A method to develop EA modeling languages
using practice-proven solutions

Sabine Buckl, Florian Matthes, and Christian M. Schweda

Chair for Software Engineering of Business Information Systems (sebis),
Technische Universitdat Miinchen,
Boltzmannstr. 3, 85748 Garching, Germany
{sabine.buckl,matthes, christian.m.schweda}@mytum.de
http://wwwmatthes.in.tum.de

Abstract. Enterprises are unique in the way of doing business. This
uniqueness is typically reflected in the overall make up of the enterprise
— the enterprise architecture (EA). Globalized markets, changing legal
regulations, and technological innovations thereby force enterprises to
continually adapt their EA to the changing environment. As response,
enterprises aim at a strategic management of the EA providing a holistic
model of the key elements and relationships of an enterprise. Different
supporting modeling languages have been proposed but none of them
has gained broad acceptance due to the above described uniqueness.

In this paper we present a method to develop organization-specific
EA modeling languages based on building blocks representing practice-
proven solutions. Following the common understanding of modeling lan-
guages as consisting of syntax, semantics, and notation, we provide three
different types of building blocks: information model building blocks that
specify the syntax, glossary building blocks that textually define seman-
tics, and viewpoint building blocks that specify the notation of the lan-
guage. The applicability of the method for integrating building blocks
to a consistent EA modeling language is illustrated along a case study
from the public sector. The exposition of the method concludes with an
outlook on further areas of research.

1 Motivation and overview

Enterprise architecture (EA) management is a discipline, which has recently
gained increased attention from academia and practice. Thereby, a few topics
which are nowadays regarded to be part of EA management, have a long his-
tory in information systems research. This can be exemplified with the topic
of business-IT-alignment discussed e.g. by Henderson and Venkatraman in the
late nineties as strategic alignment [1]. While these discussions might have cat-
alyzed the evolution of EA management, the overall discipline is still subject to
ongoing development. This in particular applies as different research communi-
ties continue to argue on the perspective, from which EA management should
be approached (cf. discussions by Frank [2] or Wegman [3]). The approaches

nevertheless agree that EA management needs to provide a holistic view on an
enterprise, accounting for aspects from all layers, ranging from business to IT.

Independent from the question of perspective, other indications for the ongo-
ing development of the EA management discipline exist. EA modeling represents
a prominent example. Although most EA management approaches emphasize on
the importance of modeling the EA, no common metamodel, called informa-
tion model in accordance with Buckl et al. in [4], has yet been established. In
the last years, many information models were proposed but none of them has
gained broad acceptance. Some researchers even challenge the hypothesis that
such a model exists (cf. [5, 6]). They expect enterprises to have largely different
expectations on the benefits of EA management, and therefore assume that an
information model is an enterprise-specific artifact. In Section 2 we discuss possi-
ble reasons for this kind of specificity, when we revisit how today’s EA modeling
languages position themselves as tools for supporting EA management functions.
In [5] Buckl et al. discuss three different ways for developing organization-specific
EA modeling languages, of which two approaches, namely the customization ap-
proach and the integration approach try to leverage established best-practices.
Understanding that most of today’s EA and EA management frameworks pursue
a customization-based approach, we discuss the shortcomings of such approach
which motivates the research objective of this article:

Introduce a method for developing EA information models based on com-
poseable best-practice solutions for defining such languages, and show
the applicability of the method.

This objective is approached in Section 3, where we outline our method for
developing organization-specific EA modeling languages, which is based on re-
usable building blocks for such languages. The method is based on a specific
understanding of EA modeling languages, according to which the language’s syn-
tax is specified in an information model, the notation is defined via notation
functions as well as representation functions, and the semantics is defined
textually in a glossary. For any of these constituents, the presented method
supplies specific building blocks, which are further composed into a comprehen-
sive EA modeling language. The applicability of the method is exemplified in
Section 4. Final Section 5 summarizes the article’s findings and gives an outlook
on further research to follow in the field.

