MICROLYZE: A Framework for Recovering the
Software Architecture in Microservice-based
Environments

Martin Kleehaus, Omer Uludag, Patrick Schiifer and Florian Matthes

Chair for Informatics 19
Technische Universitdt Miinchen (TUM)
D-85748, Garching

Abstract. Microservices are an approach to distributed systems that
promote the use of finely grained services with their own lifecycles. This
architecture style encourages high decoupling, independent deployment,
operation and maintenance. However, those benefits also leave a certain
aftertaste, especially in continuous documentation of the overall architec-
ture. It is fundamental to keep track of how microservices emerge over
time. This knowledge is documented manually in Enterprise Architec-
ture (EA) tools, which leads to an obsolete status. For that reason, we
present a novel multi-layer microservice architecture recovery approach
called MICROLYZE that recovers the infrastructure in realtime based
on the EA model involving the business, application, hardware layer and
the corresponding relationship between each other. It leverages existing
monitoring tools and combines the run-time data with static built-time
information. Hereby, MICROLYZE provide tool support for mapping
the business activities with technical transactions in order to recover the
correlation between the business and application layer.

1 Introduction

The popularity of microservice-based architectures [1] is increasing in many or-
ganizations, as this new software architecture style introduces high agility, re-
silience, scalability, maintainability, separation of concerns, and ease of deploy-
ment and operation [2]. Adrian Cockeroft at Netflix describes the architecture
style as a ”fine grained SOA” [3] that presents single applications as a suite
of small services that run in their own processes and communicate with each
other through lightweight HTTP-based mechanisms, like REST. Microservices
are built around business capabilities and enclose specific business functions that
are developed by independent teams [4]. The benefits emphasize the reason why
over the last decade, leading software development and consultancy companies
have found this software architecture to be an appealing approach that leads
to more productive teams in general and to more successful software products.
Companies such as Netflix [5], SoundCloud [6], Amazon [7] or LinkedIn [8] have
adopted the microservices style in the cloud and pioneered the research in this
area.

2 Martin Kleehaus, Omer Uludag, Patrick Schifer and Florian Matthes

Even though microservices release the rigid structure of monolithic systems
due to the independent deployment, this style also introduces a high level of
complexity with regard to architecture monitoring, recovery and documentation
[2]. In a recently published study on architecting microservices [9], it was in-
vestigated that monitoring solutions for microservice-based architectures have
been addressed by many researchers and companies. However, it was also con-
firmed that limited research was conducted on topics of microservice recovery and
documentation, although this is very important for understanding the emerging
behavior of microservice-based architectures. For instance, microservices can dy-
namically change their status at run-time like the IP address or port for multiple
reasons like autoscaling, failures, upgrades, or load balancing, among others [10].
Additional services can be introduced into the infrastructure or removed during
upgrades or migration projects. In these scenarios, it is crucial to keep track on
the current architecture orchestration and service dependencies.

In order to tackle this challenge, a lot of different monitoring approaches
[11][12][13][14] and service discovery mechanisms [15][16] are applied that pull
the status of services dynamically over the network. This simplifies many as-
pects of tracking the system, but lacks in connecting their obtained monitoring
data in order to achieve an integrated and holistic view of the behavior and
status of the whole Enterprise Architecture (EA) [17]. Moreover, the alignment
of business needs to the IT infrastructure is acquiring increasing importance in
microservice environments. Best practices propose the design of services based
on their business domain in which they fulfill one specific business requirement
[4]. Hence, we are convinced that the documentation of the relationship between
the services and business domains including departments, teams and business
processes has to be involved in an holistic architecture recovery, which is not yet
covered in existing approaches.

According to the aforementioned considerations, we propose an architecture
recovery approach called MICROLYZE, which combines static and runtime data
in order to reconstruct IT infrastructures that are based on microservice archi-
tecture. The reconstruction includes all adjacent layers proposed by EA models,
like hardware, application, business layer, and their relationships between each
other. The tool recognizes changes in the infrastructure in real-time and uncov-
ers all business activities that are performed by the users. The prototype obtains
most of the required data via well-selected monitoring tools. The presented ap-
proach was evaluated in a microservice-based system called TUM Living Lab
Connected Mobility (TUM LLCM)?.

