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Abstract

A promising approach to improve the quality of next-generation database programming
languages is to strictly separate data modeling and data manipulation tasks from data
storage issues. This separation greatly simplifies the development of tailor-made database
languages and data models based on the generic services of a data model neutral object
store protocol that provides efficient, transactional access primitives to persistent, shared
and possibly distributed data objects.

As a first step towards this goal, this paper investigates the specific services which lan-
guage clients require from their supporting object stores. It gives insight into the process
of selecting a suitable object store for a polymorphic higher-order programming environ-
ment (P-Quest) and sketches the mapping of higher-level language objects like functions,
environments and polymorphic aggregates, onto more primitive storage structures. The
functionality of three candidate object stores (Oz, Mneme and Napier POS) is evaluated
based on the requirements imposed by the Quest language.

1 Introduction and Motivation

Database programming languages (DBPLs) like Pascal/R [SM80], Modula/R [KMP*83],
DBPL [SEMS8S]) allow programmers to write applications using the same type system and
abstraction mechanisms for both, volatile and persistent data. Typically, the type systems of
DBPLs and their persistent storage systems are both oriented towards a specific data model.

Traditionally, the choice of bulk types offered by a DBPL (e.g., sets, relations, lists)
heavily influenced the design and implementation of persistent storage systems. Therefore,
substantial changes or extensions on the type level disallowed any significant reuse of services
for mass data storage and evaluation. With relational storage systems, for example, severe
semantic and technical difficulties are encountered when allowing arbitrary nesting of tuple
and relation type construction or tuple construction over function types.

As a consequence, most DBPLs (e.g. DBPL [SMO91], E [Ric89], O, [LR89], Galileo
[AGO89]) come with their own tailor-made persistent storage system, a situation which
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severely restricts re-usability and interoperability and is therefore unsatisfactory for both,
system users and implementors.

Some modern persistent programming languages, however, are based on archtectures
which clearly separate modelling from data manipulation and data storage issues. Data
modelling tasks are captured by the type system of the PPL, data manipulation is performed
by an abstract machine that uses a narrow software interface to accomplish a rather primitive,
element-oriented access to objects held in a persistent object store.

The purpose of our work reported here is to develop generic (i.e. data model independent)
object stores that are capable of supporting efficient, transactional access to (distributed)
multi-user object stores by multiple database programming language, possibly with different
object-oriented, relational or functional data models. Finally, such generic stores are intended
as servers for a multiplicity of language clients in open distributed environments.

As a first step towards this goal, this paper investigates the specific service requirements
of polymorphic higher-order languages (PHOLs) on their supporting object stores. More
specifically, we report on the experience gained in a FIDE project subactivity to implement
P-Quest, a persistent version of the polymorphic, higher-order language Quest. This language
is being used for the initial implementation of the Tycoon' database programming environ-
ment. We choose Quest [Car90], a functional language with imperative features, explicit type
quantification and subtyping rules inductivley defined over all type constructors as the start-
ing point of our work, since it comprises already many of the features considered relevant for
next-generation database programming languages (object identity, parametric and inclusion
polymoprhism and higher-order functions).

This paper is organized as follows: Section 2 presents the characteristics of three object
stores available as potential servers for the P-Quest language environment and summarizes
their externally visible functionality (object addressing, object layout, persistence model,
transaction model etc.). In section 3, this functionality is compared against the specific,
rather low-level, requirements of the P-Quest Abstract Machine. This section also justifies
the choice of the Napier object store for the P-Quest system implementation. Details of
this implementation are subject of section 4 (data representation, portable data import and
export, garbage collection, control transfer between object store and P-Quest evaluator). The
paper ends with a performance comparison between the persistent and non-persistent Quest
system and a summary of desirable features to be supported by object stores serving database
language clients.

2 Object Storage Systems

The following subsections give an conceptual overview of three existing Object Storage Sys-
tems that are considered as candidates for the integration with the Quest system. Because
of the experimental nature of the P-Quest project, we are mostly interested in object stor-
age concepts that are actually implemented, taking the future plans of the storage system
suppliers as a hint for our future work.

!'Tycoon = Typed Communicating Object in Open eNvironments.



2.1 The Mneme Object Store

The overall goal of the Mneme project is the integration of programming languages [HM91,
BHM90] and database features to provide better support for cooperative information-intensive
tasks. The Mneme Object Store is a fundamental component of this project. As stated
in [Mos89c, MS88], the Mneme Object Store is designed to be a generic persistent object
management system that should be usable from a varity of tools and programming languages
and portable across a wide range of systems. The store functionality is made available to
clients as a set of C-library subroutines [Mos89b].

Mneme provides a simple object format. Objects consist of a set of attributes, an identifier
section and a byte section. Attributes can be used by clients to model concepts like access
rights. All object references must be stored within the identifier section. In addition, a client
is allowed to store tagged immediate values in the identifier part. The reason for this design
is to allow the easy distinction between identifiers and values.

Every object has a logical identifier (32 Bit) associated with it, used to identify an object
in memory. Furthermore, an object identifier can be used to control the placement of newly
allocated objects. That is, an object identifier of an existing object can be passed to the object
creation function to give a hint where to place the new object. As argued in [Mos89a], 32-bit
identifiers seem to be adequate for todays computer architectures because they allow easy
object manipulation and support an object space of sufficient capacity for most applications.

