
Supporting ad hoc Analyses on Enterprise Models

Sabine Buckl1, Jens Gulden2, Christian M. Schweda1

1 Chair for Software Engineering for Business Information Systems (sebis)
Institute for Informatics

Technische Universität München
{sabine.buckl,schweda}@in.tum.de

2 Chair for Information System and Enterprise Modelling
Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen
jens.gulden@uni-duisburg-essen.de

Abstract: Enterprises are socio technical systems whose management involves mul-
tiple stakeholders each demanding for a distinct perspective on the enterprise. A large
number of modeling languages for describing different viewpoints on an enterprise
have been developed in practice and academia. These viewpoints typically reflect the
areas of interest that certain stakeholders pertain in respect to the enterprise, e.g. pro-
cess modeling, IT resource modeling. While these viewpoints support analysis con-
fined to their area of interest, crosscutting analysis, e.g. of the IT support for processes,
demand for ad hoc viewpoints spanning different areas of interest.

In this paper, we present a building-block based approach to enable stakeholders
to create ad hoc viewpoints on enterprise models, which are complementingly opera-
tionalized via a model-transformation based method for generating visualizations.

1 Motivation

Business enterprises are organizations with a high degree of structural complexity and dy-
namics in their behavior. They represent socio-technical systems, which are subject to
various external influences. A socio-technical system consists of human actors and tech-
nical constituents. Thereby, the technical constituents, e.g. information systems, build the
infrastructure on which the collaborative actions are performed by humans. The human
actors thereby typically do not only pursue the organization’s goal but additionally have
individual goals and responsibilities, which they try to accomplish. Due to a multitude
of dependencies among human actors and information systems, the qualitative complex-
ity of an organization increases exponentially in relation to its quantitative scale. This
means, while an organization develops and matures, it continuously becomes more dif-
ficult to oversee the relation between its intended goals on the one hand, and the actual
implementation of operations that are performed to achieve these goals on the other hand.

To align the structure and behavior of a continuously maturing organization with its strate-
gic goals, cognitive support is required to gain insight into factual as-is constellations as



well as to express possible to-be situations. Due to the high degree of interdependency and
meshed complexity, such means cannot be provided by generic instruments of communi-
cation, e.g., by using linear natural language. Instead, a method to cope with these tasks is
required as an instrument to provide the required semantic expressiveness for knowledge
explication. Such support is available through the use of enterprise modeling or enterprise
architecture (EA) modeling methods [Fra94b, Sch02, FS06, BEL+07, KW07].

Visual diagram languages for enterprise modeling provide elaborated techniques to capture
knowledge about organizations. They support involved stakeholders in creating models
of an organization and in explicating this knowledge in a way that can further be com-
municated and discussed among different groups of stakeholders. Given appropriate ab-
stractions and suitable notation elements for the real-world concepts, enterprise modeling
languages serve as a common basis of understanding among the stakeholders, since they
avoid ambiguities and semantic overloading of terms, which are typical reasons for mis-
understandings and inefficient communication in organizational settings.

To achieve an appropriate level of abstraction and understandability, enterprise modeling
languages are designed as domain specific languages which provide designated language
concepts that facilitate communication about strategic goals, organizational structure and
operational behavior of organizations. Advanced enterprise modeling methods use in-
terrelated multiple perspectives [Fra94a] by incorporating multiple diagram types, which
are internally related on the level of language design to allow sharing of identical con-
cepts in multiple perspectives. This is vital to ensure semantic integrity among multiple
perspectives, since referenced concepts from other perspectives are ensured to be further
explicated in their own designated perspective.

