implemented using assignments.

let listStack (E <:0k) : ImpStack(E) =
tuple
Let T <:0k = Tuple var | :list. T(E) end
let new() :1' = tuple let var I = list.new(:E) end
let empty(stack :T) :Bool = list.empty(stack.l)
let push(element :E stack :T) :Ok= stack.l := list.cons(element stack.l)
let pop(stack :T) :T = stack.l := list.tail(stack.l)
let top(stack :T) :E = list.head(stack.l)
end

In this case a new stack containing the integer 4 can be created by the following function
calls:

let intStack = listStack(:Int)
let myStack = intStack.new()
intStack.push(4 myStack)

Method-Based Encapsulation The third encapsulation technique binds functions to an

internal, shared, mutable variable. The function signatures are defined by a tuple type. This
type represents the type of a stack object.

33

Let StackObject (E <:0k) =
Tuple
empty() :Bool
push(element :E) :0k
pop() :Ok
top() :E
end

An implementation of the stack functions is provided by a new-function that can be used
to create "objects” of this type. The implementation of their methods are value components
of these objects. In this implementation framework method overwriting for subtype objects
can also be realized (see [Mat93]). For this reason this encapsulation method is called object-
oriented in [Mat93]. It avoids an opaque type and input parameters of this type®.

let newStackObject(E <:0k) :StackObject(E) =
begin
let var state = list.new(:E)
tuple
let empty() :Bool = list.empty(state)
let push(element :E) :0Ok = state := list.cons(element state)
let pop() :0Ok = state := list.tail(state)
let top() :E = list.head(state)
end
end

For this realization variant the creation of an integer stack with the element 4 looks as
follows:

let myStack = newStackObject(:Int)
myStack.push(4)

11 Programming in the Large

Besides function abstraction, modularization is the most important structuring facility in
modern programming languages. Large programs can be split into interfaces and modules in
TL. Moreover, it is possible to group interfaces and modules into libraries.

These structuring mechanisms do not introduce new concepts for naming, binding, or
typing. They just restrict deliberately existing concepts of TL [Mat93].

11.1 Modules and Interfaces

Interfaces define the signatures of exported values, functions, types, and type operators.
Interfaces, therefore, can be viewed as named tuple types containing references to explicitly
imported modules (e.g., bool) and interfaces visible in the global scope.

8 Operations expecting more than one input parameter of the opaque type lead to recursive type definitions
when this implementation style is used[Mat93].

34

interface List
import bool
export
T(E <:0k) <:0k
Let AnyT = T(Nok)
error :Exception
nil :AnyT
cons, ::(E <:Ok hd :E tl:T(E)) :T(E)
empty(E <:Ok 1:T(E)) :bool.T
car(E <:Ok 1:T(E)) :E
cdr(E <:0Ok 1:T(E)) :T(E)

end

Interfaces can include type bindings (AnyT). The definition of these types is visible to all
users of the interface. If such types are imported by other modules, the name of the interface
as well as the name of the module can be employed as qualifying identifier.

A module defines a tuple value aggregating bindings according to its interface. In TL, an
arbitrary number of modules can exist for a single interface.

module list
import bool
export
Let Rec T(E <:0k) <:0Ok =
Tuple case nil case cons with hd :E tI :T(E) end
Let AnyT = T(Nok)
let error = exception "Empty list”
let nil = tuple case nil of AnyT end
let cons(E <:Ok hd :E tl:T(E)):T(E) =
tuple case cons of T(E) hd tl end
let :: = cons
let empty(E <:Ok 1:T(E)) :bool. T = I7nil
let car(E <:Ok 1:T(E)) :E =
try llcons.hd else raise error end
let c¢dr(E <:Ok 1:T(E)) :T(E) =
try llcons.tl else raise error end
end

Type bindings established in the interface (here AnyT') have to be repeated in the module.
Modules and interfaces are first-class objects of the language. They can be bound to identifiers
and passed as parameters to functions. Modules and interfaces can be imported by other
modules and interfaces employing the import-clause. In the library a unique interface is
assigned to every module name.

Interfaces and modules are definable on the top level of the interactive programming
environment. Their definition implicitly generates persistent data structures describing the
types of interfaces and the values of modules, respectively.

After importing a module its components are referenced by the dot notation.

module main

35

import list print

export
let | = list.cons(3 list.nil)
let 12 :list.AnyT = list.nil
if not(list.empty(l)) then

print.int(list.car(l))

end

end

11.2 Libraries

The rapidly growing number of modules in real systems and the necessity for tools supporting
consistent system restructuring in persistent systems makes it necessary to organize modules
and interfaces into libraries and suggests the introduction of a library concept into the lan-
guage TL.

A library defines the scope of the names of its local modules and interfaces and supports
the definition of subsystems encapsulating hidden modules and interfaces.