To provide fast access to resident objects, Mneme supports two addressing mechanisms;
a handle mechanism and a pointer mechanism. Both of them allow a client to abstract from
the movement of objects form and to secondary storage. Using the first method, a client first
has to create a handle for the to be accessed. Subsequently, the object can be accessed by
passing the handle to Mneme object functions. This method eliminates the lookup costs over
a series of manipulations of the same object. When access is no longer desired, the handle
must be destroyed explicitly since creation and destruction actions are used to trigger buffer
management, locking and unlocking actions within the storage system.

The actions to be taken before an object can be addressed via memory addresses (pointers)
are conceptually the same (create pointer, destroy pointer). Subsequently, the object can be
accessed circumventing the Mneme interface, but some abstraction and saftey is lost. First
of all, the main memory layout of objects must be known to the client. Second, no range
checks can be done by the Mneme system. Third, the client must be aware of the existence
of persistent and session object identifier formats. Fourth, the client must explicitly mark
changed objects that have been stored persistently. The advantage of this type of addressing
is a possible increase in performance. For integration with programming languages this kind
of addressing seems to be feasible because the compiler or the abstract machine can take care
of safety aspects.

Up to now the physical organisation of objects has not been discussed. Mneme groups
objects together into files which can be seperatly named and located within a network. Files
are the basic unit of persistence, they can be created and destroyed dynamically. Persistence
within a Mneme file is defined by reachability from a client-defined root object. The object
space a client can access within a session is conceptually unbounded. The objects space a
client can address at a given point in time is restricted to a maximum of 22 objects, which
does not seem to be a real restriction. The maximum number of objects that can be stored
within a Mneme file is 22°. An automatic forwarder protocol to transparently handle inter-file
references is currently not implemented. The Mneme file concept addresses several issues that



are important for the implementation of large, possibly distributed persistent prorgamming
environments, such as autonomy of subcollections and, if an automatic forwarder mechanism
is added, locality transparency.

The last concept relevant for language clients is the Mneme pool concept. Pools are logical
subcollections of objects stored within a Mneme file. A strategy vector must be associated
with each pool. The vector contains object management routines, such as cluster strategies,
specific to this pool. Different pools might have different strategy vectors. This concept
allows a client to optimize the management of groups of objects. For further information on
Mneme see [MOS91, Mos90].

2.2 The O; Object Manager

O, is a database system and an object-oriented system. The target applications of the system
are business applications, transactional applications, office automation, and multimedia ap-
plications. The O5 Object Manager handles persistent and temporary complex objects with
identity. As stated in [VBD89], the Object Manager (OM) was designed to be as canonical
as possible, so that other clients should be able to use the Object Manager as a back-end.

The implementation of the object management system is based on a Client/Server ar-
chitecture [DFMV90]. That is, there is one Server Object Manager shared among all Client
Object Managers. The main difference between the server and the client version is that the
first is disk-based and multi-user and the second is memory-based and single-user. The lowest
layer of the Server OM is the Wisconsin Storage System (WiSS) [CDKKS85] which provides
the basic persistence primitives and the basic transaction primitives used by higher levels of
the Og system.

The O3 object concept is quite simliar to the O, data model [LR89] at the Oy language
level. The Oy object manager supports tuple, list and set-structured objects and provides a
rich set of interface functions to manipulate those objects. At object creation time the client
has to specify the structure of the object, i.e. the types of all fields of a tuple object, the
element type of a set, etc.

In contrast to Mneme, Oy object identifiers are physical (they describe the physical lo-
cation of objects) and are twice as long (64 Bit), to support a large address space. Physical
object identifiers are choosen to support fast retrieval of persistent objects and to avoid large
object tables that map object identifiers to memory locations. The contents of an object is
accessible through the identifiers associated with objects and offsets describing the position
of the data to be extracted. Oy does not support direct access to memory resident data. Like
in Mneme, a client can fully abstract from memory management tasks such as movement of
objects from and to secondary memory and the implementation of persistent structures.

O, objects are stored in O, databases, implemented as logical WiSS partitions that must
be generated before use. The size of a database is fixed and cannot be extended if necessary.
Persistence is defined by reachability from a set of client-defined named (root) objects, which
are the entry points to the persistent object graphs. Aside from the above mentioned ahstrac-
tions, an Object Manager client can fully abstract from storage reclamation tasks. That is,
an object must not be explicitly deleted because the Object Manager keeps track of the set of
non-reachable objects and recovers the space at suitable time intervalls (garbage collection).

While the transaction concept on the Server Object Manager is based on WiSS transaction
with pessimistic concurrency control, the client/sever interaction is implemented using an
optimistic approach. An OM client can abstract from the implementation details, which



therefore are not discussed here. It is sufficient to say that a client is able to start, to
commit and to abort a transaction. A client may switch between different transaction modes,
turn concurrency control on/off, run transactions in resident mode (all required objects are
prefetched and swizzled) and can activate, respectivly deactivate recovery measures. For a
detailed description of the Oy System see [BDK91].

2.3 The Napier Object Store

The Napier Object Storage System [Bro89] was developed at the University of St. Andrews
and designed to support the persistent programming language Napier83 [MBCD89, DCBMA&9].

As described in [BM91, BMM™*92], the Napier Object Store architecture was designed
to be an open system architecture to be used for building peristent programming languages.
The layered architecture of the system allows clients to adapt the system to their needs and
to select an appropriate layer to build their system on. Because of space limitations, only
the highest layer, the Stable Heap, is disussed. The functionality of the Stable Heap layer is
made available to clients as a set of C-subroutines.