2 EA modeling: theoretic foundations and state-of-the-art

A plethora of different EA management approaches has been proposed in the
past that typically either focus on a language to model the EA or on a method
how to document, analyze, and communicate EA-related aspects. This section
provides an overview on selected EA management approaches with particular
focus on the proposed EA modeling language(s). Preparing the analysis of ex-
isting EA modeling languages, we establish a theoretic foundations and revisit a
conceptual framework for EA design as discussed by Buckl et al. in [7]. Central

to this framework is the understanding that EA modeling has both an inten-
sional and an extensional nature. Extensionally, languages are used to reflect
certain architectural properties, i.e. phenomena, whereas the intensional nature
of a language reflects the fact that the corresponding models are created for
"doing something’. Understanding EA management as a design process, i.e. as
engineering process targeting the transformation of the enterprise, Buckl et al.
apply in [7] the propositional framework for design of Simon [8]. This framework
promotes a formal understanding of the activity of design, based on the cen-
tral notion of means-end-relationships. Any design activity is carried out in the
light of domain-inherent characteristics and relationships (“natural laws” [8])
that connect dedicated means to corresponding ends. This conversely means
that a designer with a specific end (goal) in mind searches for means by which
the design artifact will achieve those ends. For the context of EA management,
this means that enterprise architects “given the constraints and fixed parame-
ters, find values for the command variables that satisfy the utility function” [8].
Building on this, Buckl et al. explored in [7] how the constituents of EA-specific
design propositions look alike and devised a mapping distinguishing between:

— the current and future make-up of the EA (command variables),

— the strategies & projects affecting and changing the EA (means),

— the principles & standards guiding the evolution of the EA (constraints),
the visions & goals describing a target state of the EA (ends), and

— the KPIs & metrics measuring and evaluating an EA state (utility function).

Above distinction pertains to the EA modeling language, more precisely to the
language constituent of the syntax that introduces the primitives used in an EA
model. In line with Ernst et al. [9], we assume that the language syntax is rep-
resented in an EA information model, containing the classes, properties, and
associations used to describe a particular area-of-interest in the EA. These
areas-of-interest can be distinguished to extensional ones (concerns), i.e. ones
covering the command variables, and intensional ones, covering cross-cutting
aspects, as strategies, goals, standards, or metrics. This distinction is to be kept
in mind with respect to the review of the state-of-the-art undertaken in this sec-
tion, but also for devising our development method in Section 3. The distinction
gives rise to a particular conception of the EA modeling language(s) used to
support a particular EA management approach.

TOGAF proposes to structure the EA in different architecture domains rep-
resenting subsets of the overall EA [10]. TOGAF distinguishes between

— business architecture concerned with strategic, governmental, organizational,
and process-related aspects,

— data architecture describing the structure of an organization’s data assets and
data management resources,

— application architecture considering the application systems, their interactions,
and their relationships to the business processes, and

— technology architecture describing the software and hardware capabilities re-
quired to support business, data, and application services.

Answering the question which elements should be considered in an EA man-
agement endeavor, TOGAF presents the core content metamodel. Therein, the
entities and relationships that make up an EA are described [10]. The core con-
tent metamodel provides entities for all architectural layers. Besides the entities,
which can be grouped to one of the architectural layers, TOGAF also introduces
crosscutting entities associated with all objects among others principle, require-
ment, work package. Thereby, the kind of relationship is not discussed. TOGAF
provides six metamodel extensions [10], e.g the motivation extension to enable
measurement of business performance by introducing concepts as driver, goal,
and objective. While each of these extensions supplies concepts for modeling
and described the intended usage context, these concepts are not formulated as
cross-cutting aspects pertaining to arbitrary architecture elements.

In the 1970s and the 1980s several EA-related frameworks have been de-
veloped. In response to the emerging number of frameworks in this area, the
International Task Force on Enterprise Integration was established aiming at
the development of a reference framework that supports comparison and evalu-
ation of existing approaches [11]. As a result of the investigation, the Task Force
developed the Generalised Enterprise Reference Architecture and Methodology
(GERAM). GERAM consists of nine components, of which with respect to the
EA modeling language, three components are of interest. These do not impose
particular languages but define criteria for an EA management approach [12]:

— Generalised Enterprise Reference Architecture (GERA): GERA describes the
basic concepts to be used in enterprise engineering and integration projects.
According to GERAM these concepts can be categorized as human-oriented
concepts, process-oriented concepts, and technology-oriented concepts.

— Enterprise Modeling Languages (EMLs): EMLs define the generic modeling
constructs for enterprise modeling. In particular, the EMLs provide constructs
to describe and model human roles, operational processes, supporting infor-
mation, and technologies.

— Generic Enterprise Modeling Concepts (GEMCs): GEMCs define and for-
malize the generic concepts of enterprise modeling. The following ways of
formalization exists: natural language explanations (glossaries), meta mod-
els describing the elements and their relationships (information models), and
theories defining the semantics of enterprise modeling languages (ontologies).