The definition of the standard library(StdLib) is presented as a simple example.

library StdLib
with
interface
Bool Int Char Real ArrayOp
module
bool :Bool int :Int char :Char real :Real arrayOp :ArrayOp
interface
List
module
list :List
end

The order in which the names of the modules and interfaces are listed matters. Only
modules and interfaces preceding the importing modules and interfaces in the library can be
imported. As a consequence, cyclic dependencies are ruled out. The modules of the standard
library introduced in the previous example can be imported into a further library (BulkLib).

library BulkLib
import arrayOp :ArrayOp list :List iter :Iter
with
interface
Set Bag Assoc Dictionary VarList
module
linkedSet :Set bitSet :Set hashedSet :Set
module
bag :Bag assoc :Assoc dictionary :Dictionary
hide
varList :VarList
end

36

For this purpose, the libraries StdLib and BulkLib have to be defined in the following
order as parts of an enclosing library.

library Root
with
library
StdLib BulkLib
interface
Test
module
test :Test
end

The example of the library BulkLib illustrates two further facilities of the library concept
of TL. Modules and interfaces can be hidden in the library employing the hide-clause.
Furthermore, it is possible to specify different modules (linkedSet, bitSet, and hashedSet) for
a single interface (Set).

TL supports hierarchic library structures, but the names of all modules, interfaces and
libraries inside of a library have to be unique. This is also true for components defined as

hidden.

12 Persistence and Garbage Collection

In Tycoon no linguistic difference between persistent and temporary data is made. Every
object can be made persistent. Persistence is defined by reachability either from a linked
library module or from a local name space of a user (top level). This persistence concept
works for values, functions, and (dynamic) type bindings.

Consistent states of the object store are marked by explicitly stabilizing the object store.
The module store provides the function stabilise for this purpose. A call of this function
stabilizes the actual state of the object store.

import store;
store.stabilise();

The operation store.stabilise generates a checkpoint. If a user quits the session with the
command do exit or if a system crash occurs, all changes of objects in the persistent store
performed after the checkpoint are undone (rollback). At the beginning of the next session
the object store is in the state of the last checkpoint. Furthermore, it is possible to rollback
explicitly to the state of the last checkpoint without leaving the system. This is accomplished
by the function restart which is also exported by the module store. The effect of the functions
stabilise and restart is illustrated by the following example.

import store list;
let var | = list.nil
:= list.cons(1 1)
1 := list.cons(2 1)
store.stabilise();

37

(* object store with list I containing elements 1 and 2 is stabilized *)

:= list.cons(3 1)
store.restart();
(* rollback to last checkpoint; insertion of 3 into I is undone *)

list.car(l);
= 2

Objects that are no longer reachable are automatically deleted from the object store by a
garbage collector.

13 External C Libraries

Tycoon provides a bidirectional programming interface between TL and C that features a
seamless integration of both languages’ function paradigms. External C functions can be
integrated into TL as ordinary function values. TL functions can be wrapped in a way that
makes it possible to use them directly as C function pointers.

13.1 Function Calls from Tycoon to External C Libraries

Tycoon provides a generic mechanism to use system functionality implemented in external lan-
guages. The binding of TL identifiers to external function values is achieved by the predefined
function bind. This function has the following signature:

bind(Function <:Ok library, label, format :String) :Function

The parameters of the bind function have the following meaning: Function describes the
type of the resulting T'L function. It has to be of the form Fun(...) :A. The library parameter
is a string that identifies the library file that contains the required external C function. This
can either be the full path name® of a dynamic library or the string result of one of the
functions exported by the module runtimeCore (see the following table) belonging to the
Tycoon library stdenv.

Function Description
library identifies the core of the Tycoon runtime system
cLibrary identifies the standard C library

dynamicLibrary | identifies dynamically bound libraries

staticLibrary identifies statically bound libraries

The label parameter is a string that contains the original C source text name of the C
function. The format parameter is a string that specifies the assumed parameter format of
the C function. Every single character of this string corresponds to one parameter. It specifies
the conversions between tagged and untagged data representations to happen before and after

If the same shared library is referenced several times the path should always be exactly the same. Otherwise
the dynamic linker loads several instances of the shared object. This means not only consuming more process
memory than necessary, but leads to subtle bugs when global C variables are defined multiple times in the
same process.

38

a call. The parameter order is from left to right like in C, except for the function result type.
It is given by the last character which is mandatory. The following table contains the set of
characters that denote parameter formats.

Format | TL type | C type | Description

i Int long integer number

r Real double | floating point number

c Char char ASCII character

b Bool long boolean value (see text)

s String char * | zero-terminated string

v Ok void return value only

= <:0k void * Tycoon value, no conversion
w word.T void * | 32-bit word

There is no predefined type for boolean values in C. Boolean TL values are converted to
C long values as follows.

true — 1
false — 0

A C value x produces the following TL boolean values:

x!=0 — true
x ==0 — false

When s is used as a format character for a string parameter, every call is enclosed by
automatic fix and unfix operations for the argument. The result of the fix operation, a main
memory pointer is passed to C. The latter refers to a valid C string, because all Tycoon strings
are represented with zero-termination.

Used in return value position the format character s causes strings returned from C to be
copied into newly created store objects (copy-out).

Suppose a library /usr/lib/libexample.so contains a function example that takes a string
argument and returns a 32 bit integer number. Thus, example is assumed to match the
following declaration:

extern long example(char *s);
An appropriate binding for example in TL is:

let cCallExample =
bind(:Fun(:String) :Int ”/usr/lib/libexample.so” “example” 7si”)

The value cCallExample has the type Fun(:String) :Int. Therefore, the C function can
be called as follows.

let result :Int = cCallExample(”My favorite String”)

Note that external bindings are persistent and portable across host architectures. For
example, if the value cCallExample is transferred with dynamic.extern/intern, the C binding
would be reestablished automatically.