The object concept of the Napier system is quite simliar to the Mneme concept. A Napier
object is divided into three parts; an object header, an identifier and a data part. All object
references must be stored in the identifier part. In addition, the client can store tagged
immediates within the identifier part. The data part can be used to store data of any type.
The reason for the segregation of pointer and non-pointers is to support garbage collection.
Different from Mneme, Napier allows to specify the number of identifiers stored within an
object dynamically. This feature can be used to reduce the amount of work to be done by the
garbage collector. Object identifiers (32 Bit) are logical and can change over time. Like in
Mneme, Napier supports two object addressing methods. Objects can be accessed by passing
an object identifier and an offset to the object functions of the Napier Stable Heap layer or
via virtual memory addresses that can be determined by the keyToAddress function of the
Stable Heap interface. Whereas in the first case a client can abstract from the actual position
of an object (main memory, secondary memory) and the main memory layout of an object,
the latter abstraction is lost using the second method of object addressing while supporting
faster access.

A shadow copy is created before a persistent object is modified. Shadow copies support
recovery from system crashes and transactional object manipulation. Any modifications to
an existing object store made since the last call to the stabilise function of the Stable Heap
layer can be undone by canceling the session with the Stable Heap. If the stability function
is called within a session, the actual state of the Stable Heap is made persistent. The simple
stability mechansim of the Napier system is intended to enable clients to model various kinds
of transaction concepts.

All Stable Heap objects are stored in an operating system file, called a Napier object
store. This file has to be created before use by the client. Persistence is defined through
reachability from the Napier root object defined at store creation-time. The size of an object
store and its shadow store (which is part of the object store) must be determined at creation
time and cannot be extended dynamically. Further, a clients cannot access different object
stores concurrently.

To support a conceptually unbounded object space, the Stable Heap layer provides a
garbage collector. Both, the garbage collector and the stabiltiy mechanism are never invoked
automatically by the storage system. This enables clients to cache objects outwith the Stable
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Heap. Prior to a garbage collection and a stabilization the Stable Heap layer calls a client-
supplied save function. The purpose of the save function is to write all cached objects back to
the Stable Heap. On successful execution of these functions, a client-supplied restore function
is executed. Both functions (save and restore), must be passed to the Stable Heap layer when
a session is started.

Another handler function that must be supplied by the client is invoked if the Napier
system runs out of shadow space. This situation occurs, if an already persistent object is to
be modified and there is not enough shadow space to copy the object prior to its modification.
In this case, a client can choose from two possible solutions. He can either cancel the session
or automatically invoke the stabilise function.

Like Mneme, Napier is a single user system and does therefore not support concurrent
access to a given object store.

3 Selection of a Storage System

The selection of the object storage system for P-Quest is based on the following specific
assumptions. First, the P-Quest prototype is intended to be used as a single-user persistent
programming environment. As a consequence, the multi-user facilities of the O3 system that
are essential for database applications have not influenced our choice.

The selection is also affected by the requirements of the Quest abstract machine (QM),
specifically by those modules that implement the data model of the QM. Fig. 1 shows a
simplified version of the QM. Every time the Quest system is activated, the Quest language
processor (a pre-compiled Quest program) is copied into the main memory heap. In a next
step, the internal (executable) representation of this program is reconstructed and executed.
Some of the operations of the export /import modules are also available to Quest programmers.
These functions enable programmers to store any kind of Quest data in an encoded format
on file and to import these data in subsequent sessions.

The data structures created by the QM during a session are stored within the main memory



heap. There are two modules that are responsible for accessing heap structures. The module
Value implements the structured data types of the QM and the module Store provides low
level access to the heap. An important issue is the efficient mapping of these P-Quest data
representations onto the data structures offered by the three candidate object stores.

Most of the data structures created by the QM are instances of generic, polymorphic data
types. A tuple/n] or a stack[n], for example, are data structures consisting of n fields of type
Poylmorph. On creation of such an object only the number of fields but not the types of
the fields are known to the QM. That is, it is not known whether a field is used to store an
immediate value or a refernence of another data structure.

The mapping of Quest data structures to Napier or Mneme objects does not seem to be
too difficult because both systems use 32 bit identifiers and allow clients to store any type
of data in the identifier part of objects. Mapping Quest structures on Oy objects does not
seem to be as easy, because object creation is based on object type descriptors that exactly
specify the type of each field of an object. Therefore, it is unclear whether polymorphic Quest
structures likes stacks, tuples, code-objects, etc. can be efficiently mapped onto O objects, if
at all. Further, the QM has no built-in bulk data types like list and sets. Hence, the O5 bulk
types and bulk operations cannot be used. Therefore, only a few routines of the rich set of
interface functions of the O3 Object Manager are required to implement the P-Quest system.
The O3 OM does not seem to be the right candidate for the integration with the QM, mainly
because of the differences in the data models and therefore it is excluded from the selection
list.

In general, an object management system used to build a persistent programming language
should not support a special data model because this might complicate the above mentioned
mappings, if at all possible, reduce the performace of the target system and might also restrict
future extensions of the client (PL) data model.

Another strong demand of the QM is that the persistent object storage system should
support fast access to object data as well as reliable access. As described in sections 2.1 and
2.3, both the Napier and the Mneme system provide fast access (via memory addresses) as
well as reliable access methods. This criterion can therefore not be used to select one of the
two systems.