Creating enterprise models with domain specific languages fosters the separation of con-
cerns between on the one hand incorporating general principles of the modeled domain on
the language level, and on the other hand creating model instances that accurately describe
a subject’s perceived reality about real world constellations of concrete enterprises. The
tasks of creating and editing model instances can be best performed by the stakeholders
who are themselves involved in the organization which is described by enterprise models.
The upstream task of language design, however, is a genuine academic challenge to be car-
ried out carefully with support of scientific research. This separation of concerns makes
the use of enterprise modeling methods efficient and attractive for practical use. Modelers
can rely on previously elaborated domain specific languages, so the responsibility for en-
suring semantic integrity and understandability among different groups of stakeholders is
shifted to the process of language creation, making the use of individual models more effi-
cient and less prone to errors.When models of enterprises and organizations are to applied
with methodical support in a way understandable for all stakeholders, the use of elaborated
domain specific enterprise modeling languages thus is a first choice approach.

The range of possible uses of enterprise models is broad, once a coherent set of mod-
els from interrelated perspectives is available and maintained using domain specific lan-
guages. Besides serving as means for communication, enterprise models can be utilized
to develop information systems which supply the described organization’s tasks, e. g., by
deriving executable workflow descriptions from business process models. They can fur-
thermore be used reflectively as tools to access information about operative systems and



organizational entities represented in the models [FS09]. When applied in such a manner,
enterprise models are no longer used for capturing knowledge from different perspectives
to make it commonly accessible for diverse stakeholders, but they now serve as a repos-
itory of knowledge from which different stakeholders with their individual concerns can
extract modeled facts and relate operational information to them.

Extracting knowledge from enterprise models is a task orthogonal to the situation when
capturing knowledge by creating and editing them. When extracting knowledge, it is no
longer the aim to find a commonly understandable way of representing facts in a seman-
tically integrated way, but to grasp specialized information for specific concerns of stake-
holders from existing models. To distinguish this mode of operation from creating and
editing enterprise models, we call such operations of utilizing existing models for knowl-
edge extraction analyzing of enterprise models.

To support analysis of enterprise models, different methodological means than for creating
and modifying enterprise models are required. It is now the aim to allow specific extraction
of knowledge, resulting in information that may only be understood and specifically be
used by individual groups of stakeholders. Each group of stakeholders has individual
concerns and specific tasks to fulfill in the organization. These concerns determine specific
reasons and motivations for performing model analyses, which are naturally diverse and
heterogeneous among different groups of stakeholders.

A stakeholder who performs analyses to meet specific concerns demands a number of
requirements to gain suitable results. These requirements include the ability

• to access any of the facts incorporated in various perspectives of an enterprise model

• to select desired facts specific to the concern in focus, and combine interrelated
facts into new relationships which are not determined in advance by a single applied
enterprise modeling languages

• to present facts in a notation suitable for the specific concern of the stakeholder, but
not necessarily understandable for other groups of enterprise model users

• to perform these tasks in an “ad hoc”-way, i.e., be quickly and efficiently able to
specify the desired steps of accessing, selecting, combining and presenting per anal-
ysis scenario in an easy to handle and standardized manner

In response to these requirements we present methodical support for analyzing enterprise
models in an ad hoc manner. Preparing the underlying technique, Section 2 lays the termi-
nological foundations reflecting our understanding of concerns and viewpoints. Section 3
describes the basics of multi-perspective enterprise modeling (MEMO) and of systemcar-
tography (SyCa), two research fields that have contributed to our methodical approach for
performing ad hoc analyses. Section 4 introduces an example from the enterprise mod-
eling domain, which is used to illustrate how the building-blocks of the technique can be
used to define ad hoc visualizations. Concluding Section 5 summarizes the paper’s find-
ings and gives an outlook on further research topics in the field of using ad hoc viewpoints
for performing visual analyses.



2 Terminology

The motivating section already introduced manifold termini, e.g. concern or modeling
language, that shape the field of action in which the method for performing ad hoc analyses
acts. Preparing the more formal understanding of these termini throughout the method, we
elaborate on the relationships between the corresponding concepts. Thereby, we resort
to the definitions provided by the ISO Std. 42010 (cf. [Int07]). This standard reflects that
people (stakeholders) may have distinct interests in the structure of any system. A concern
describes the corresponding area-of-interest, i.e. may in a colloquial way be understood as
identificator of a part of the overall system. Refraining the more formal understanding as
put forward by Buckl et al. in [BKS10], a concern has a twofold nature representing:

• a conceptualization of the system, i.e. a mental model that allows to classify real
world entities and relationships to classes and associations, as well as

• a filter on the system, restricting the entities and relationships to those of interest.