39

13.2 Function Calls from External C Libraries to Tycoon

The programming interface between TL and C is bidirectional. It is not only possible to call
C functions from TL, but also to call back from C to TL.

In order to minimize the programming effort for callbacks on the C side, it is desirable to
make TL functions appear like ordinary C function pointers. Moreover, this is indispensable in
situations where an external software component requires C callbacks but cannot be changed.

The module cCallback exports an abstract type cCallback.T which represents C function
pointers that refer to callbacks. The creation function for values of type cCallback.T has the
following signature:

new(Function <:Ok function :Function format :String) :callback.T(Function)

The first value argument (function) of new must always be a function, although this
restriction is not checked. Nevertheless, the function’s signature has to be mirrored in the
format string that specifies how C arguments of the resulting callback are converted into TL
values. Every single character of the string corresponds to one parameter. The parameter
order is from left to right like in C, except for the function result type which is given by the
last character. The latter is mandatory. The format characters are shown in the table in
section 13.1.

If the format character s is used for a parameter, a C string argument will be copied into
a newly created store object (copy-in). In case of a return value, a C string is copied into a
chunk of memory allocated by malloc. Hence the parameter passing semantics are copy-oul
instead of by reference which apply for strings within C only.

The format character v specifies a function result value of ok irrespective of the actual C
value returned by C.

For parameters with format code w a TL type that is equivalent to word.T or to an
instance of word.Handle must be used. In particular callbacks conform to word.Handle,
because cCallback.T <: word.Handle.

A simple example follows:

import cCallback fmt

let myMessage(n :Int r :Real) :String =
fmt.int(n) <> 7 = 7 <> fmt.real(r)

let myMessageCallback =
cCallback.new(myMessage 7irs”

let test =
bind(:Fun(n :Int messageCallback :cCallback.T) :Ok

”.../example.so.1.0” "test” Viwv”

test(2 myMessageCallback)
The resulting console output would be

"pi * 2 = 6.28”
ok

40

assuming that the corresponding C program ... /example.c looks like this:

#include <stdio.h>
void test(long n, char *message(long n, double r))

printf("pi * %s\n”, message(n, n * 3.14));

}

As callbacks can be transferred to address spaces which are not under control of the
Tycoon system, there is in general no way to determine their temporal extent automatically.
Callbacks are never persistent. Callbacks occupy some memory resources that can only be
released explicitly:

cCallback.free(myMessageCallback)

After freeing a callback it is invalid. Any subsequent usage is most likely to cause strange
system behavior (e.g. crashes). Attentive readers may have noticed some more problems in
the example: In what manner does the result string of the function message get allocated on
the C side before it is passed to printf, who is in charge of releasing its memory and how can
this be done?

The current solution is that the format character s in a return value position causes the
allocation of an appropriate memory block by calling malloc. This block has to be released by
the C programmer by a call to free. Thus, the C program in the example should be written
as follows:

#include <stdio.h>
#include <malloc.h>

void test(long n, char *message(long n, double r))

{

char *p;

p = message(n, n * 3.14);
printf("pi * %s\n”, p);
free(p);

}

14 Layout and Naming Conventions

Common formatting conventions are worth a lot, especially when several people work to-
gether on large projects. In addition to the communication inefliciencies caused by differing
conventions, newcomers to a programming language often spend a significant amount of time
incrementally developing and retrofitting their own style, usually re-learning what turn out
to be simple lessons that others have already learned. While this is not always wasteful, it
is clearly worthwhile to have a good set of guidelines at hand, if only for reference. Also
adherence to common conventions makes automatic formatting tools easier to provide and

more useful [RLWS85].

41

This section offers a complete set of conventions for formatting TL modules and inter-
faces. Such conventions address indentation, capitalization, punctuation, comments, etc. The
following points of style produce a visually pleasing program. Consistently applied, they also
provide syntactic cues to semantics that make a program easier to read.

14.1 Spelling

Identifiers that name values (e.g. variables, functions, modules and exceptions) start with
a lower-case character and identifiers that name types (e.g. type operators and interfaces)
start with an upper-case character. All following characters are entirely lower case, except for
composed identifiers. Fach first character of a subcomponent is capitalized (e.g. longName-
ForAValue).

Reserved keywords that are used in value contexts are entirely lower-case and keywords
that are used in type conterts start with an upper-case character.

14.2 Punctuation

A space () appears before and after a binary operator in infix notation and in a let-binding
or destructive assignment.

344 Tcon” <> cat”
let a,,=.,3
ai=ud

A space appears before but not after a colon or a subtype sign.

let p:Person = ...
let n,<:0k = ...

A space appears after but not before a comma or a semicolon.

add(x,uy :Int) = ...
module ... end;

A space appears neither before nor after a point, a question-mark or an exclamation-mark.

person.name
address?national
address!national

Except as required by adjacent tokens, no spaces appear before or after left and right
parenthesis, left and right square brackets and left and right curly brackets.

fac(3) get(peter).name
a[3] p[3].name
{3+ 4}

Two spaces appears between two signatures, e.g. in function or tuple signatures. Two
spaces also appears between let-bindings function applications or tuple fields.