GERA defines a life-cycle for each constituting concept of the enterprise, which
consists of the phases identification, concept, requirements, (preliminary and de-
tailed) design, implementation, operation, and decommission. While most of the
aforementioned phases are self-explanatory, the concept phase deserves a more
in depth analysis with respect to our analysis framework. The phase is concerned
with the definition of the entity’s mission, vision, strategies, objectives, etc. [12].
Thus, linking the cross-cutting aspects of strategies, projects, visions, and goals
to any concept considered during enterprise transformation. In line with the ob-
jective of GERAM to define requirements for EA (management) frameworks, no
description how this relation should be conceptualized is given. Similarly, the
concept of life history is discussed and the link to different kind of projects is
explored and related to the phases of the EA concepts.

In addition, to the generalized propositions for a language for EA descriptions
as discussed above, the EMLs define two requirements to enable integration of

special purpose modeling languages (cf. [12]). First, every area as represented in
the modeling framework must be covered for every enterprise entity type, and
second, any model developed must be able to be integrated with models of other
subject areas, if the information content of the model requires integration. The
need to integrate different languages results from the distinct ’expressive powers’
related to the intended purpose, e.g. description vs. analysis, of the languages.

Against the background of over 15 years of practice, Dietz [13] has devel-
oped a “methodology for (re)designing and (re)engineering organizations” called
DEMO. With its sound theoretical foundation in a theory called ¥-theory the
method takes a different perspective on the enterprise focusing on the so-called
“enterprise ontology”. Dietz uses this term to denote a “coherent, comprehen-
sive, consistent and concise model of the essence of the enterprise”. Critical to
his definition is thereby the notion of “essence” that in the sense of Dietz targets
the deep behavioral nature of the enterprise, but not realization and implemen-
tation specific details. The method of DEMO provides an approach to develop
enterprise ontologies in a systematic way [13], i.e. reflects commitment-related
information. In line with the four basic axioms of ¥-theory the ontological model
of the enterprise is constituted of four distinct submodels (construction model,
state model, process model, and action model) The construction model speci-
fies the construction of the organization embodied in the identified transaction
types as well as actor roles. Detailing the coordination aspect of the transac-
tions, the process model describes causal and conditional relationships between
different transactions. Complementing this perspective the state model outlines
the state space of P-facts, i.e. of production results, while P-acts are not part of
the state model, as they may be derived from the corresponding process model.
The action model describes the enterprise ontology on the most detailed model,
such that — as Dietz states in [13] — the other models may be derived from the
action model, and are hence only provided for ease of use. The different ab-
stracted models (construction, process and state model) are complemented each
with a specific description language, of which especially the language behind the
state model deserves special attention. The so called “world ontology specifi-
cation language” (WOSL) (cf. Dietz [14]) provides the basic language elements
for describing rigid and non-rigid structures, i.e. states that exist universally
over time and states that may change. The construction and process model lan-
guages present themselves as two sides of the same coin taking a blackbox and
a whitebox perspective on the organizational transactions further mirrored in
the prescriptive understanding of an EA complementing the enterprise ontology
with “functional” and “constructional principles” [13].

3 Designing an EA modeling language

Different EA management problems call for a distinct understanding of the EA
and hence entail a different way of modeling architectural properties. For each
such problem, the corresponding understanding of the problem domain, i.e. the
relevant part of the EA, can be expressed in a specific EA modeling language.

This language is domain appropriate in terms of Krogstie [15], i.e. constrains
itself only to relevant syntax, semantics, and notation. For developing one or
more EA modeling languages, e.g. representing different problems, we have to
design the corresponding syntax, semantics, and notation. Prior to introducing
our design method, we provide a conceptual model that describes the interplay
of these constituents. Central thereto is the information model, which in line
with our considerations in [9], specifies the syntax of the modeling language via
MODEL ELEMENTS. Semantics is considered as a function assigning exactly one
predicator [16] to each MODEL ELEMENT. This predicator acts as surrogate for
a corresponding part of the conceptualization, i.e. for an architecture property in
the sense of Dijkman et al. [17]. Such property represents a characteristic of the
architecture relevant in respect to one or more architecture stakeholders. Com-
plementing the notation is described as a representation function assigning one
VISUALIZATION ELEMENT! to each MODEL ELEMENT. In consequence, a predica-
tor (or the thereby represented architectural property) is assigned a particular
visualization element by the modeling language.