The conceptualization is therein used to provide a metaization for the real world, whereas
the filter may be regarded as ”instance-level” concept used to restrict the concern to a
subset of possible instances. Exemplifying the interplay of both constituents of a concern,
we provide an exemplary concern textually described as

sequence of business processes as executed at the enterprise’s headquarter.

The conceptualization of this concern brings along two classifying concepts, one for en-
tities that are called ”business process” and one for relationships that are understood as
”sequence”. Complementing, the filter expresses that only those processes executed at the
headquarter are of interest. The example shows the twofold nature of the concern and
gives an indication on which basis different concerns can be seen as related. Refraining an
argumentation put forward by Buckl et al. in [BMS10] two concerns may relate in respect

• to their conceptualization, i.e. may classify real world entities similarly, or

• to their filter, i.e. may restrict to similar or disjunct parts of the enterprise.

Committing further to the terminology of the ISO Std. 42010 (cf. [Int07]), we revisit the
notion of the viewpoint as the a ”set of conventions for the construction and interpretation
of a view, i.e. a [representation of a system from the perspective of a set of concerns]”. In
the context of describing a complex system, different viewpoints are selected and used by
the stakeholders that raised the corresponding concerns. A viewpoint presents a twofold
nature incorporating a modeling language consisting of syntax, semantic, notation, and a
filter (cf. Buckl et al. in [BKS10]. Inline with this understanding we may say that each
modeling language as used for enterprise modeling commits to at least one conceptualiza-
tion as incorporated in an according concern. This in turn means that a specific modeling
language summarizes the interests in the architecture of the enterprise as raised by differ-
ent stakeholders. Figure 1 graphically illustrates the concepts as introduced above as well
as their interrelations.



Figure 1: Relationships between stakeholders, concerns and viewpoints

3 Foundations and Prefabrics

As an example procedure for creating and modifying enterprise models, we have chosen
the ”Multi-perspective Enterprise Modeling” method MEMO [Fra94a], which defines a
set of domain specific languages that form multiple interrelated views on an organization
and its information systems infrastructure. It satisfies the theoretic demands stated above
for providing an elaborated set of languages that are semantically integrated. MEMO also
offers views and a domain specific graphical notation suitable to be understood by multiple
different groups of stakeholders. Tooling support for the MEMO method is available
via the software MEMOCENTERNG [GF10], which provides domain specific diagram
languages with corresponding diagram editors.

Figure 2: Excerpt from a MEMO process control flow model referencing elements from other per-
spectives

The MEMO method offers modeling perspectives for strategic goals and high-level ac-
tions, as well as for modeling organizational roles, resource entities and processes. These



multiple perspectives are centrally integrated through the use of process control flow mod-
els. In process control flow models, process steps get associated with responsible actors
whose roles are defined in organization diagrams. Resources are modeled with a resource
modeling language and can be allocated to process steps, to express which resources are
accessed in that specific process step. The semantic integrity of these multiple perspec-
tives on an organization is internally ensured by the language architecture, which is im-
plemented in the tool support offered by MEMOCENTERNG. Figure 2 shows an excerpt
from a MEMO process control flow model edited in MEMOCENTERNG, in which orga-
nizational roles and resources from other perspectives are referenced.

For the example implementation of our approach we use model data edited with MEMO-
CENTERNG and transform it to an intermediate format suitable for further import into the
System Cartography (SYCA) tool [BEL+07]. This procedure is prototypically applied to
model data from MEMOCENTERNG, however, the approach we present is independent
from the concrete modeling method and is applicable to other enterprise modeling meth-
ods, too, provided a transformation to the intermediate import format is available. Once
an enterprise modeling language is implemented using the same meta-modeling environ-
ment as SyCa, which is the Eclipse Modeling Framework (EMF, [SBPM09]), the effort
for integrating it with our approach remains low and boils down to developing a single
model-to-model transformation with the enterprise modeling language as input, and SyCa
model elements as output.