42

get(E <:Okyycoll :T(E) uindex :Int) :E
Tuple name :String, , ,age :Int end
fllet x =2 ,let y =7)

tuple let a = 6, let b = "hallo” end

A single space appears between actual parameters in function applications and between
tuple fields (anonymous bindings).

get(:Person, persons,,7)
tuple ”Peter”,,29 end
array 1,23 end

14.3 Indentation

Indenting is used to emphasize program structure. Fach nesting level is two spaces wide. A
binding or signature sequence is indented under the construct that introduces it. For example:

let t =
tuple
let name = ”Peter”
let age = 3
end
Let Person =
Tuple
name :String
age :Int
end
if bool then
s
elsif bool then
s
else
s
end

Function signatures and function parameter lists that do not fit on a single line are split
element-wise across separate lines. Subsequent lines are indented one nesting level, for exam-
ple:

let newSubWindow WithTitle(window :window.T
title :String
windowOptions :window.Options)
newSubWindow WithTitle(long Expression WithManyArguments
longExpression WithManyArguments
longExpression WithManyArguments)

These forms only apply to constructs that do not fit on a single line. For example, if the
statement sequence following a then or else fits on a single line, it can appear on the same
line with the tokens that introduce and terminate it. Similarly, if the statement sequence of

43

a loop body is short, it can be moved up to the line that introduces the loop, along with the
trailing end.

ifz > 10 then x := z y := z end
for i = 1 upto 10 do afi] := 0 end

14.4 Comments

The text of a multiline comment begins on the same line as the opening left-comment. Sub-
sequent lines are indented the same as the first word of the comment. The terminating
right-comment appears on the last line of the comment.

(* A comment that fits entirely on one line by itself. *)

(* A long comment that does not fit on one line. A long
comment that does not fit on one line. A long comment
that does not fit on one line. *)

By convention, comments which refer to a group of items appear before the group. Com-
ments associated with a single definition or declaration appear immediately after it. This
comments starts at the same indentation level as the definition or declaration begins.

(* Exceptions:
This is a comment for a group of items. *)

error, overflow :Exception with data :Int end
(* Standard exceptions. *)

test :Exception (* Only for debugging. *)

Interfaces and modules have a multiline comment with predefined fields. This comment is
placed immediately after the interface respectively the module name. It is used to give some
initial information about the contents. The terminating right-comment stands on a separate
line.

interface Editor
(* System: editenv
File: Editor.ti
Author: Florian Matthes, Sven Muessig
Date: 02-dec-91
Purpose: Generic data editor and browser.

¥)
import
export

end

44

A The TL Grammar

A.1 Syntax Notations

The following notation is used for the definition of syntactical and lexical elements. Id denotes
a non-terminal symbol (a meta variable) and A and B denote syntactic expressions.

Id,, ..., Id,::= A; the non-terminal symbols Id;
are defined as A (n > 1)

1d a non-terminal symbol

if a terminal symbol

nx" the character x ("" is the empty string
"7t is a double quote)

(A) means A

AB means A followed by B (binds strongest)

A|B means A or B

[A] means ("" | A)

{A} means (""" |A{A})

A.2 Symbols

The source text of a TL program consists of a sequence of characters that is converted into a
sequence of symbols of the categories int, real, longreal, char, string, identifier, infix, colonInfix
and delimiter.

The set of formatting characters is an implementation-dependent subset of the non-
printable characters and includes at least the characters space, tab, carriage return, line
feed and vertical tab.

Comments are sequences of arbitrary printable or formatting characters that are enclosed
by (* *). Comments can be nested.

To read a symbol, all formatting characters are skipped and then the longest sequence of
characters that forms a symbol is read. Therefore, a space in the source text is only required
between two identifiers or two (colon-) infix symbols that appear in direct succession.

int::=

["~"] digit { digit };
real::=

int "." digit { digit } |

int ["." digit { digit } | "E" int;
longreal::=

int ["." digit { digit } | "D" int;
char::=

" (digit | alpha | special | escape | delimiter | reserved) "";
string::=

i { digit | alpha | special | escape | delimiter | reserved } "”";
infix::=

special { special };
colonlnfix::=

e { special };

45

identifier::=
alpha { digit | alpha };
delimiter::=

H(H | H)H | H{H | H}H | H[H | H]H | non | " H| o,
. ’)

digit::=

HOH| ”1”| non | I!3H| H4H| H5H| 11611 | H7H| I!8H| 11911;
alpha::=

HAH | HBH | | HZHl Haﬂ| an | | HZH;
reserved::=

1r~n| "non.

)

special::=

1r@n| H#H | H$H| H%H | H&-H | H*H| 1] 1r| g | = | [T |

1rln| H\H | urn| Hen | et | H>H| H/H| n-an | nen | rr!n;
escape;l=

H'\H (HHH | ngn | ey | an | H\H | Hon | 2 | d]glt d]g]t d]g]t),

Escape characters in character and string literals are interpreted as follows:

\n new line
\t tab
\r carriage return
\f form feed
\]]
\II n
\\ \
\nnn A single character with the code nnn
(three decimal digits that denote an integer in the interval [0,255])
\f...f\ | The sequence of formatting characters f is ignored

The last rule allows the programmer to define string literals that exceed the length of a
single source line.