A client of a persistent storage system should have the ability to define stable and con-
sistent persistent states of an object store. As described in section 2.3, the Napier system
provides a mechanism to stabilise the actual state of a pesistent heap and, combined with the
shadow storage concept, supports recovery from system crashes. By canceling a session with
the Napier system, it is also possible to undo the changes to an existing object store made
since the last call of the stabilise function.

The Mneme system currently does not provide a stability and a recovery mechanism. The
only way to save the modifications to a Mneme file is to close the file. After a Mneme file has
been closed, there is no way to undo the modifications to the file. Mneme currently supports
the creation of pools, but there is only one strategy vector with two management routines
available. Further, and in contrast to the Napier system, Mneme has no garbage collector,
which is to be reguarded as an important component of a persistent storage system.

The advantages of the Mneme system are more conceptual ones: partitioned object spaces,
pools with variable object management strategies, etc. To summarize, the Napier object
storage system is chosen for the integration with the Quest system.
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4 The P-Quest Programming Environment

Fig. 2 shows the architecture of the P-Quest Environment. Conceptually, there are three
layers. The first layer contains the application programming environment, a set of thirteen
standard Quest library modules and the Quest language processor: interactive top level,
compiler front-end, compiler back-end and a runtime debugger. All of these parts are written
in Quest.

The byte code generated by the compiler back-end is interpreted by the portable persistent
Quest abstract machine (PQM), the second layer. The Napier Object Store forms the lowest
layer.

The persistent address space supported by the Napier Store is the only address space
available to the PQM. Hence, all objects generated by the PQM and thus indirectly by higher
levels of the system are stored in a Napier Store. There is no volatile, local heap like in
Napier88.



4.1 Persistence in P-Quest

Persistence in the P-Quest system is based on reachability from a pre-generated root object.
A main task is to map the Quest data structures like functions, programs and type definitions
onto the Napier Store model.

A typical P-Quest program usually consists of a set of function definitions and a set of
identfiers used to store atomic or structured values. One of these functions serves as the
main function, simliar to the main function of a C-program. For every function there is a
special data structure, a closure object that contains the global static environment of the
function (top level values, references to structured values and closure objects of functions
used by that function). In addition, a closure object contains a reference to an object which
holds the byte code of the function generated by the Quest compiler-backend. The function
code is relocatable and does not contain pointers into the stable heap. Thus, a garbage
collector can freely move objects without invalidating programs. The closure object of the
main-function is the root object of the program. Everything defined within the program
is directly or indirectly reachable from the main-function. Thus, a P-Quest program can
be made persistent by making the closure object of the main-function reachable from the
P-Quest root object.

Another question is how a P-Quest programmer can control the persistence of his defin-
tions and modifications to the persistent store. At each point in time within a session with the
interactive P-Quest environment or within a P-Quest program, the user can call the P-Quest
library function stabilise, which writes all changes to the stable heap to persistent storage. If
a user ends a session without calling this function all new definitions and modifications made
since the last call of this function are lost.

An important point is the fact that not only new definitions and modifications but also
the actual machine state of the abstract machine is made persistent on a call of the stabilise
function. Thus, if a system crash occurs, the P-Quest system can be restarted with the
machine state recorded by the last call of the stabilise function. Because the global state and
the actual machine state of the persistent abstract machine are important for understanding
the persistence implementation, they are described in turn.

The global state of the PQM is given by the tuple:

GlobalState< StableHeap, PQuestRoot, LevelStack, LevelStackPointer, MachineState>

The StableHeap is provided by the Napier Object Storage System. The PQuestRoot is a
special object generated by a format program that is part of the P-Quest system. The root
object contains some place holders for persistent subroots and some P-Quest system data.
The LevelStack can store machine states to keep track of recursive invocations of the machine.
Typically, the P-Quest system, which is a Quest program runnning at level zero, compiles
another Quest program and recursivley starts a machine at level one to execute the compiled
program. When the execution at level one stops, the control returns to the machine at level
zero. The LevelStackPointer points to the last frozen machine state.
A machine state can also be described as a tuple:

MachineState< Stack, TopLevelPointer, TrapPointer, FramePointer,
Closure, ProgramPointer, FxceplionObject, ErrorFlag, ShadowFP >

As can be seen from Fig. 3 there are four pointers associated with a machine stack. The
TopLevelPoiner points to the top of a large bottom frame which contains the values declared



at the top level. Above the top level frame are the frames resulting from function activations.
The topmost (current) frame is indicated by the FramePointer. The component shadowFP
points to the result slot of the last activation frame. This prevents the garbage collector from
reclaiming a result that might be referenced by the function that is currently being executed.

The TrapPointer indicates the topmost exception handler. A P-Quest programmer is
allowed to write exception handlers which are evaluated if an exception is raised. A trap
frame contains the machine state of the exception which should be executed if the related
exception occurs and a pointer to the next trap frame below. If an exception is raised which
cannot be handled by the topmost exception handler, the exception handling is delegated to
the next exception handler. If an adequate handler could not be found, a standard exception
handler is activated. Hence, exceptions propagate along the dynamic call chain, but not
through machine level boundaries.

The FzceptionObject contains an exception name and an exception value and is also used
for error handling. The FrrorFlag, a boolean value, indicates the termination state of a
machine execution, normal or exceptional execution.

As can be seen from Fig. 3 that describes the global state of a P-Quest system including
an abstract machine state, there is an additional object, the LiteralObject, that is reachable
from the closure of a function. The LiteralObject typically contains strings defined as values
within a function and references to code objects arising from statically nested functions. The
last component is the ProgramPointer that indicates the next instruction of the program to
be executed.