The rest of the paper is organized as follows: Section 2 describes the lay-
ers and components that are involved in the architecture recovery. Section 3
presents the technical details of the architecture recovery approach. In section 4
we evaluate our approach in a real case scenario, whereas section 5 provides a
benchmark about the instrumentation overhead. Section 6 and 7 closes the paper
with related work and our future efforts to improve the proposed approach.

! http://tum-1lcm.de/

MICROLYZE - Recovering service-oriented Software Architecture 3

Business Process

Application : 1
v v
/N H o
Technology

. . " . / \
Business Process Functional Microservice / MS \ Microservice with — —» Inter-relation
. - two Instances "
D Business Activity @ Infrastructural Microservice <> |Intra-relation

Fig. 1: Multi-layered microservice-based EA infrastructure

2 Architecture Model

MICROLYZE aligns the reconstruction model of microservice-based infrastruc-
tures to the EA model adopted by many of the EA frameworks that emerged
in the last decades, like ArchiMate [18], Zachman [19], TOGAF [20], amongst
others. These frameworks provide standards on how to model the EA and typi-
cally divide it into three abstraction layers: 1) the technology layer encompasses
all technological-related aspects like hardware, network and other physical com-
ponents and 2) the application layer defines software components running on
the technology layer. We assign services and service instances to the application
layer. 3) The business layer operates on top of the aforementioned layers and
defines all business-related aspects like the business departments, business pro-
cesses and business activities that are processed by the microservices. The first
two layers are reconstructed completely automatically via analyzing monitoring
data; the business layer requires additional domain knowledge and manual input
in the first place that can only be provided by department staff members. The
overall architecture and the relationship between each layer is depicted in figure
1 and described in more detail in the following.

2.1 Business Process

A business process is a collection of related activities that serve a particular
goal for a user. In the context of distributed systems, each business transaction,
or technically speaking a user request, contributes to the execution of a busi-
ness process. Hence, several organizations and the according teams who develop
the services could be involved in one business process. The reconstruction of a

4 Martin Kleehaus, Omer Uludag, Patrick Schifer and Florian Matthes

business process with the aid of event data is mostly associated with process
discovery, which is the most used technique in process mining [21].

2.2 Business Activity

A business activity defines a business transaction and consists of a sequence
of related events that together contribute to serve a user request. A request
represents interactions with the system. Every business transaction is part of
one or more business processes. Transactions can span multiple microservices
that expose external interfaces to other services for intercommunication. Before
process mining can be accomplished, each technical request that represents a
business-related user activity must be named with a clear and understandable
business description.

2.3 Service

A service is a logical unit that represents a particular microservice application.
According to the service type classification discussed by Richards [22], services
can be classified into functional and infrastructural services. Infrastructure ser-
vices are not exposed to the outside world but are treated as private shared
services only available internally to other services. Functional services are ac-
cessed externally and are generally not shared with any other service. They are
responsible for processing business transactions but can forward the user request
to other infrastructure services.

2.4 Service Instance

In contrast to services that form the logical unit of a microservice, the service
instance represents the real object of this service. We introduce this separation
as a logical service can own more service instances. This is often the case when
load balancing is applied. However, a service is always represented by at least
one instance. The instances are identified by the used IP address and port but
always contain the same endpoint service name.

2.5 Hardware

The hardware layer covers all physical components of a microservice infrastruc-
ture. The service instances run on the hardware. We assume that hardware can
be identified by its IP address.

2.6 Relationship between architecture components

The architecture model depicted in figure 1 constitutes two relationship types
between the components: The intra-relation defines connections within a spe-
cific abstraction layer. For instance, as mentioned above, a business process is a

MICROLYZE - Recovering service-oriented Software Architecture 5

sequence of business transactions and every transaction is defined by the organi-
zation that managed the service. In the application layer as an example, several
services contribute to serve a user request. These services exchange data over
their interface and, hence, feature an intra-relationship.

Besides relationships within abstraction layers, the inter-relation constitutes
connections between two different layers. In order to obtain the holistic architec-
ture of a microservice-based environment, inter-relationships uncover important
information about the interaction between abstraction layers. All functional ser-
vices are deployed to process specific business transactions that are defined by
the executed user request. By tracing these requests, application-related metrics
can be obtained, like the duration of a user request, the latency between two
distributed services or the data volume that is transferred. Due to the inter-
relationships, system administrators are able to quickly identify which business
activities or business processes are affected by this failure. In addition, one can
point out the team who is responsible for fixing the error.