Representation

Semantics
function

function

Information
model

1 1 1

* *
Semantics Representation
assignment N assignment
Predicator ! Model ! Visualization
1 1 element 1 1 element
1

designates
1

Architecture

property 1

Fig. 1. General constituents of an EA modeling language

Different languages in turn can cover different sets of predicators and can
assign different visualization elements thereto. Figure 1 depicts the conceptual
model for modeling languages utilizing aforementioned terms. The architecture
property is therein shown in gray, as it represents a purely intrapersonal con-
cept, whereas the three basic constituents of the language syntax (INFORMATION
MODEL), semantics (SEMANTICS FUNCTION), and notation (REPRESENTATION
FUNCTION) are highlighted.

Combining different modeling languages in a consistent manner builds on
the notion of consistency as introduced by Dijkman in [18]. In particular, the
question of integrating the underlying information models is of relevance, as
these can contain different MODEL ELEMENTs reflecting the same architecture
property. Such MODEL ELEMENTS originate from different ways of perceiving the

! In line with Kamlah and Lorenzen [16] arbitrary speech acts can notate an element.
With the focus of the domain, we constrain our subsequent considerations to visual
elements.

underlying property. For the context of the method, the predicator, i.e. the glos-
sary entry, identifies the corresponding property. Two information models can
be interlinked by three different types of relationships, namely overlap, sub-
sume, and conflict. Moving from the instance-level perspective on relationships
as taken by Dijkman in [18] to an understanding on a conceptual level, we use
the predicators and define the basic relationship overlap as expressing that two
information models share at least one predicator. Building on this, the two other
types of relationships are defined as follows:

— Two information models conflict with each other, if they overlap, but make
contradictory statements with respect to the MODEL ELEMENTS assigned to
overlapping predicators.

— One information model subsumes another one, if the subsuming model is com-
pletely overlapped by the subsumed one, i.e. if all predicators of the subsuming
information model are also present in its subsumed counterpart.

Subsume and conflict are closely related to each other in the sense that for
two conflicting information models it is not possible to find or create a third in-
formation model subsuming both. Contrariwise, a subsumed information model
completely overlaps the subsuming one without raising conflicts. The types of
relationships between information models provide a basis for our development
method in a threefold manner. Firstly, the users can be prevented from select-
ing conflicting information models to be integrated into the comprehensive in-
formation model supporting their EA management function. Secondly, existing
overlaps between the selected information models can be accounted for during
integration of the information models. Finally, the subsume-relationship can be
used to derive possible paths for evolving the information model.

Representation|

Information
function

model

Notation Information
function model

1 1 1 1

* *

Representation| Representation|
N assignment N assignment
Model ! Visualization Model ! Visualization
element 1 1 element element 1 0.1 element

Fig. 2. Notation function Fig. 3. Representation function

Linking information models to visualizations, we have to define two types
of functions, namely the notation function and the representation func-
tion. For each modeling language the notation function establishes a bijective
mapping between MODEL ELEMENTSs and VISUALIZATION ELEMENTs. The repre-
sentation function of other modeling languages contrariwise does not establish
one-to-one relationships, but can provide an aggregated perspective on the in-
formation model elements, e.g. by abstracting relationships or calculating sums.
Put in terms of our conceptual model for the constituents of an EA modeling

language, we can describe the general distinction between notation functions
and representation functions via the existence of representation assignments as
shown in Figures 2 and 3, respectively.

The solutions provided by the different approaches to EA management, dis-
cussed in Section 2, provide partial EA modeling languages, which are doc-
umented on different levels of abstraction, giving several specifics of the ap-
plication, e.g. the employed terminology. EA management approaches with an
embracing appeal tend to mitigate specifics of a singular prescription and to
present the solutions in a stratified terminology, thereby increasing readability
and comparability. In this sense the assignments between the PREDICATORs and
the MODEL ELEMENTS as contained in different EA modeling languages of the ap-
proach are adapted. Any EA modeling language can supply at most one MODEL
ELEMENT assigned to a particular PREDICATOR from the stratified terminology
of the approach. Nevertheless, different languages can bring along elements as-
signed to the same predicator. Figure 4 displays the conceptual model bringing
together different EA modeling languages backed in a consistent terminology.

Semantics
function

Information
model

1 1

*

Semantics
assignment .
Predicator ! Model
1 1. element

Fig. 4. Semantics assignments in a set of EA modeling languages

Our development method has to target the three aspects of EA modeling
languages with corresponding building blocks. These building blocks have been
proven to work in practice [19]. In particular information model building block
(IBB) supplying an information model, viewpoint building block (VBB) supply-
ing a representation function, and glossary building block (GBB) supplying a
semantics function. These building blocks are complemented with techniques fa-
cilitating their integration and combination. Using the techniques and building
blocks of the different types a consistent set of EA modeling languages can be
developed. Figure 5 shows the interplay of the different practice-proven building
blocks complementing the development method.