The P-Quest root object (PQuestRoot) is generated by a special P-Quest store format
program that must be called with the location of a Napier Object Store as parameter before
the store can be used by a PQM. The first field of the root object is a place holder for the
closure object of the main function of the program to be stored in the object store, typically
the top level-function of the interactive P-Quest language processor. The next field is reserved
for a reference to a machine state to be recorded when the stabilise function is called. As
can be seen from figure 3, the closure object of the machine state and the closure object of
the P-Quest root might not be the same, because the stabilise function can be called at any
point within a P-Quest program. The next two fields (LS and LP) contain the reference to
the LevelStack and the relative LevelStackPointer. Both of them must be saved because the
stabilise function might be called on higher levels of machine activations (e.g. level 1).

The following parts contain references to P-Quest system data, such as format descriptors,
built-in error messages, etc. This information is created by the P-Quest store format program.
The main purpose of this design is to have unique identifiers for format descriptor objects as
well as error message objects.

4.2 Implementation of the P-Quest System

The persistent abstract machine is realized by a module tree shown in Fig. 4. The modules
can be divided into three groups: data modules, storage modules and execution modules.
The tasks of these three groups are described below.

4.2.1 Storage Modules

The modules POS, Memory and Store belong to the storage group. The Modula-3 interface
module POS contains the Napier Stable Heap interface functions as external declarations
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(see Appendix A) and makes them available to the Store module. The module Store provides
higher levels of the architecture with functions
e to start and end a session with a P-Quest store

e to create new objects

to read /write data from/to objects

to determine the virtual memory address of an object
e to activate a garbage collection

e to stabilise the store

e efc.

The function setup of this module starts a session with a Napier Stable Heap. There are
serveral function parameters which must be passed to the Stable Heap layer. The important
ones are save, restore and stabilise.

The stabilise function is called by the Stable Heap layer if there is not enough storage to
create a shadow copy of an already persistent object that is to be modified. There are two
possible solutions for the implementation. First, an implicit stabilization of the Stable Heap
can be activated, which will implicitly free the shadow space therefore allowing higher levels to
continue execution. Second, the session with the Stable Heap can be canceled. Currently, the
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second alternative is implemented because only the P-Quest programmer can decide which
states of the Stable Heap are consistent and therefore should be stabilized. Another reason is
that otherwise a programmer cannot reset the Stable Heap to the last user-defined consistent,
stable state (undo a set of changes). Clearly, it is not feasible to have a fixed size shadow
space, because this delegates some memory management tasks to the client of the persistent
storage system.

The functions save and restore are called by the Stable Heap layer prior to respectivly
after a garbage collection or stabilization of the heap. As mentioned in section 2.3, a Napier
client has the ablility to cache objects outside the Stable Heap. Before the heap is stabilized,
all cached objects must be written back to the Stable Heap to form a consistent state. This
is the task of the save function. The restore function fulfills the opposite task, to read back
the cached objects. This is necessary because object identifiers and virtual memory addresses
of objects might be changed by the Stable Heap layer and all components of a machine state
have to be marked as reachable.

The modules Main, Exec and Value make use of the ability to cache objects. Each of them
contains a local save and restore procedure to maintain the encapsulation of the local buffers.
The save procedures are activated bottom up whereas the restore procedures are activated
top down. Figure 5 shows the activation chain of the save procedures. The technique used
to implement the hierarchical call-chain is termed callback procedures. The dynamic binding
required for the save call-chain is achieved as follows:

VAR saveproc : PROCEDURE()

PROCEDURE Save() =
BEGIN saveproc(); END Save;

PROCEDURE SetSaveProcedure(proc: PROCEDURE()) =
BEGIN saveproc := proc; END SetSaveProcedure;

The module Store contains two procedures. The procedure Save is passed to the Stable Heap
layer when a session with the storage system is started. The second one, SetSaveProcedure,
allows higher levels to dynamically define new save procedures. If a P-Quest user starts
a session with the persistent abstract machine, the local variable saveproc of the module
Store is bound to the save procedure MainSave of the module Main by calling the procedure
SetSave Procedure(MainSave). If subsequently the Stable Heap layer calls the Save function
of the Store module, the MainSave function is executed first. The same concept is used for
the implementation of the restore procedures.

The stabilise function and the garbage collector are available to a P-Quest programmer
through a P-Quest standard library module (see appendix B). Whereas the first is never called
by the PQM, the garbage collector is activated if a new object cannot be created, because
there is not enough memory available. If after a garbage collection there is still not enough
persistent storage, the Napier Object Store is exhausted. In this case the objects stored in
the Object Store can only be read and changed. This elucidates the disadvantage of a fixed
size object store.

Another disadvantage stems from the fact that the shadow space is also of fixed size.
On every call to an updating function such as Setlnt, SetPointer, the Stable Heap function
CanModify must be called, because there is no way to determine if the entire object must be
copied before it can be altered. Hence, if an object A is to be modified n times, the CanModify
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Pointer = Cardinal (32 Bit; even)

visited | mark 0
Bit Bit
Bit31 Bit30 Bit 0
Napier object identifier
Immediate = Cardinal (32 Bit; odd)
data (Int, Bool, Real, Char, ...) 1
Bit 0

Figure 6: Layout of persistent atomic values

function also must be called n times, with obvious negative influence on the performance of
the P-Quest system. As already mentioned above, clients of a persistent object storage system
should not be involved in solving storage system tasks.