3 Recovery Process

We regard architecture recovery as a never-ending process. It is a continuous
monitoring of the service interaction within an IT infrastructure. Microservice
architectures evolve over time [23]. That means, new services are added or re-
moved, and newly implemented interfaces lead to a change in the information
exchange and dependency structure. For that reason, in order to find a proper
monitoring approach it is a prerequisite to receive data about the current health
status of the application and insights about the communication behavior between
microservices. It is important to keep track of architectural changes, especially
when new releases cause failures or performance anomalies. In addition, the ar-
chitecture recovery process should not only cover technology-related aspects but
also business-related points, since each architecture refinement could add ad-
ditional endpoints for interacting with the application. This leads, in turn, to
an extension of the business process. Therefore, new business activities must be
recognized automatically and added to the responsible business process.

Based on the aforementioned considerations, our architecture recovery pro-
cess is composed of six phases as illustrated in figure 2. In the first phase, MI-
CROLYZE automatically rebuilds the current microservice infrastructure that
is registered in a service discovery tool like Eureka? or Consul®. These systems
are integrated in microservice-based environments for storing the instance in-
formation of running microservices. Microservices frequently change their status
due to reasons like updates, autoscaling or failures; the service discovery mech-
anisms are used to allow services to find each other in the network dynamically.
By retrieving the information from the service discovery service, we are able
to reveal the current status of each service instance. In case a change (unregis-

2 https://github.com/Netfix/eureka
% https://wuw.consul.io/

6 Martin Kleehaus, Omer Uludag, Patrick Schéfer and Florian Matthes

Service Monitoring II
Discovery probes

API II I
Documentation ‘
j IT/EA Architect

. Business N Business —
4 activities 7| IT Mapping

- ~)
ecognize

Architecture Refinment

. = 'Y I . o
Microservice 4 Hardware ®» Relationship

VN

Change
Q Automatic Process . . .
w Manual Process -
Developer

Fig. 2: Microservice architecture discovery process with all required phases (1-6)
and included data sources

tered service, new service, updated service) is detected MICROLYZE alters the
discovered architecture structure in order to indicate this particular change.

In the second phase, we also use the retrieved information for recovering
hardware related aspects in order to establish the link between the microser-
vices and the hardware on which the services are running. The service discovery
service already provides useful data like, IP address and port but lacks in re-
porting detailed hardware information. For that reason, installing an additional
monitoring agent on each hardware component that reveals hardware related
information is required. The IP address is used to establish the link between the
application and hardware layer.

Although service discovery mechanisms are often applied to discover the sta-
tus of running services in run-time, they mask the real dependencies among
microservices in the system. It remains unknown how the services communi-
cate with each other as soon as user transactions come in. For that reason, it is
necessary to install on each microservice a monitoring probe that supports the
distributed tracing technology introduced by Google [24]. Distributed tracing
tracks all executed HTTP requests in each service by injecting tracing infor-
mation into the request headers. Hereby, it helps to gather timing data like
process duration for each request in order to troubleshoot latency problems.
Furthermore, additional infrastructure and software-specific data like endpoint
name, class, method, HT'TP request, etc. is collected and attached as annota-
tions. Distributed tracing uncovers the dependencies between microservices by
tracking the service calls via a correlation identifier. It is also capable of dif-
ferentiating between concurrent or synchronous calls. As an implementation of
the distributed tracing technology, we refer to the open-source monitoring solu-
tion zipkin* developed by Twitter. It supports the openTracing standard ® and

4 https://github.com/openzipkin/zipkin
® http://opentracing.io/

MICROLYZE - Recovering service-oriented Software Architecture 7

enjoys a huge community. Hence, by means of zipkin we are able to talk with
any other APM tool as long as it also supports the openTracing standard. The
zipkin probes stream the information via apache katka to MICROLYZE and are
stored in a cassandra database.