We pursue an approach for enterprise modeling based on model transformation to en-
sure the consistency between information, e.g. data in an enterprise architecture (EA)
repository, and visualizations of the EA. Therefore, a strict separation of the content to
be visualized – the semantic model – and its representation – the symbolic model – is re-
quired. Additionally, a well-defined link between these models – the syca transformation
– is needed. Figure 3 shows the basic idea of the model transformation approach.

Information 

Model

Visualization 

Model

Semantic Model Symbolic Model

Syca 

Transformation

Transformation 

Meta Model

conforms to

Common

Meta Model
conforms to conforms to

is applicable on

conforms to

conforms to

Figure 3: Generating visualizations based on model transformations

The information model sets up the language for describing the modeling subject, i.e. it
introduces the core concepts, which are used to create a model of the subject’s reality.



Figure 4: Information model integrating multiple model perspectives

In the context of EA management, the information model (for an example see Figure 4)
contains concepts like processes, actors, etc., which are represented irrespective a visual-
ization. Instance data documented in accordance to the information model is part of the
semantic model, which contains so called information objects. In this sense, the infor-
mation model acts a meta-model for the semantic model. Via the integrated information
model the different facts, i.e. concepts, properties thereof and relationships inbetween, are
made accessible for a stakeholder that seeks to define a corresponding viewpoint.

3.1 Symbolic model and visualization model – the right side

The visualization model contains elements, which represent graphical concepts, namely
map symbols, e.g. ”rectangle”, or visualization rules, such as ”nesting”. These rules do
not represent visible concepts, but they exert distinct demands on the positioning, size, or
overall appearance of the symbol instances. For example, instances of the ”nesting” rule
demand that ”inner” map symbol instances are grouped into the ”outer” map symbol. Fig-
ure 5 introduces the map symbol and visualization rule that are needed for the exemplary
visualization. Figure 6 displays the symbolic model describing that rectangles representing
business applications are nested in the rectangle representing the hosting location.

The syca transformation creates a symbolic model based on the corresponding semantic
model, while the map symbol instances in the symbolic model are not yet supplied with
absolute positions. These positions are in a second step calculated by a layouter, which is
capable to interpret the visualization rule instances and to compute appropriate positioning
and sizing. Sketching the mathematical formalism incorporated in the layouter, we give
examples of the layouting constraints that apply on the rectangle instance1.

1According to the visualization model of Ernst et al. [ELSW06], the symbols’ x and y-coordinates are an-
chored at the symbols’ centers.



Figure 5: Visualization model Figure 6: Cutout of the symbolic model

check.x - check.width/2 < rClerk.x - rClerk.width/2
check.x + check.width/2 > rClerk.x + rClerk.width/2
check.y - check.height/2 < rClerk.y - rClerk.height/2
check.y + check.height/2 > rClerk.y + rClerk.height/2

3.2 The syca transformation and its meta model – the middle

The syca transformation establishes the link between the data and its visualization and
thereby enable the automatic generation of corresponding architectural views. Differ-
ent types of model-to-model transformation languages may be used to implement the
syca transformation. The transformer component of the tool interprets the transforma-
tion rules and generates a symbolic model from the corresponding semantic model. Over
the last years, we have successfully applied different model-to-model transformation lan-
guages for defining architectural viewpoints in an executable manner. Wiegelmann showed
in [Wie08] that the Atlas Transformation Language (ATL) [ATL06] can be used to de-
scribe the necessary transformations. With ATL, architectural viewpoints can be defined
in a highly declarative manner, although especially the appropriate instantiation of visual-
ization rules becomes fairly complex, e.g. when matrix-like views should be created. An
exemplary ATL-like code for generating a visualization is given below.