The above definitions make a scanner implementation possible that requires just a single
character lookahead.

A.3 Reserved Keywords

The following identifiers and (colon-) infix symbols are reserved keywords and cannot be used
as user-defined identifiers in TL programs.

and andif assert begin case do downto else elsif end exception
exit export extend for fun hide if import in interface let library
loop module of ok open orif raise rec record reraise then try
tuple typecase upto var when while with

Dyn Exception Fun Let Nok Ok Oper Rec Record Repeat Tuple

=<:: 71!

46

A.4 Productions
A.4.1 Compilation Units

Based on the symbols and keywords defined in the previous sections, the grammar of TL is
described by the following productions that define a non-ambiguous LL(1) grammar. Unit is
the root production for the language.

Unit::=

(Library | Interface | Module | Import | Bindings) ";";
Library::=

library identifier Import with { ComponentSignatures }

[hide { identifier } | end;
ComponentSignatures::=

library { identifier } |

interface { identifier } |

module { identifier ":" identifier };
Interface::=

interface identifier Import export Signatures end;
Module::=

module identifier Import export Bindings end;
Import::=

[import { [":"] identifier } |;

A.4.2 Bindings

Bindings::=
{ TypeBindings | ValueBindings | open Valuelde [":" Type |
" [Dyn | Type | | var | Value };

TypeBindings::=

{ Let | Rec | TypeBinding { and TypeBinding } };
TypeBinding::=

[Dyn | Typelde Parameters ["<:" Type | "=" Type;
ValueBindings::=

{ let [rec | ValueBinding { and ValueBinding } };
ValueBinding::=

[var | Valuelde Parameters [":" Type | "=" Value;

A.4.3 Values

Value::=
Value, { (orif| andif | colonlnfix) Value; };
Value, ::=
Value, { infix Value, };
Value,::=
Values { "(" Bindings ")" | "7" Caselde | "!" Caselde |
"' Fieldlde | "[" Value "]" |
of Bindings Location end };

47

Values::=

n{" Value "}" |

Valuelde |

ok |

int | char | string | real | longreal |

fun "(" Signatures ")" [":" Type | Location Value |

tuple Location | case Caselde of Type | with || Bindings end |

record Location Bindings end |

extend Value with Bindings end |

array Location Bindings end |

exception Value [with Signatures end | |

begin Location Bindings end |

if Value then Bindings { elsif Value then Bindings }
[else Bindings | end |

case [of | Value { when CaseldeList | with Valuelde | then Bindings }
[else Bindings | end |

typecase { Valuelde "." } Typelde { when Type then Bindings }
[else Bindings | end |

loop Bindings end |

exit |
while Value do Bindings end |
for Valuelde "=" Value (upto | downto) Value do Bindings end |

try Bindings { when Value [with Valuelde | then Bindings }
[else Bindings | end |
raise Value | with Bindings end | |
reraise |
assert Value;
Location::=
[in Value |;

A.4.4 Signatures

Signatures::=

{ TypeSignatures | ValueSignatures | TypeBindings | Repeat Type };
TypeSignatures::=

[Dyn | [TypeldeList Parameters] "<:" Type;

ValueSignatures::=
[var | [ValueldeList Parameters | ":" Type;
Parameters::=

{ "(" Signatures ")" };

A.4.5 Types

Type:=

Type, { colonlnfix Type; };
Type,::=

Type, { infix Type, };

48

Typey::=
T_ypeE} { H(H{ Type} H)H }’

Types::=
n{" Type "}" |
{ Valuelde "." } Typelde |
Ok | Nok |
Fun "(" Signatures ")" ":" Type |

Tuple Signatures { case CaseldeList [with Signatures | } end |
Record Signatures end |

Exception | with Signatures end | |

Oper "(" Signatures ")" ["<:" Type | Type;

A.4.6 Identifier

ValueldeList, TypeldeList, CaseldeList::=
Ide { "," Ide };

Ide, Valuelde, Typelde, Fieldlde, Caselde::=
identifier | infix | colonlnfix | "{" Ide "}";

B Predefined Identifiers

The following tables lists all identifiers of TL that are accessible without explicit import. These
identifiers are not reserved keywords and can be rebound (locally) in TL programs. They are
introduced and explained in more detail in the TL bootfiles boot.tyc and tycoon.tyc.