Moreover, we implemented an algorithm that determines how to classify each
service on basis of the distributed tracing data. Functional services, for instance,
have mostly no parent services that forward the request to their child nodes.
The very first application is the client itself. Hence, the parent ID in the tracing
data is mostly empty. However, there are situations in which this approach is
not applicable. Gateway services, for example, provide a unified interface to the
consumers of the system that proxies requests to multiple backing services. In
order to recognize this type of service, we continuously analyze the incoming
HTTP requests. If the very first accessed microservice is always the same in
most requests MICROLYZE flags it as the gateway service. All child nodes after
the gateway are flagged as functional services accordingly.

Last but not least, huge microservice infrastructures are load balanced to
avoid single points of failures. Instances of a service always have the same name
but distinguish itself in IP address and port. Therefore, the uniqueness of a
service instance is defined by the service description in combination with the
used IP address and the service port. In order to discover all instances that
belong to a specific service, we aggregate them based on the service description.

During the third phase, all transactions executed by users are stored in a
database. These requests provide information about the user behavior, which
includes, first of all, what the user does, when and in which chronological order,
but also uncovers the link between the business transactions and the microser-
vices that are responsible for processing the request. However, most monitoring
or CMDB solutions do not establish a mapping between the business activities
and the technical transactions. It remains unclear which service is responsible for
processing a specific business activity. For that reason, we extend MICROLYZE
with a business process modeller that assists in creating such a mapping.

First of all, in the fourth phase each business activity that can be performed
by the users and triggers a request in the backend are defined with a clear
semantic description like register, open shopping cart, purchase article, etc. After
this step is finished, we are able to create the mapping between the business
activities and the technical requests extracted by zipkin. This covers phase five.
In order to support this process, we enhanced the business process modeller with
the regular expression language in order to describe technical requests. These
expressions are mapped with the previously described business activities. All
expressions are stored in the database and validate incoming requests. Hence,
new incoming transactions that are not yet seen and might refer to a modelled
business activity are already mapped by a regular expression.

The sixth phase is all about recognizing changes in the IT infrastructure.
The user is notified as soon as the system recognizes changes in the architecture
model that might occur after a component update. MICROLYZE frequently
polls the service discovery service that indicates deleted or newly added services

8 Martin Kleehaus, Omer Uludag, Patrick Schéfer and Florian Matthes

Eureka
Repository

| Probes

MICROLYZE

Web Application

Architecture
Recovery

Business Process
Modeller

REST API

| III

Activity Mapper

Adjacency Matrix

%
[
1 =)
, 'g

1 ®
[
I o

Spans

Microservice Architecture

Fig. 3: Microlyze architecture components

that are not known yet. Unregistered services could indicate a service crash or a
new update release. For that reason, they are not automatically removed from the
database but only marked as such. This flag is removed as soon as the services are
registered again. Unknown user requests that cannot be validated by a predefined
regular expression are added to the list of unmapped URL endpoints. These
endpoints have to be linked to a business activity afterwards. Changes in IP
addresses and port might indicate an alteration in the underlying infrastructure,
which leads to an automatic adaption of the architecture model.

The overall microservice architecture is depicted in figure 3. Apache kafka
is used to stream all monitoring spans and architecture changes to the proto-
type in realtime. The web application includes the business process modeller,
the activity to service mapper and the architecture visualizer that renders the
obtained architecture model, making the discovered information, components,
dependencies and mappings during the recovery process available for system ad-
ministrators and enterprise or software architects. As microservice environments
can grow to hundreds of services, we chose a representation that is scalable as
well as capable of handling hundreds of dependencies and hiding specific aspects
that are currently not needed to visualize. For that purpose, we applied the con-
cept of the adjacency matrix and grouped the related columns and rows to the
component dimensions that were described in section 2.