rule Process2Rectangle {
from infoObject : Semantic.Process
to symbol : Symbolic.Rectangle (text = infoObject.name)

)

rule Actor2Rectangle {
from infoObject : Semantic.Actor
to

symbol : Symbolic.Rectangle (text = infoObject.name),
rule : Symbolic.Nesting (

inner = symbol,
outer = transforming (infoObject.performedBy)

)
)



4 Method and Technique for Defining ad-hoc Visualizations

Building on the foundations described in the preceeding section, especially on the under-
standing of visualizations as the results of applying a model transformation to an underly-
ing conceptual model of an enterprise, this section establishes a method and a respective
technique for defining arbitrary visualizations on an enterprise model.

Central to the method is the notion of the viewpoint building-block, i.e. of a re-usable
component for defining a viewpoint. Each building-block of that kind describes a distinct
form of visualization (or part thereof), whose operational semantics can be specified in
terms of an according model transformation. In respect to the type of contribution that a
building-block makes in specifying a visualization, three different types of building-blocks
can be distinguished as follows:

Structural building-blocks which describe the basic structure of a visualization,

Symbol building-blocks which describe (complex) symbols used in a visualization, and

Decorator building-blocks which describe graphical annotations that apply to symbols.

With each of the above building-block types prescribing distinct visualization forms or
parts thereof, only a configuration employing building-blocks of different types can define
a distinct viewpoint. Furthermore, the building-blocks are formulated in a generic way, i.e.
do not assume a specific underlying meta-model. In order to combine viewpoint building-
blocks into an executable viewpoint definition, relationships to meta-model concepts have
to be added.

Before we complement above abstract considerations with a concrete example of building-
blocks, we revisit the model transformation approach once more from an abstract perspec-
tive. Put in a mathematical sense a viewpoint described via a model transformation can
be understood as a function mapping one2 enterprise model element (an IOBJECT) to one
visualization model element (a VOBJECT). This kind of transformation may either be
atomic and self-contained, i.e. be executable without relying on other transformations
(symbol building-block), or may be parameterized with one or more sub-transformations
(structural building-block or decorator building-block). In terms of our formal under-
standing, building-blocks of the latter two types may be regarded as functional operator,
i.e. some sort of function that takes another function as input. While such mathemati-
cal considerations may be very beneficially for defining consistency rules on the possible
combinations on viewpoint building-blocks, we abstain from detailing such rules here.
Instead we retreat to an intuitive understanding of consistency based on the analogy of
pipe-and-filter [BMR+96]. In this sense every building-block is a filter with a distinct
signature, expecting input and output of certain type as well as appropriate parameters.
Pipe-and-filter models are used for manifold purposes with ”yahoo pipes”3 being a novel

2One might argue that more than one enterprise model element may serve as input of such model transforma-
tion. Nevertheless, the restriction to a single element is no restriction at all, as – possibly synthetic – container
elements may be used.

3For more information on yahoo pipes, see http://pipes.yahoo.com/pipes/.



and succesful application of this paradigm of thinking to the field of web-based mashup
design. In a similar sense the paradigm is applied in the following to the field of view-
point definition using building-blocks. Thereby we rely on a graphical way to describe
such building-blocks as well as their composition in an intuive way. Table 1 exemplarily
introduces the graphical primitives of this description technique.

A building-block taking multiple IOBJECTs
as input and producing multiple VOBJECTs

A building-block taking a single IOBJECT as
input and producing multiple IOBJECTs

A building-block taking multiple VOBJECTs
as input and producing a single VOBJECT

Table 1: Examples for the graphical way of describing viewpoint building-blocks

Above notation uses rectangles to depict viewpoint building-blocks and arrows with dif-
ferent types of heads to distinguish between input (inward symbol) and output (outward
symbol) and between IOBJECT (triangular symbol) and VOBJECT (rectangular symbol).
Further the corresponding input or output indicator is augmented with line doubling, if not
a single object of the according type is concerned but multiple ones.