The last module of this group is the Memory module. The Memory module provides
functions to modify objects via virtual memory addresses. This kind of object addressing is
used to access data form frequently used objects such as machine stacks, byte code objects
and to initialize newly allocated objects. The possibility to access objects via virtual memory
addresses is the main reason for the good performance of the P-Quest system.

4.2.2 Data Modules

The modules Data, Format, Code, Value and QOS belong to this group of modules. The
main task of these modules is to implement the various kinds of atomic and structured data
representations used by other modules and to provide operations on this data. Hence, other
modules can fully abstract from implemtation details.

The module Data contains the definitons of the atomic values used by the PQM such as
Card, Int, Real, etc. and their persistent counterparts Immediate, Polymorph, Pointer used
to store values persistently within Napier objects. The main reason for this is that the garbage
collector must be able to distinguish pointer (object identifiers) from non-pointer values. The
type Polymorph is a non materialized data type which is only used for typchecking. The
layout of the persistent representation of the Pointer and Immediate data types are shown in
figure 6. As can be seen from the figure, pointers can be distinguished from immediates by
the value of Bit zero. The other tag fields of a pointer value are used to control the portable
data export (extern).

The module Value implements the structured data types of the PQM and provides oper-
ations on them. Examples of structured types are:

e tuple, string, date, ...

o closure, machineState, stack, moduleBadge ...

15
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Figure 7: Representation of a closure object

Examples of operations are:
o newTuple, getTuple, setTuple, stringCat
e newClosure, getClosure, ...

The universal layout of a closure object and its associated format descriptor object is given
in figure 7. Every object starts with an object header (two words) which is implemented by
the Napier system, followed by a format field that contains a pointer to the format descriptor
object of the object. The rest of the closure object is used to store the data of the closure
object. It contains the pointer to the code object of the closure and data representing the
global environment of the closure (a P-Quest function). A given descriptor object is shared
among all objects of the same type (closure, tuple, etc.) and size. To distinguish descriptor
objects from data objects, an important requirenment of the extern algorithm, the format field
of the descriptor object is set to zero. The following part of the descriptor object describes
the commmon structure of a closure object of size n. The seqTag states that the closure
consists of a sequence of length 2; a pointer field and a repetition (repeat Tag) of n (repeat
count) polymorphic values (pointers or immediates). The desriptor objects thus control the
traversal of objects while writing them to a file.

The main components of the Format module are procedures that implement the extern and
intern algorithms, which are used to write object graphs (tuples, lists, ..., modules, programs,
etc.) in a machine independent format to respectivly read them from operating system files.
This feature enables a P-Quest programmer to take subcollections of objects (data, functions,
modules, ...) from one object store and transfer it to another object store and is also used
to bootstrap the P-Quest system. The external format of a P-Quest file is compatible to the
external format of non-persistent Quest files. Therefore, a P-Quest and Quest programmer
can freely exchange data between these systems.

The Code module contains the definition of the PQM machine code instructions and operand

types.

OpCodeClass = {OpApplyCase, OpClosureCase, OpStoreCase, ..., OpStringCase, ...}
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OpClass = {OpAddrIimmediateCase, OpLiteralCase, ..., OpAddrGlobalCase, ...}

The operations of the OpCodeClass Store are completly rewritten and are available to the P-
Quest programmer through the P-Quest module Store. This module provides for example the
functions garbageCollect, stabilise and halt. The first two functions were already discussed.
The function halt allows a programmer to suspend a program at arbitrary points in time and
to return to the operating system shell. The command PQuestRecover restarts the program
with its original state (the statement following the halt function).

The Store module also exports functions that allow a programmer to access the values of
an object in an unsound way. These functions are normally used by the P-Quest language
processor to generate the P-Quest byte code, but they can also be used to access any object
data, given the object identifier of the object and a legal byte-offset. These features cannot
be used in type-safe programs since the module is tagged as “unsound”.

The last module belonging to this group is the module QOS. This module provides func-
tions to access operating system files and some other operating system-dependent services.

4.2.3 Execution Modules

The Main module contains the main program of the PQM. After executing the Setup proce-
dures of all the other modules that bind the global variables of these modules to persistent
objects like descriptor objects and error message objects, the command line parameters passed
by the P-Quest user are read. The value of the last parameter determines the action to be
taken. If a name of a P-Quest file which contains a pre-compiled P-Quest program is passed,
the program is imported into the object store and an initial machine state is generated. If no
value is passed, a machine state for the closure stored in the first field of the P-Quest root
object is generated. If an exclamation mark is passed the machine state stored in the second
field of the P-Quest root object, which represents a suspended program, is retrieved.

The resulting machine state is then passed to the procedure Fzec of the module Exec,
listed below. The Exec module contains the implementation of the P-Quest interpreter.

PROCEDURE Exec(machineState: Data.Pointer) =
BEGIN
MachineStateGet(machineState, stack, TL, TP, FP,
CP, PC, EX, ErrorFlag, ShadowFP);
AbsoluteState(stack, TL, TP, FP, CP, PC ShadowFP);
Execute();
RelativeState(stack, TL, TP, FP, CP, PC ShadowFP);

END Exec;

In a first step the global variables representing the state of the interpreter are extracted from
the machine state passed by the Main module and an absolute machine state is generated. A
machine state, as stored within the object store, never contains addresses because they might
be invalidated by a call of the save function or following a system fault. The main reason for
addressing machine state objects via virtual memory addresses is to boost performance. The
Execute call then starts the interpreter.