4 Evaluation

The described architecture discovery concept has been prototyped and applied to
the TUM LLCM platform. This platform simplifies and accelerates the exchange
regarding the development of digital mobility services. It allows service devel-
opers to build better mobility services by incorporating different partners who
agree to share their mobility data. In this context, a service called Travelcom-
panion was developed that enables travelers to connect with a travel group who
has the same destination. Hereby, travel costs can be shared between the group
members. The Travelcompanion service consumes data from a BMW DriveNow
and Deutsche Bahn (DB) service and provides a recommendation on how to
plan the route with different transportation means used by other travel groups

MICROLYZE - Recovering service-oriented Software Architecture 9

Architecture Adjacency Matrix

DIEEREEEE -« = o« 5% 78 s n e

Book Route x x x X x x X x

Book Means of Transport X X X X X X x

List Providers X x x x x x X X x
Login x x X x
Logout x x x
Select Deutsche Bahn x x x x X X x
Select DriveNow x x x x XX x
Select Route x X x X ox o x X x X X X X x X

Select Travelcompanion x X x X x ox x

ACCOUNTING-CORE-SERVICE H - x X
BUSINESS-CORE-SERVICE H - x X
CONFIG-SERVICE E - x X
DEUTSCHEBAHN-MOBILITY-SERVICE H - X X
DRIVENOW-MOBILITY-SERVICE H - X X
EUREKA-SERVICE H - x X
MAPS-HELPER-SERVICE H - X x
ZUUL-SERVICE x x x x x x = x x x x x x x x x X
ACCOUNTING-CORE-SERVICE (131.159.30.3: n - X
BUSINESS-CORE-SERVICE (131.159.30.1:5000) 12 - X
'CONFIG-SERVICE (131.159.30.173:8890) ' I3 - X
DEUTSCHEBAHN-MOBILITY-SERVICE (131.15. 14 - X
DRIVENOW-MOBILITY-SERVICE (131.159.30. 15 X
EUREKA-SERVICE (131.159.30.173:8761) | 16 X
MAPS-HELPER-SERVICE (131.159.30.3:7000) | I7 X
TRAVELCOMPANION-MOBILITY-SERVICE (13... 18 X
ZUUL-SERVICE (131.159.30.173:9001) "19 X

131.159.30.1

=

13115930173

=
S

131159303

3

Fig. 4: Architecture discovery result visualized in a grouped adjacency matrix

that still have free space left. By joining these groups, the travel costs can be
minimized.

The platform is a microservice-based system implemented in Spring Boot.
Each service runs in a docker container. The architecture incorporates infras-
tructural services like a configuration (config-service), the service discovery eu-
reka (eureka-service) and a gateway service (zuul-service). Further services pro-
vide administration (business-core-service), geospatial (maps-helper-service) and
accounting (accounting-core-service) functionality like booking and payment.
DriveNow (drivenow-mobility-service), DB (deutschebahn-mobility-service) and
the Travelcompanion (travelcompanion-mobility-service) service have their own
data storage. Each service represents a eureka client and is registered in the
eureka server. Each service except eureka is instrumented by zipkin probes. The
microservice architecture is distributed on three virtual machines, each running
on the same hardware.

After each service is started, the architecture discovery accesses eureka and
consumes all registered services. As the matrix in figure 4 shows, MICROLYZE
correctly recognizes 9 services (S1 — S9), 9 instances (I1 - 19) and 3 hardware
components (H1 — H3). Each service is assigned to only one instance, which

10 Martin Kleehaus, Omer Uludag, Patrick Schifer and Florian Matthes

Select DB

List

s Select Select N Book
Providers

Login [§
e DriveNow route route

—> Logout

Select
Travel-
companion

Fig. 5: Simulated user journey through the TUMLLCM platform. The business
process describes the booking of a transportation mean

uncovers there is no load balancing in place. The services and service instances
are correctly assigned to the hardware components.

In order to recover the relationships between the services, we produce traf-
fic on the platform by using JMeter®, which simulates user transactions based
on the given REST API endpoints documented by Swagger. After each end-
point was called MICROLYZE is able to reconstruct the dependency structure
among the microservice architecture. The adjacency matrix visualizes that ser-
vice S8 (travelcompanion-mobility-service) consumes data from service S4, S5
and S7, which is intended. The communication between S8 — S4 and S8 — S5
is asynchronously which is also correct. In addition, it is detected that service
S9 consumes data from every non-infrastructural service. Hence, MICROLYZE
successfully recognizes S9 as the gateway service.