Figure 7: Building-block CREATESYMBOL

Using above notation, we exemplify a symbol building-block named CREATESYMBOL
(cf. Figure 7). This building-block describes a transformation that creates a single planar
symbol (VOBJECT) for an according IOBJECT. Planar symbols in this respect are e.g.
rectangles, circles, chevrons. In a more formal sense, any geometric shape with a Haus-
dorff dimension of 2 may be regarded as ”planar”. For in-depth considerations on this
topic as well as for a list of widely used planar symbols refer to Ernst et al. [ELSW06].
CREATESYMBOL has multiple parameters4 as SYMBOLTYPE, WIDTH, HEIGHT, and FILL-
COLOR, of which the latter three are supplied default values. In order to use this building-
block every parameter without a default value must be supplied a valid assignment, i.e. the
parameter SYMBOLTYPE must be set to a class representing a planar map symbol.

In Figure 8 we exemplify a structural building named CLUSTER. A cluster describes a
graphical relationship between a symbol representing a single enterprise model element
and nested symbols that represent related enterprise model elements. Thereby, the build-

4Some more parameters exist, but are omitted here for reasons of brevity.



Figure 8: Building-block CLUSTER

ing block does not make prescriptions on the creation of the ”outer” or ”inner” symbols
and does also not impose constraints on the type of relationship. Put in other words, a
CLUSTER represents a ”functional” building-block not only taking a multiple IOBJECTs
as input and creating a single VOBJECT. It is further parameterized with three functions
that are to be filled with other building-blocks:

outerSymbol describing the creation of the ”outer” symbol (IOBJECT to VOBJECT)

outerToInner describing the relationship between the ”outer” model element and its cor-
responding ”inner” elements (IOBJECT to COLLECTION<IOBJECT>)

innerSymbol describing the creation of an ”inner” symbol (IOBJECT to VOBJECT)

Especially the parameter OUTERTOINNER deserves special attention as it may not be iden-
tified with a building of the types as introduced above but describes a kind of query over
the enterprise model. A query therein represents a function whose input and output are
IOBJECTs, i.e. which remains in the domain of the enterprise model. Examples of possi-
ble queries are:

FollowRelationship describing a function that navigates from an enterprise model ele-
ment to a directly related one. The signature of this query depends on the cardinality
of the corresponding relationship.

FilterType describing a function that filters enterprise model elements according to their
type. (COLLECTION<IOBJECT> to COLLECTION<IOBJECT>).

Exemplifying how a stakeholder can use these building-blocks to define an ad-hoc view-
point based on an integrated information model for MEMO (cf. Figure 4), we assume the
subsequent concern: ”processes and their performing actors”. By doing so the stakeholder
specifies the selection of desired facts that he wants to be visualized (cf. requirement se-
lection & combination described in Section 1). The corresponding concern thereby does
not have to cover only a single perspective on the enterprise, i.e. does not necessarily
derive its facts only from a single modeling language. The concern, more precisely its
constituing concepts, are bound to different viewpoint building-blocks hence determining
the presentation of the corresponding facts. Figure 9 shows the result of such binding,



Figure 9: Defining the viewpoint for the simple clustered view

where a CLUSTER is linked to two corresponding CREATESYMBOL instances. These in-
stances generate rectangular symbols for PROCESS instances (outer) and ACTOR instances
(inner). In addition the relationship from outer to inner is bound to the PERFORMS rela-
tionship from the corresponding information model. Figure 10 shows an exemplary view
created by applying the viewpoint from Figure 9 to a fictional semantic model from the
hotel management domain.