With respect to IBBs, our method offers an additional distinction between
MODEL ELEMENTs that reflect architecture elements, representing the exten-
sional nature, and those that reflect goals of EA management, representing the
intentional nature. Revisiting the analysis of EA modeling languages from Sec-
tion 2, we understand goals as particular instantiation of a more general principle
of describing EAs. Similar to goals, also projects or standards raise certain char-
acteristics that do not supply an identity condition (IC) for the corresponding
model elements. Put in other words, while goals, projects, and standards them-

selves supply an IC, they relate to dependent model elements that do not supply
an IC, are dispersive types [20]. Based on this analysis, we establish a distinc-
tion between two types of IBBs: one building around identifiable architecture
elements (concern IBBs) and one centering around cross-cutting architecture
characteristics (cross-cutting IBBs). These concepts are further summarized
under the term area-of-interest.

Organized library of
best-practice building blocks

I: GBB VBB
IBB

t
«contributes to» «contributes to» 1
L

€ == HE === =

1
EA modeling (sub-)language
A4

poyraw uoneidepe
9 uopeziwoisno abenbue]

Information |
model

Glossary Viewpoint

Fig. 5. Interplay of language building blocks

An IBB defines a part of the syntax of an EA modeling language by speci-
fying the corresponding MODEL ELEMENTS, i.e. the TYPES, RELATIONSHIPS, and
PROPERTYS, that make up the syntax. In developing a specific information model,
cross-cutting IBBs corresponding to goals and questions, projects, or standards
are applied, i.e. added, to concern IBBs. Via supplied semantics assignments,
the model elements are linked to predicators, i.e. classifying terms from the
glossary, which in turn reflect a particular architecture property. The different
values that an architecture property can take are codified into instantiations
of the corresponding MODEL ELEMENT. If this concept, for example, is a PROP-
ERTY? these instances can be identified with the range of the corresponding data
type, e.g. INTEGER or STRING. Similar considerations also apply for TYPEs and
RELATIONSHIPs. With the IBBs specifying re-usable information models bound
to a consistent underlying terminology, the relationships applying on informa-
tion models can also be applied to interrelate IBBs. The IBB-relationships are
of interest in extending the method’s underlying organized collection of IBBs as
exemplified in Figure 6. Each of these relationships is therein set effective by at
least one predicator.

In order to ensure usability of the method in general and the techniques
for selecting and integrating the IBBs in special, any newly added IBB has to
be embedded into the net of IBB-relationships, if overlapping. Forcing the con-
tributors of IBBs to establish these relationships manually would aggravate any
extension of the organized library of building blocks, exponentially growing with
the number of already supplied IBBs. Resolving the aforementioned difficulty, we

2 We use the different typeset to avoid confusion with the architectural property.

decide to derive these relationships from the relationships between predicators
and model elements as well as the containment of model elements in the IBBs.

«conflicts»
IBB1:IIBB <K=~~~ === 1BB2:1BB
/\

T
I «subsumes»

«overlaps» «overlaps»

Fig. 6. Exemplary net of IBB-relationships

Another important aspect of developing EA modeling languages from practice-
proven solutions is the notational aspect. Any language brings along symbolic
representations for the MODEL ELEMENTs and their relationships, which must
in turn match the specific notational expectations of the corresponding users.
With respect to the method, this means that the users must be able to select
proven-practice notations and adopt them to fit their particular EA modeling
languages. The VBBs provide such proven-practice representation assignments
as derived from the analyzed EA management approaches. These assignments
are of abstract nature, i.e. do not relate to a particular underlying information
model, but to an abstract conception of the information to be represented. Lat-
ter forms the viewmodel®, which can be understood as a ’virtual’ information
model, acting as domain for a representation function. Revisiting the exemplary
visualization shown in this section, we explain the notion of the viewmodel along
the example of the clustered visualization, which according to Wittenburg [21]
is frequently used in representing EA information?.

A aA
1 1:B b2:B
relates
* b3:B b4:B
B

A clustered visualization depicts instances of an outer TYPE A and in-
stances of an inner TYPE B, which are related via some RELATIONSHIP.