Some precautions have to be made to ensure that the PQM can continue execution fol-
lowing a stabilization or a garbage collection. First, because the Napier system only allows a
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fixed amount of persistent memory to be updated between two stabiliztions, any object that
must be updated by the save procedures must be modifiable at any point in time. Otherwise,
for example if a P-Quest programmer calls the function stabilise and the P-Quest root object
cannot be updated, the system will fail. Therefore, all these objects are shadow copied in the
setup phase, following a stablisization and a garbage collection.

Second, any value stored within a machine stack must be tagged, and addresses (Pro-
gramPointer, TrapPointer, ...) must be converted to relative offsets before they are stored.
Otherwise, the garbage collector may fail or the program cannot be continued because of an
invalidated object address.

5 Summary and Conclusions

In this paper three object store systems are compared based on their suitability as servers
for a simple single-user persistent higher-order language, P-Quest. Moreover, details of the
P-Quest implementation are presented that shed some light on the general problems that
arise in the process of implementing a highly polymorphic DBPL on a pre-existing object
store.

To show how persistence influences the performance of the P-Quest system, the perfor-
mance of some Quest functions executed within the Quest and P-Quest system is compared
in Fig. 8.

The first two functions contain WHILE statements with an empty statement list. In the
first case, the loop control variable is stored on the stack cached in main memory, whereas
in the second case it is taken from a tuple in the persistent store and therefore accessed
indirectly. As can be seen from the figure, the execution of the first loop in the P-Quest
system takes less time than in the Quest system. The main reason for this is the fact that
the PQM accesses 32 Bit values in a single Modula-3 instruction whereas the QM needs
two instructions (first half word, second half word). The crucial difference for the second
function stems from the fact that deferencing persistent objects using the Stable Heap access
functions is more costly because of the increased number of procedures to be called (Napier
Stable Heap, Napier Stable Store) and because of page faults to implement recovery. A static
progam analysis which determines the cases when it is useful to address objects via virtual
memory addresses could decrease the time used by the P-Quest system drastically.

The comparison of the performance of a simple function (calls involving primitive opera-
tions that can be evaluated on the stack) lead to simliar results. The execution of a recursive
function (e.g. factorial) involves dereferencing a closure object several times, therefore, the
execution within P-Quest takes more time.

The results of creating a list of 1000 Person tuples with five attributes, traversing the list
and traversing the list with an update on one tuple attribute leads to the same conclusion:
dereferencing persistent objects is expensive.

The compilation of a (P-)Quest program composed of 446 lines of source code (56 func-
tions) takes twice the time in the P-Quest system. This difference in time is compensated if
the progam is executed in subsequent sessions with the P-Quest system because the executable
representation of the program can be stored permanently whereas within the non-persistent
system the compiled program must be imported and decoded in every session it is to be used
in.

To summarize, the performance penalty to be paid for the significant additional oper-
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Figure 8: Comparison of the P-Quest / Quest runtime ratio for several programs

ational support provided by an object store (very large address space, recovery, garbage
collection) in typical applications is surprisingly low (i.e. below a constant factor of two).

The primary goal of the P-Quest project was to gain experience in implementing sim-
ple persistent programming environments and to identify the functionality of object stores
required by language clients. The concepts of three persistent object stores, the Oy Object
Manager, the Mneme Store and the Napier Object Store were examined to select the most
suitable for the integration with the abstract machine of Quest.

The persistence definition of the three systems is based on reachability and differs only in
the number of root objects that have a unique external name. This difference had no influence
on the selection, because the Quest abstract machine (QM) does not require multiple root
concepts. As was shown in section 4.1, the reachabilty concept offered by all three stores is
adequate for the representation of all dependencies between the components of a complete
Quest system.

A more important issue concerns the data model supported by an object server. A central
requirement of the QM is to be able to uniquely identifiy parts of the persistent memory
without restrictions on the kind of data that can be stored within each portion of a persistent
object. Both, the Mneme system and the Napier system support this kind of data model
whereas the O3 systems notion of “typed” objects is too biased to a specific data model (object
types, sets, lists). This was the main reason to exclude O3 from the selection list. Generally,
typical language clients like Quest do not require set-oriented abstractions as provided by
systems like Os.

Since the performace of a persistent programming environment is a significant criterion
for its acceptance, the object storage system should provide fast access methods. Mneme as
well as Napier both support direct and reliable access to persistent objects.

Additional features of the Napier system are automatic management of cached objects,
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garbage collection, stabililty (transactional updates) and recovery from system crashes. Nearly
all of these concepts and additional ones (pools, variable object management policies, parti-
tioned object spaces,...) can be found in the design of the Mneme system but are currently
not implemented. The lack of important mechanisms like garbage collection and a stablity
mechanism were the main reason why the Napier system was selected for the integration with
the Quest abstract machine.