Find 

reservation

Guest 

receives key

Check outClean Room

Room maidsReception Clerk Reception Clerk

Map Symbols

Legend

A Process A

B Actor B

A

B

C Actor C participates in Process A

Visualization Rules

Guest

Reception Clerk

Guest

Cancel 

reservation

Reception Clerk

Find 

reservation

Guest 

receives key

Check outClean Room

Room maidsReception Clerk Reception Clerk

Map Symbols

Legend

A Process A

B ActorIndividual B

A

B

C Actor C participates in Process A

Visualization Rules

Guest

Reception Clerk

Guest

Cancel 

reservation

Reception Clerk

C ActorGroup C

Figure 10: Exemplary view clustering actors into processes

Figure 11: Building-block TYPECOLORCODING

Concluding the exemplary exposition of building-blocks, we introduce the decorator building-
block TYPECOLORCODING (cf. Figure 11). In the sense of the decorator pattern de-
scribed by Gamma et al. in [GHJV94] this building-block is used to augment a symbol



building-block with additional functionality, while not changing the overall signature. Put
in other words, TYPECOLORCODING forwards its input IOBJECT to a symbol building-
block, whose output VOBJECT is conversely forwarded to the output of TYPECOLOR-
CODING. During this second forward, the type of the the IOBJECT is used to determine
the fill color of the corresponding VOBJECT. For doing so, the buiilding-block is further
parameterized with a set of TYPE-COLOR-mappings.

Figure 12: Defining the viewpoint for the decorated clustered view

Continuing the example from above and performing an ad-hoc adaptation of the view-
point, we assume that the stakeholder decides to change the presentation of the informa-
tion. More precisely, he wants to use color-coding to distinguish between instances of
ACTORGROUP and ACTORINDIVIDUAL. For doing so, he adds the decorator viewpoint
building-block introduced above to decorate the CREATESYMBOL defining the symbol
representing ACTORS of arbitrary type. The result of the viewpoint definition after the
performed adaptation is shown in Figure 12, whereas an example of a corresponding view
is given in Figure 13.

Find 

reservation

Guest 

receives key

Check outClean Room

Room maidsReception Clerk Reception Clerk

Map Symbols

Legend

A Process A

B Actor B

A

B

C Actor C participates in Process A

Visualization Rules

Guest

Reception Clerk

Guest

Cancel 

reservation

Reception Clerk

Find 

reservation

Guest 

receives key

Check outClean Room

Room maidsReception Clerk Reception Clerk

Map Symbols

Legend

A Process A

B ActorIndividual B

A

B

C Actor C participates in Process A

Visualization Rules

Guest

Reception Clerk

Guest

Cancel 

reservation

Reception Clerk

C ActorGroup C

Figure 13: Exemplary view clustering actors of different types into processes



5 Outlook

Our results can further be elaborated by providing a closer integration between enterprise
modeling languages and ad hoc analyses, e.g., by introducing constructs for interlinking
model elements with concern-specific analysis views. This way, enterprise models would
additionally serve as managing environments for navigating and accessing ad hoc analysis
views. Stakeholders with different concerns would be able to go through the commonly
understood enterprise model and invoke their specific analysis views when required. This
idea would utilize existing enterprise models as models-at-runtime environments not only
to provide previously captured knowledge for making it accessible for analyses, but to
dynamically access appropriate analysis views from within enterprise models.

Furthermore, a set of template analysis views may be anticipated by language designers
and be incorporated together with the set of enterprise modeling languages at the stage
of language design. This would allow to prepare suitable forms of analyses and visual
representations in the responsibility of scientifically grounded work of language designers.
End-user stakeholders would be able to adopt the suggested analysis views to their specific
concerns, and thus gain an additional increase in efficiency and reliability for performing
ad hoc analyses, while preserving the full degree of flexibility provided by the described
approach.

While the prefabrics of the presented approach have already been evaluated in practice,
the method for enabling ad hoc visualizations has until now only been evaluated in terms
of technical feasibility. This theoretical discussion will in a next step be evaluated in
practice. Therefore, either case studies or an empirical survey, e.g. questionnaire, with
enterprises willing to perform ad-hoc analysis can be conducted. We are planning to utilize
the case study approach to support a more in-depth analysis of the tool support and to
ensure inclusion of stakeholders with both business and IT background, which can provide
feedback on the suitability of the chosen method and technique.