The viewmodel supplies enough information to create the visualization but
not more, such that the representation assignments constitute a bijective repre-
sentation function. It would nevertheless be possible to create the visualization

3 A similar concept is discussed by Fowler in http://martinfowler.com/eaaDev/
PresentationModel.html (cited 2010-12-23).
4 Wittenburg calls this type of visualization “cluster map” [21, page 78-79].

in cases, where additional information was supplied. In mathematical terms this
means that any particular kind of visualization, i.e. any VBB, can be applied
on any information model capable of supplying the sufficient information.
For being in turn able to perform graphical modeling, the underlying informa-
tion model must not supply additional information, i.e. has to supply only the
minimal necessary information. Such information model is closely related to
the viewmodel of the corresponding VBB. These considerations take a different
point of view on what differentiates notation functions and graphical represen-
tation functions. While the former relate visualizations to their necessary and
sufficient information model (the viewmodel), latter functions can build equiva-
lently on any sufficient information model. Being sufficient relates to the concept
of the subsume-relationship introduced above. Any information model that is
subsumed by visualization’s necessary and sufficient information model is itself
sufficient to create the visualization. Understanding the subsume-relationship
as a basis for evolving the information model of an organization, we can en-
sure that any subsumed information model is still sufficient to create the once
selected graphical representations. Aforementioned indications give rise to the
following definition of VBBs. In line with our considerations in [22] we detail
on the contribution that a VBB makes with respect to specifying a viewpoint.
According to the provided contribution, we distinguish different types of VBBs:

— Symbol VBBs that assign a mapping between a MODEL ELEMENT and a
visible VISUALIZATION ELEMENT, i.e. a symbol in terms of [9].

— Structural VBBs that assign a complex structure of MODEL ELEMENTS to a
set of interrelated VISUALIZATION ELEMENTs. Such building blocks are mostly
not self-contained but reference other VBBs as sub-assignments.

— Decorating VBBs that assign a mapping between a MODEL ELEMENT and a
VISUAL PROPERTY of a VISUALIZATION ELEMENT, which in turn results from
a mapping specified in a different VBB.

— Hybrid VBBs that specify to some extent a combination of the above. Such
VBBs can be constituted from other VBBs, e.g. a structural VBB referencing
an elementary VBB to which additionally a decorating VBB is applied.

Any viewpoint is configured in terms of at least one structural VBB that deter-
mines the overall make-up of the corresponding visualization. This understanding
aligns with the principle of the base map as established by Wittenburg in [21]
used to describe the basic nature of the analyzed software maps. It is neverthe-
less not necessary for a viewpoint to build on an isolated structural VBB, as also
a hybrid VBB containing at least one structural VBB can serve as base VBB
for a viewpoint. Finally, the GBBs are used to provide a consistent underlying
understanding of the concepts employed in the IBBs. Central thereto is the no-
tion of the predicator, which is complemented with a textual description of the
according semantics. This description can in turn link to related predicators, al-
though the relationships established thereby are not typed, but give indications
on a corresponding connectedness.

Complementing above considerations on the building blocks and their inter-
relationships to each other, we subsequently outline how the organized library

of building blocks is used by the development method proposed in this paper.
In general building block-based development of EA modeling languages con-
sists of three distinct activities, namely information modeling, viewpoint
definition, and glossary adaptation. Latter activity is elemental in its na-
ture, meaning that the users of the method browse through an existing glossary
and rename one or more of its entries. Thereby, the corresponding predicator is
shadowed with an organization-specific predicator, that consistently inherits all
semantic assignments of its underlying predicator. Information modeling starts
with an empty information model and iteratively applies the following four steps:

1. Select EA management-relevant goal to pursue and choose cross-cutting IBB
reflecting the goal on an adequate level of abstraction.

2. Select EA concern on which the goal applies and choose admissible concern
IBB reflecting the concern on an adequate level of abstraction.

3. Integrate the cross-cutting IBB with the concern IBB to build a problem-
specific information model by specifying the goal-relevant MODEL ELEMENTS.

4. Integrate the problem-specific information model with the already existing
information model. (omitted in first iteration)

After above steps have been executed once, an information model is main-
tained by the method in the organization-specific configuration. This information
model is used to determine, whether a concern IBB is admissible or not. The lat-
ter is the case, when the IBB conflicts with an already integrated one. Another
subtlety applies to this step, as the concern descriptions change with the adapta-
tion of the glossary, thus ensuring that the users perform the selection based on
their adapted terminology. The activity of viewpoint definition is closely interre-
lated to the one defining the EA management function in general. The method
part of the function specifies particular tasks, in which actors in EA management
and EA stakeholders have to be informed or must provide information on certain
architectural aspects. With the viewpoints, in line with Krogstie [15], being the
vehicles for externalizing, comprehending, and communicating information, any
relationship between an actor or stakeholder and a task has to be supplied with
a specific viewpoint. Thereto, the following two step approach is applied:

1. Select base VBB and establish admissible links from its virtual information
model to the model of available information.