B.1 Type Identifiers

Type Supertype Description

Bool Ok type of boolean literals

Char Ok type of character literals

Int Ok type of integer number literals

Real Ok type of floating point number literals
String Ok type string literals

Locality | Ok type of locality values

Array Oper(E <:0k) Ok | arrays with mutable elements of type E

B.2 Value Identifiers
Value Type Description

false, true | Bool boolean values
somewhere | Locality | locality value

49

B.3 Infix Functions

Type

Description

Symbol

Fun(A <:Ok var :A :A) :Ok
Fun(A <:0k :A :A) :Bool
Fun(A <:0k :A :A) :Bool

destructive assignment
identity test
negation of ==

< Fun(:Int :Int) :Bool less than

> Fun(:Int :Int) :Bool greater than
<= Fun(:Int :Int) :Bool less equal than
>= Fun(:Int :Int) :Bool greater equal than
+ Fun(:Int :Int) :Int addition

- Fun(:Int :Int) :Int subtraction

* Fun(:Int :Int) :Int multiplication
/ Fun(:Int :Int) :Int division

% Fun(:Int :Int) :Int modulo

<< Fun(:Real :Real) :Bool less than

>> Fun(:Real :Real) :Bool greater than
<<= Fun(:Real :Real) :Bool less equal than
>>= Fun(:Real :Real) :Bool greater equal than
++ Fun(:Real :Real) :Real addition

- Fun(:Real :Real) :Real subtraction

o Fun(:Real :Real) :Real multiplication
// Fun(:Real :Real) :Real division

\/ Fun(:Bool :Bool) :Bool or

/\ Fun(:Bool :Bool) :Bool and

not Fun(:Bool) :Bool not

<> Fun(:String :String) :String concatenation
extent :Fun(E <:0k :Array(E)) :Int | size

B.4 Functions

Function | Type Description

builtin :Fun(Dyn FctType <:0Ok builtin function of the
name :String ifFail :FetType) :FctType | code generator

bind :Fun(Dyn FctType <:0Ok external binding to a

lib, label, type :String) :FctType

C language function

50

B.5 Exceptions

Exception Type Description
intOverflow Exception end integer overflow
intError Exception end integer error
realError Exception end real error
ccallError Exception with cannot find library or
lib, entry, type :String | entry point, or bad
end arguments
assert Error Exception with condition in assert
line, column :Int statement violated
where :String
end
typecaseError Exception with non-handled type in
line, column :Int typecase statement
where :String
end
caseError Exception with non-handled case label
line, column :Int in case statement
where :String
variant :Int
end
tupleProject Error Exception with variant projection error
line, column :Int in ! expression
where :String
variant :Int
end
extendError Exception with duplicate label in
line, column :Int record extent
where :String expression
red :Record end
label :String
end
indexQutOfBoundsError | Exception with array index out of

line, column :Int
where :String
arr :Array(Ok)
index :Int

end

bounds

51

References

[ABS7]

[ACCS1]

[BDMG+88]

[Car86]

[Car89]

[Car90]

[CMMS91]

[DCBMS]

[FHSS]

[GRS3]

[Hud89)]

[1+83]

[KR77]

[Mat91]

[Mat93]

M.P. Atkinson and P. Bunemann. Types and Persistence in Database Program-
ming Languages. ACM Computing Surveys, 19(2), June 1987.

M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-algol: An Algol with a
Persistent Heap. ACM SIGPLAN Notices, 17(7), July 1981.

D.G. Bobrow, L.G. De Michiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and D.A.
Moon. Common Lisp Object System Specification. ACM SIGPLAN Nolices,
23, September 1988.

L. Cardelli. Amber. In Combinators and Functional Programming Languages,
volume 242 of Lecture Notes in Computer Science. Springer-Verlag, 1986.

L. Cardelli. Typeful Programming. Technical Report 45, Digital Equipment
Corporation, Systems Research Center, Palo-Alto, California, May 1989.

L. Cardelli. The Quest Language and System (Tracking Draft). Technical report,
Digital Equipment Corporation, Systems Research Center, Palo-Alto, Califor-
nia, 1990. (shipped as part of the Quest V.12 system distribution).

L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An Extension of System
F with Subtyping. In T. Ito and A.R. Meyer, editors, Theoretical Aspectls of
Computer Software, TACS’91, Lecture Notes in Computer Science, pages 750—
770. Springer-Verlag, 1991.

A. Dearle, R. Connor, F. Brown, and R. Morrison. Napier88 — A Database
Programming Language? In Proceedings of the Second International Workshop
on Database Programming Languages, Portland, Oregon, June 1989.

A.J. Field and P.G. Harrison. Functional Programming. Addison-Wesley Pub-
lishing Company, 1988.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley Publishing Company, 1983.

P. Hudak. Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys, 21(3):359-411, September 1989.

Ichbiah et al. The Programming Language Ada: Reference Manual. Technical
Report MIL-STD-1815A-1983, ANSI, 1983.

B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice
Hall, Englewood Cliffs, New Jersey, 1977.

F. Matthes. P-Quest: Installation and User Manual. DBIS Tycoon Report
101-91, Fachbereich Informatik, Universitdt Hamburg, Germany, October 1991.

F. Matthes. Persistente Objektsysteme: Integrierte Datenbankentwicklung und
Programmerstellung. Springer-Verlag, 1993. (In German.).

52

[Mau91]

[Min88]

[MODO1]

[MS91a]

[MS91b]

[MS92]

[MS93]

[Miil91]

[Nel91]

[NMMO92]

[RLWS5]

[SM90]

[SSS+92]

M. Mauny. Functional Programming using CAML. Technical report, INRIA,
Domaine de Voluceau, Rocquencourt 78153 Le Chesnay Cedex, France, Septem-
ber 1991.