References

[ATL06] ATLAS group at LINA & INRIA. ATL: Atlas Transformation Language, 2006.

[BEL+07] Sabine Buckl, Alexander M. Ernst, J. Lankes, Florian Matthes, Christian Schweda, and
André Wittenburg. Generating Visualizations of Enterprise Architectures using Model
Transformation (extended version). Enterprise Modelling and Information Systems Ar-
chitectures – An International Journal, 2(2):3–13, 2007.

[BKS10] Sabine Buckl, Sascha Krell, and Christian M. Schweda. A formal approach to Archi-
tectural Descriptions – Refining the ISO Standard 42010. In 6th International Workshop
on Cooperation & Interoperability – Architecture & Ontology (CIAO2010), 2010.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-oriented software architecture: a system of patterns. John Wiley & Sons, Inc.,
New York, NY, USA, 1996.

[BMS10] Sabine Buckl, Florian Matthes, and Christian M. Schweda. Interrelating Concerns in
EA Documentation – Towards a Conceptual Framework of Relationships. In 2nd Eu-



ropean Workshop on Patterns for Enterprise Architecture Management (PEAM2010),
Paderborn, Germany, 2010.

[ELSW06] Alexander M. Ernst, Josef Lankes, Christian M. Schweda, and André Wittenburg. Us-
ing Model Transformation for Generating Visualizations from Repository Contents –
An Application to Software Cartography. Technical report, Technische Universität
München, Chair for Informatics 19 (sebis), Munich, Germany, 2006.

[Fra94a] Ulrich Frank. MEMO: A Tool Supported Methodology for Analyzing and
(Re-)Designing Business Information Systems. In R. Ege, M. Singh, and B. Meyer,
editors, Technology of Object-Oriented Languages and Systems, pages 367–380, 1994.

[Fra94b] Ulrich Frank. Multiperspektivische Unternehmensmodellierung – Theoretischer Hin-
tergrund und Entwurf einer objektorientierten Entwicklungsumgebung. Oldenbourg,
München, Germany, 1994.

[FS06] Otto K. Ferstl and Elmar Sinz. Grundlagen der Wirtschaftsinformatik. Oldenbourg,
München, Germany, 5th edition, 2006.

[FS09] Ulrich Frank and Stephan Strecker. Beyond ERP Systems: An Outline of Self-
Referential Enterprise Systems. Technical report, Institute for Computer Science and
Business (ICB), University Duisburg-Essen, 2009.

[GF10] Jens Gulden and Ulrich Frank. MEMOCenterNG – A full-featured modeling environ-
ment for organization modeling and model-driven software development. In Proceed-
ings of the 22nd International Conference on Advanced Information Systems Engineer-
ing (CAiSE ’10), Hammamet, Tunisia, 2010.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional
Computing Series). Addison-Wesley Professional, Munich, Germany, 1994.

[Int07] International Organization for Standardization. ISO/IEC 42010:2007 Systems and soft-
ware engineering – Recommended practice for architectural description of software-
intensive systems, 2007.

[KW07] S. Kurpjuweit and R. Winter. Viewpoint-based Meta Model Engineering. In Enter-
prise Modelling and Information Systems Architectures – Concepts and Applications,
Proceedings of the 2nd Int’l Workshop EMISA 2007, pages 143–161, St. Goar/Rhine,
Germany, 2007.

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF – Eclipse Modeling
Framework (2nd edition). Addison-Wesley Longman, Amsterdam, 2009.

[Sch02] August Wilhelm Scheer. ARIS – Vom Geschäftsprozess zum Anwendungssystem.
Springer, Berlin, Germany, 4th edition, 2002.

[Wie08] Jan Wiegelmann. Analysis and Application of Model Transformation Languages for
Generating Software Maps. Bachelor thesis, Fakultät für Informatik, Technische Uni-
versität München, 2008.