2. Repeat: add VBB to detail existing viewpoint and establish admissible links
from the corresponding virtual information model to the model of available
information.

Two conceptions in the former approach deserve special attention. Firstly, it can
be the case that in some tasks of the EA management function not all informa-
tion according to the integrated information model is available. This particularly
applies for documentation-related tasks, such that any VBB applied to define a
viewpoint is confined to the information actually available. Put in other words,
the VBB has to be configured against the model of available information. Sec-
ondly, while there are in general only a few restrictions on the VBB to apply for a
specific task, the configuration of the corresponding viewpoint is restricted with
respect to the intended usage thereof. Having selected a task-actor-relationship,
according to which the actor has to provide information about an EA concern,

the configured viewpoint must supply representation assignments that constitute
a notation function for the information under consideration. Put in other words,
the actors must have the possibility to model the corresponding part of the
enterprise using the established modeling language. In this sense, any mapping
configuration is analyzed by means of the provided techniques with respect to its
suitability to maintain a bijective relationship with the underlying information
model, i.e. if this information model is isomorphic to the VBB’s viewmodel.

4 Exemplifying the design approach

A public authority providing IT services to several federal ministries has over
the years ‘grown’ a highly heterogeneous application landscape, causing high
maintenance costs and requiring a diverse set of IT operating skills. In order to
address this IT-related problem, the authority decides to introduce an EA man-
agement function specifically pursuing the goal of standardization on the level of
business applications and their underlying technologies. Having chosen goal and
concern, two IBBs become available, one describing how to operationalize stan-
dardization, another defining the concepts needed to describe the relationship
between applications and technologies. Figure 7 depicts the information model
derived from these IBBs via integration.

«mixin» uses «mixin»
Standardizable * 1.* Standard
fisStandard:bool isStandard:bool
Busines application uses Technology

name:string N 1+ name:string

Fig. 7. Information model

The complementing GBBs for the information model elements, introduce
definitions. The public authority decides to apply the definitions without adap-
tations. Finally, the authority designs a viewpoint for communicating the in-
formation about standardization. The viewpoint builds on a basic cluster-VBB
extended with a VBB for color-coding, according to which non-standard tech-
nologies are colored red, whereas standard technologies are colored green.

5 Conclusion and outlook

Balancing organization specificity on the one hand and the demand for a gen-
eral method to model EAs, we proposed in this paper a method to develop

organization-specific EA modeling languages based on practice-proven build-
ing blocks. To enable organization-specific configuration, three different types
of building blocks have been proposed. Information model building blocks de-
scribing the syntax of the language, i.e. the concepts that make up the EA,
glossary building blocks that specify the semantics of the concepts reflecting
the organization-specific terminology, and viewpoint building blocks providing a
stakeholder-specific notation for visualizing EA-related information. While the
different building blocks enable flexible configuration to an organization-specific
EA modeling language, aspects of consistency have to be accounted for. In pre-
senting our development method we discussed how consistency can be ensured.
While the utilization of the development method in a case study with an
industry partner from the public sector provides first indications for the ap-
plicability and utility of the presented method, further case studies should be
conducted. Furthermore, a tool supporting the user of the development method
in conducting the single steps of the method can be regarded useful. In partic-
ular as such a tool could be used as a configurator for that would enable initial
design as well as adaptation of EA modeling languages thus supporting the enter-
prise architects in adapting to changing environmental influences and problems
to be addressed. The resulting configuration could further be used as input for
dedicated EA management tools to facilitate the customization thereof.