J. Minker. Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers, 1988.

ISO/TEC JTC1/SC22/WG13. Interim Version of the 4th Working Draft
Modula-2 Standard, 1991.

F. Matthes and J.W. Schmidt. Bulk Types: Built-In or Add-On? In Database
Programming Languages: Bulk Types and Persistent Data. Morgan Kaufmann
Publishers, September 1991.

F. Matthes and J.W. Schmidt. Towards Database Application Systems: Types,
Kinds and Other Open Invitations. In Proceedings of the Kiev Fast/West Work-
shop on Next Generalion Database Technology, volume 504 of Lecture Noles in
Computer Science, April 1991. (Also appeared as TR FIDE/91/14).

F. Matthes and J.W. Schmidt. Definition of the Tycoon Language TL — A
Preliminary Report. Informatik Fachbericht FBI-HH-B-160/92, Fachbereich In-
formatik, Universitat Hamburg, Germany, November 1992.

F. Matthes and J.W. Schmidt. System Construction in the Tycoon Environment:
Architectures, Interfaces and Gateways. In P.P. Spies, editor, Proceedings of
Furo-Arch’93 Congress, pages 301-317. Springer-Verlag, October 1993.

R. Miiller. Sprachprozessoren und Objektspeicher: Schnittstellenentwurf und
-implementierung. Master’s thesis, Fachbereich Informatik, Johann Wolfgang
Goethe-Universitat, Frankfurt, Germany, November 1991.

G. Nelson, editor. Systems programming with Modula-3. Series in innovative
technology. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

C. Niederée, S. MiiBlig, and F. Matthes. P-Quest User Manual. DBIS Tycoon Re-
port 102-92, Fachbereich Informatik, Universitat Hamburg, Germany, February
1992. (In German.).

P. Rovner, R. Levin, and J. Wick. On Extending Modula-2 for Building Large,
Integrated Systems. Technical Report 3, Digital Equipment Corporation, Sys-
tems Research Center, Palo-Alto, California, January 1985.

J.W. Schmidt and F. Matthes. Language Technology for Post-Relational Data
Systems. In A. Blaser, editor, Database Systems of the 90s, volume 466 of
Lecture Notes in Compuler Science, pages 81-114, November 1990.

D. Stemple, R.B. Stanton, T. Sheard, P. Philbrow, R. Morrison, G.N.C. Kirby,
L. Fegaras, R.L. Cooper, R.C.H. Connor, M.P. Atkinson, and S. Alagic. Type-
Safe Linguistic Reflection: A Generator Technology. Research Report CS/92/6,
University of St. Andrews, Department of Computing Science, July 1992.

53

[Wir87] N. Wirth. The Programming Language Oberon. Technical report, Department
Informatik, ETH Ziirich, Switzerland, 1987.

54

Index

A
abstract data type 23, 32
polymorphic ~ 23
semi-~ 23
ADT 23
alphanumeric identifier 4
and 9
andif 27
anonymous binding 12
anonymous identifier 10
anonymous variable 25
application programming 3
array 31
~ index bound 31
~ indexing 31
array 31
assignment 25

B
base type 5
begin 6, 27

binding 6, 31, 48
anonymous ~ 7
dynamic ~ 7
function ~ 8
recursive ~ 7
repetition of ~ 17
sequential ~ 6
simultaneous ~ 6
static ~ 6
value ~ 6

block 6, 27

bound object 6

bounded parametric polymorphism 20

bracket 4, 9

C

C 38

C function 38

C library 38

call by reference 25, 40
call by value 25
callback 40

capitalization 42

case 11, 12

case analysis 12
complete ~ 12
incomplete ~ 12

case of 12

character set 3

checkpoint 37

coercion 5

comment 4, 44
interface ~ 44
module ~ 44
multiline ~ 44

compilation unit 48

conditional expression 27

constant definition 24

contravariance rule 18

control structure 26

convention 4, 42

copy-in 40

copy-out 39, 40

covariance relationship 18

currying 10

cyclic dependency 36

D
data modeling 3

data-intensive application 15

declaration
global ~ 6
local ~ 6
do 28
dot notation 11, 12, 13, 36
downto 29
Dyn 15
dynamic binding 7
dynamic type 15

E

else 13, 27

elsif 27

encapsulation 32
functional ~ 32
imperative ~ 33
method-based ~ 34

object-oriented ~ 32 ~ body 7

enumeration type 12 ~ on type level 19
equality sign 9 ~ overriding 26
equality test 9 ~ tesult 8
evaluation 5 ~ result type 9
exception 29, 52 ~ signature 9