As soon as step three of the discovery process is finished and the system has
collected enough transaction data, we start to enhance the technical transactions
with a business semantic. The user click journey, which we want to simulate,
is depicted in figure 5. Although this process is rather small it could grow to
hundreds of user clicks that had to be modelled in MICROLYZE. In order to
accelerate this step or even circumvent it, we could also apply a business process
mining approach and import the XML model into MICROLYZE. In the scope of
this work, we modeled the process manually. For simplicity, each business activity
ranks among the same business process ”Book Means of Transport”. In total, we
create one process containing eight activities (A1l — A8) as shown in the adjacency
matrix. Afterwards, we proceed with the mapping of each business activity to
a user transaction. Hereby, MICROLYZE supports this step by providing a
framework for regular expressions that describe a particular transaction. For
instance, the expression //0-9/+/book$ is mapped to the activity ”book route”.
In order to define the business instance for recovering the performed business
process, we apply the user session as our business case.

The matrix in figure 4 visualizes the final result. The execution of business
process P1 involves every service except the infrastructural services S3 and S6.
Each activity is processed by service S9, which provides further proof that S9
represents a gateway service. Moreover, it is clearly visible that for performing

S http://jmeter.apache.org/

MICROLYZE - Recovering service-oriented Software Architecture 11

activity A7 also service S7 is executed besides the mobility services S4, S5 and
S8. This is due to the communication dependency between service S8 and S7.
Hence, service S7 is indirectly involved with performing A7.

By hovering over a dependency field within the matrix, an information box
is activated and shows relation specific information. This information includes
all relation annotations, the caller and callee name, and the owner of this re-
quest. The owner indicates from which business activity this request derives.
This information is necessary in order to recognize which functional service is
primarily responsible for the particular business activity. Otherwise, this infor-
mation would get lost as soon as gateway services are applied. In case a service
is associated with a specific pattern, MICROLYZE adds this information to the
hover box as well.

5 Instrumentation Overhead

We investigate the extent of instrumentation overhead via a performance bench-
mark. We measure the time to complete each business activity for both the
instrumented and unmodified version of the software. Each activity executes
a transaction that is initially processed by the gateway service. The following
<business activity>:<service>pairs are involved:

— List Providers: Business service

Select Travelcompanion: Travelcompanion service
— Select Route: Map, DriveNow, DB service

Book route: Accounting service

This time measurement is performed on the user side, and thus includes the
communication overhead between the application and the client user. By mea-
suring on the client side, we achieve an end-to-end processing benchmark. We
repeated these measurements several times and calculated the average run-time
and associated a 95% confidence interval. The results are presented in figure 6.
We use JMeter to perform each request 5000 times involving database querying.
As figure 6 illustrates, the difference in performance is very small. On average,
the requests take 2ms longer to respond. Based on the observations presented
above, we conclude that the impact of the instrumentation is negligible.

6 Related Work

O’Brien et al. [25] provide a state-of-the-art report on several architecture recov-
ery techniques and tools. The presented approaches aim to reconstruct software
components and their interrelations by analyzing source code and by applying
data mining methods.

O’Brien and Stoermer [26] present the Architecture Reconstruction and MIN-
ing (ARMIN) tool for reconstructing deployment architectures from the source
code and documentation. The proposed reconstruction process consists of two

12 Martin Kleehaus, Omer Uludag, Patrick Schifer and Florian Matthes

Instrumentation Overhead

B oo RO ——
Search Routes |
B

List Bookings |
0 5 10 15 20 25 30 35 40 45 50

Instrumented Services m Unmodified Services

Fig. 6: Effect of instrumentation on the average time to complete — Average time
to complete (in milliseconds) [95% confidence interval]

steps: extracting source information and architectural view composition. In the
first step, a set of elements and relations is extracted from the system and loaded
into ARMIN. In the second step, views of the system architecture are generated
by abstracting the source information through aggregation and manipulation.
ARMIN differs from our approach, as it only extracts static information of the
system without considering dynamic information.

Cuadrado et al. [27] describe a case study of the evolution of an existing
legacy system towards a SOA. The proposed process comprises architecture re-
covery, evolution planning, and evolution execution activities. Similar to our
approach, the system architecture is recovered by extracting static and dynamic
information from system documentation, source code, and the profiling tool.
This approach, however, does not analyze communication dependencies between
services, which is an outstanding feature of our prototype.