References

1. Henderson, J.C., Venkatraman, N.: Strategic alignment: leveraging information
technology for transforming organizations. IBM Systems Journal 32(1) (1993)
472-484

2. Frank, U.: Multi-perspective enterprise modeling (memo) — conceptual framework
and modeling languages. In: 35" Hawaii International Conference on System Sci-
ences (HICSS 2002), Washington, DC, USA (2002) 1258-1267

3. Wegmann, A.: On the systemic enterprise architecture methodology (seam). In:
SEAM). Published at the International Conference on Enterprise Information Sys-
tems 2003 (ICEIS 2003. (2003) 483-490

4. Buckl, S., Ernst, A.M., Lankes, J., Matthes, F., Schweda, C.M., Wittenburg, A.:
Generating visualizations of enterprise architectures using model transformation
(extended version). Enterprise Modelling and Information Systems Architectures
— An International Journal 2(2) (2007) 3-13

5. Buckl, S., Ernst, A.M., Lankes, J., Schneider, K., Schweda, C.M.: A pattern based
approach for constructing enterprise architecture management information models.
In Oberweis, A., Weinhardt, C., Gimpel, H., Koschmider, A., Pankratius, V., Schni-
zler, eds.: Wirtschaftsinformatik 2007, Karlsruhe, Germany, Universitatsverlag
Karlsruhe (2007) 145-162

6. Kurpjuweit, S., Winter, R.: Viewpoint-based meta model engineering. In Re-
ichert, M., Strecker, S., Turowski, K., eds.: 2"¢ International Workshop on Enter-
prise Modelling and Information Systems Architectures (EMISA 2007). LNI, Bonn,
Germany, Gesellschaft fiir Informatik (2007) 143-161

7. Buckl, S., Matthes, F., Roth, S., Schulz, C., Schweda, C.M.: A conceptual frame-
work for enterprise architecture design. In Aalst, W., Mylopoulos, J., Sadeh, N.M.,

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

Shaw, M.J., Szyperski, C., Proper, E., Lankhorst, M.M., Schénherr, M., Barjis, J.,
Overbeek, S., eds.: Trends in Enterprise Architecture Research. Volume 70 of Lec-
ture Notes in Business Information Processing., Springer Berlin Heidelberg (2010)
44-56

Simon, H.A.: The Sciences of the Artificial. 3" edn. MIT Press, Cambridge,
Massachusetts, USA (1996)

Ernst, A.M., Lankes, J., Schweda, C.M., Wittenburg, A.: Using model transfor-
mation for generating visualizations from repository contents — an application to
software cartography. Technical report, Chair for Informatics 19 (sebis), Technische
Universitdt Miinchen, Munich, Germany (2006)

The Open Group: TOGAF “Enterprise Edition” Version 9. http://www.togaf .org
(cited 2010-02-25) (2009)

Bernus, P., Nemes, L., Schmidt, G.: Handbook on Enterprise Architecture.
Springer, Berlin, Heidelberg, Germany (2003)

IFIP-IFAC Task Force on Architecture for Enterprise Integration: Geram: The gen-
eralised enterprise reference architecture and methodology. In Bernus, P., Nemes,
L., Schmidt, G., eds.: Handbook on Enterprise Architecture, Berlin, Heidelberg,
Germany, Springer (2003) 21-63

Dietz, J.L.: Enterprise Ontology. Springer, Heidelberg, Germany (2006)

Dietz, J.L.: A world ontology specification language. In: On the Move to Mean-
ingful Internet Systems 2005: OTM Workshops. (2005) 688-699

Krogstie, J.: A semiotic approach to quality in requirements specifications. In:
Proceedings of the IFIP TC8 / WGS8.1 Working Conference on Organizational
Semiotics: Evolving a Science of Information Systems, Deventer, The Netherlands,
The Netherlands, Kluwer, B.V. (2002) 231-249

Kamlah, W., Lorenzen, P.: Logische Propadeutik: Vorschule des verniinftigen Re-
dens. 2™ edn. Metzler, Stuttgart, Germany (1967)

Dijkman, R.M., Quartel, D.A., van Sinderen, M.J.: Consistency in multi-viewpoint
design of enterprise information systems. Information and Software Technology
50(7-8) (2008) 737 — 752

Dijkman, R.M.: Consistency in multi-viewpoint architectural design. PhD thesis,
Enschede (2006)

Buckl, S., Matthes, F., Schweda, C.M.: Utilizing patterns in developing design
theories. In: 2010 International Conference on Information Systems (ICIS 2010).
(2010)

Guizzardi, G.: Ontological foundations for structural conceptual models. PhD
thesis, CTIT, Centre for Telematics and Information Technology, Enschede, The
Netherlands (2005)

Wittenburg, A.: Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften. PhD thesis, Fakultét fiir Informatik,
Technische Universitdt Miinchen, Germany (2007)

Buckl, S., Gulden, J., Schweda, C.M.: Supporting ad hoc analyses on enterprise
models. In: 4th International Workshop on Enterprise Modelling and Information
Systems Architectures. (2010)