In contrast to Og, the Napier as well as the Mneme object store are single-user systems.
Thus it is not possible to share the functionality stored within an object store. Cleary, both
systems have to address this issue in future versions.
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A The Modula-3 Interface to the Napier Object Store
INTERFACE Store;

IMPORT Data;

CONST Headersize = 8; (* pointees allocated for the object header *)

PROCEDURE SetSaveProcedure(proc: PROCEDURE());

PROCEDURE SetRestoreProced(proc: PROCEDURE());
(* define the save/restore procedures passed to the Napier POS *)

PROCEDURE Setup():BOOLEAN;
(* start a session with a Napier POS and *)

PROCEDURE CloseStore();
(* stop a session with a Napier POS. Modifications made since the
last call to Stabilise are not saved *)

PROCEDURE Statistics();

PROCEDURE RootObject(): Data.Pointer;
(* Return the object identifier of the root object of a POS *)

PROCEDURE GarbageCollect();
(* Do a full garbage collection of the store*)

PROCEDURE CanModify(key: Data.Pointer): BOOLEAN;
(* Create a shadow copy of a persistent object before altering the
object. May be called redundantly for the same object. *)

PROCEDURE Stabilise();
(* Write all modifications since the last call of this function or the
start of the session to the POS *)

PROCEDURE KeyToAddress(key: Data.Pointer): Data.Pointer;
(* Determine the virtual memory address of an object, which is used by
functions of the Memory module *)

PROCEDURE CreateObject(size: Data.Card; numberOfPolys: Data.Card) :Data.Pointer;
(* The size will be rounded up to multiple of PointeesPerPolymorph *)

PROCEDURE DestroyObject(obj: Data.Pointer);

(* — unused *)

PROCEDURE GetSize(obj: Data.Pointer): Data.Int;

(* Return the size of an object *)

PROCEDURE GetPointee(obj: Data.Pointer; off: Data.Card): Data.Pointee;
(* Return the byte stored at byte offset off. *)

PROCEDURE SetPointee(obj: Data.Pointer; off: Data.Card; pointee: Data.Pointee);
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(* Write pointee to byte offset off within the specified object *)

PROCEDURE GetPolymorph(obj: Data.Pointer; off: Data.Card): Data.Polymorph;
(* Return the Polymorph stored at byte offset off. *)

PROCEDURE SetPolymorph(obj: Data.Pointer; off: Data.Card; polymorph: Data.Polymorph);
(* Write polymorph to byte offset off within the specified object *)

PROCEDURE GetPointer(obj: Data.Pointer; off: Data.Card): Data.Pointer;
(* Return the object identifier stored at byte offset off. *)

PROCEDURE SetPointer(obj: Data.Pointer; off: Data.Card; pointer: Data.Pointer);
(* Write pointer to byte offset off within the specified object *)

PROCEDURE GetImmediate(obj: Data.Pointer; off: Data.Card): Data.Immediate;
(* Return the immediate stored at byte offset off. *)

PROCEDURE SetImmediate(obj: Data.Pointer; off: Data.Card; immediate: Data.Immediate);
(* Write immediate to byte offset off within the specified object *)

PROCEDURE GetSmallCard(obj: Data.Pointer; off: Data.Card): Data.SmallCard;
(* Return the small cardinal stored at byte offset off. *)

PROCEDURE SetSmallCard(obj: Data.Pointer; off: Data.Card; smallCard: Data.SmallCard);
(* Write smallCard to byte offset off within the specified object *)

PROCEDURE GetSmalllnt(obj: Data.Pointer; off: Data.Card): Data.Smalllnt;
(* Return the small integer stored at byte offset off. *)

PROCEDURE SetSmalllnt(obj: Data.Pointer; off: Data.Card; smalllnt: Data.Smalllnt);
(* Write smalllnt to byte offset off within the specified object *)

PROCEDURE Getlnt(obj: Data.Pointer; off: Data.Card): Data.Int;
(* Return the integer stored at byte offset off. *)

PROCEDURE SetInt(obj: Data.Pointer; off: Data.Card; int: Data.Int);
(* Write int to byte offset off within the specified object *)

PROCEDURE GetFloat(obj: Data.Pointer; off: Data.Card): Data.Float;
(* Return the single precision float stored at byte offset off. *)

PROCEDURE SetFloat(obj: Data.Pointer; off: Data.Card; float: Data.Float);
(* Write float to byte offset off within the specified object *)

END Store.
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B The P-Quest Interface to the Napier Object Store

unsound interface Store
export
(* Note: All offsets given in pointees *)

headersize: Int
(* Number of pointees allocated for object header. *)

byteSize, shortSize, longSize, realSize: Int
(* Number of pointees allocated for base types. *)

garbageCollect(): Ok
(* Do a full garbage collection of the (persistent) store. *)

stabilise(): Ok
(* Checkpoint the persistent store. *)

halt(): Ok
(* Checkpoint the persistent store and quit the program.
The program can be restarted at the current instruction. *)

keyToAddress(A ::TYPE key :A): Int

(* Return the physical address of an object of type String, Tuple,
Array, Option, Fun, Interface. The returned address is invalidated
by (automatic) garbageCollect, stabilise and halt. *)

getSize(A ::TYPE key :A): Int
(* Return a multiple of PointeesPerPolymorph. Only valid for
String, Tuple, Array, Option, Fun and Interface objects. *)

getByte(A ::TYPE key :A off :Int): Int
setByte(A ::TYPE key :A off :Int val :Int): Ok

getShort(A ::'TYPE key :A off :Int): Int
setShort(A ::TYPE key :A off :Int val :Int): Ok

getLong(A ::TYPE key :A off :Int): Int
setLong(A ::TYPE key :A off :Int val :Int): Ok

getReal(A ::TYPE key :A off :Int): Real
setReal(A ::TYPE key :A off :Int val :Real): Ok

end;
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