~ argument 29 generic ~ 19

~ handling 29 higher-order ~ 10

~ package 29 polymorphic ~ 19

~ propagation 30 recursive ~ 9

~ raising 29 simple ~ 7

~ reraising 30 function type 9

~ signature 29 subtyping on ~s 18

~ type 29 functional programming 3

standard ~ 29

user-defined ~ 29
Exception 29
exception 29

G
garbage collector 38
generic code 22

exit 28, 30 generic function 19
export 35 H
export 35 heterogeneous data structure 18
expression 6 hide 37
extend 13 higher-order function 10
external function 38
external language 38 I
external library 38 identifier 4, 50
global ~ 6
F local ~ 6
factoring rule 8 use of ~ 6
field name 11 user-defined ~ 6
anonymous ~ 11 identity test 9
non-anonymous ~ 11 if 27
first class object 35 imperative programming 3, 24
for 28 import 35
formal parameter 7 ~ed interface 35
formatting convention 42 ~ed module 35
Fun 9 import 35
fun 7 indentation 43
function 7 infix notation 8, 22
anonymous ~ 10 infix operator 8, 22, 51
external ~ 38 infix symbol 4
~ abstraction 7 interactive programming environment 3
~ application 8, 10, 19 interface 35, 48
~ as parameter 10 hidden ~ 37
~ as result 10 ~ comment 44
~ as tuple field 11 ~ definition 36
~ binding 8 interface 35

56

iteration 28

L
labeled Cartesian product 10
layout convention 42
Let 10, 21
let 6, 24
lexical rule 3
library 36, 48
C~ 38
enclosing ~ 37
external ~ 38

hierarchic ~ structuring 37

library 36
list 14
listfix notation 31
literal 5
loop 28
enumerating ~ 28
~ variable 29
prechecking ~ 28
loop 28
loss of type information 20

M
method 11, 34
method overwriting 34
modularization 34
module 35, 48

hidden ~ 37

~ comment 44

~ definition 36
module 35
multiline comment 44
multiple inheritance 18
mutable variable 24
mutually recursive functions 9

A7

naming 6, 31

naming convention 42
nesting level 43

Nok 30

non-anonymous binding 13
non-anonymous signature 13
non-parametrized type 15

0

57

object 34
object store 37
~ stabilizing 37

object-oriented programming 11, 34

of 12

Ok 7, 15, 25, 28

ok 7, 25

opaque type 32

open 17

Oper 21

operator precedence 4
optional value 21
orif 27

overloading 5

P
P-Quest 2
parallel definition 9
parameter format 39
parameter passing 7
~ mechanism 25
parametric polymorphism 19
parametrization 19
partial specification 15
persistence 37
persistent data 37
pointer type 7
polymorphic function 19, 22, 23
polymorphic null element 30
polymorphic type system 3
polymorphism 19
bounded parametric ~ 20
parametric ~ 19
subtype ~ 15
postcondition 18
precondition 18
predefined
~ constant 5, 50
~ function 5, 51
~ identifier 50
~ type 5, 50
subtyping on ~ types 15
program extension 17
programming
multi-paradigm ~ 31
object-oriented ~ 11, 34
~ style 31

punctuation 42

Q
qualifying identifier 35

Quest 2

R
raise 29
reachability 37
read-only access 26
readability 4
Rec 14
rec 7,9
Record 13
record 13
record type 13
subtyping on ~s 18
record value 13
extension of ~ 13
recursive
~ binding 9
~ data structure 14
~ data type 14, 34
~ function 9
~ type operator 22
~ value 14
Repeat 16
repeating component 16
repetition of binding 17
reraise 30
reserved keyword 4, 47
rollback 37

runtime error 13

S
scoping 11, 13

~ rule 6
semantic concept 3
semi-abstract data type 23
sequence 27
sequential execution 27
shared variable 25, 34
signature 6, 7, 15, 49
space 4, 42
spelling 42
stack 23, 32
standard library 5, 36
state 32

58

state-based 32
static binding 6
static type checking 15
static type information 6
structural compatibility 16
structural equivalence 15
subclass 16
subsignature 18
~ relationship 24
subsumption principle 15
subsumption rule 26
subtype 15
~ definition 16
~ polymorphism 15, 20
~ relationship 15
subtyping 15
~ for mutable bindings 26
~ hierarchies 18
~ on function types 18
~ on predefined types 15
~ on record types 18
~ on tuple types 16
~ on variant types 17
supertype 14, 15
syntactic structure 3
syntactical rule 3
syntax error 9
system programming 3

T
then 27, 30
top level 36
trivial specification 15
try 29
tuple 10
~ field 10
~ field selection 11
~ signature 24
~ value 11
~ with variant 11
Tuple 10, 11
tuple 11, 12
tuple type 10
subtyping on ~s 16
~ with variants 11
type 49
deferred ~ checking 15

dynamic ~ 15 =6,9

exception ~ 29 ==9, 14
function ~ 9 a-conversion 11
non-parametrized ~ 15 713

opaque ~ 32 113

record ~ 13 <: 15

tuple ~ 10 =24

~ argument 19
~ compatibility 11
~ constructor 10
~ expression 6
~ inference 7, 8, 19
~ parameter 19
variant ~ 11
type operator 19, 21, 23
first-order ~ 22
higher-order ~ 22
recursive ~ 22
simple ~ 21
~ application 21
type-independent behavior 19
typecase 15
typing 5, 7, 31

LT
uninitialized identifier 7
upto 29

VvV
value 48

~ parameter 25
var 24
variable 24

mutable ~ 24

~ declaration 24

~ parameter 25
variant 11

~ field projection 12
variant type 11

subtyping on ~s 17
visibility 8, 24

w

when 12, 15, 30
while 28

with 11, 13, 29, 30, 36

Others

59