Van Hoorn et al. [28][29] propose the java-based and open-source Kieker
framework for monitoring and analyzing the run-time behavior of concurrent or
distributed software systems. Focusing on application-level monitoring, Kieker’s
application areas include performance evaluation, self-adaptation control, and
software reverse engineering, to name a few. Similar to our approach, Kieker
is also based on the distributed tracing for uncovering dependencies between
microservices. Unlike us, Kieker does not process architectural changes in run-
time. Furthermore, it does not cover dependencies between the business and
application layer.

Haitzer and Zdun [30] present an approach for supporting semi-automated
abstraction of architectural models supported through a domain-specific lan-
guage. The proposed approach mainly focuses on architectural abstractions from
the source code in a changing environment while still supporting traceability. Ad-
ditionally, the approach allows software architects to compare different versions
of the generated UML model with each other. It bridges the gap between the
design and the implementation of a software system. In contrast, we propose an
approach for recovering microservices in order to overcome the documentation
and maintenance problem.

MICROLYZE - Recovering service-oriented Software Architecture 13

MicroART, an approach for recovering the architecture of microservice-based
systems is presented in [10][31]. The approach is based on Model-Driven Engi-
neering (MDE) principles and is composed of two main steps: recovering the
deployment architecture of the system and semi-automatically refining the ob-
tained system. The architecture recovery phase involves all activities necessary to
extract an architecture model of the microservices, by finding static and dynamic
information of microservices and their interrelations from the GitHub source
code repository, Docker container engine, Vagrant platform, and TcpDump mon-
itoring tool. The architecture refinement phase deals with semi-automatically
refining the initial architecture model by the architect. MicroART considers the
architecture model of the microservices without regarding the business layer,
which is a main feature in our approach. Furthermore, MicroART does not differ-
entiate types of microservices interrelations, like synchronous or asynchronous.
Moreover, it does not rebuild the architecture model as soon as architectural
changes emerge.

7 Conclusion

In this paper, we presented a novel approach to recovering the architecture from
microservice-based systems. The discovery solution is based on a layered struc-
ture proposed by recommended EA frameworks. MICROLYZE is capable of
recreating the dependencies between the business and application layer by pro-
viding a smart business-it mapper, and the hardware layer. The recovery process
itself is subdivided into six phases. In the first three phases, we combine the
monitoring data from a service discovery repository and a distributed tracing
solution in order to reconstruct the microservice architecture, the dependencies
between each service and the underlying hardware infrastructure. In the next
phases, we describe each technical request as a business activity and map these
activities to a business process. Hereby, MICROLYZE provides tool support
via a business process modeller and a business activity mapper that integrates
regular expression for describing the user requests recorded by the monitoring
probes. The concept and the tool have been successfully applied to the TUM-
LLCM microservice platform, which was able to recover the whole microservice
infrastructure without any error.

The proposed approach works well if two implementations are presented in
the regarded microservice architecture. First of all, each service has to be in-
strumented by an application performance monitoring solution that supports
distributed tracing and complies with the open tracing standard. Furthermore,
a service discovery service like Eureka or Consul has to be integrated. In case one
of those tools is not installed, MICROLYZFE will not become fully operational,
which presents our most significant limitation. Furthermore, a system with high
traffic volumes can produce large amounts of trace events. In most cases, it is
sufficient to only collect some of the events to recover the architecture, which
would improve the system performance.

14

Martin Kleehaus, Omer Uludag, Patrick Schifer and Florian Matthes

In our future work, we plan on storing each architecture change in order to

travel through the architecture evolution and on comparing the past and the
current status. This feature will uncover important insights about the emerging
behavior of microservice architectures, especially after new releases. It allows,
for example, the analysis of the as-is and the intended to-be status. Further-
more, we want to develop a failure impact visualization based on the discovered
architecture model, which covers the analysis of all EA abstraction layers.

References

10.

11.

12.

13.

14.

Fowler, M., Lewis, J.: Microservices. Technical report, ThoughtWorks (2014)
Alshugayran, N., Ali, N., Evans, R.: A systematic mapping study in microser-
vice architecture. In: Service-Oriented Computing and Applications (SOCA), 2016
IEEE 9th International Conference on, IEEE (2016) 44-51

Cockceroft, A.: Microservices workshop: Why, what, and how to get there (2016)
Evans: Domain-Driven Design: Tacking Complexity In the Heart of Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
Toffetti, G., Brunner, S., Bléchlinger, M., Dudouet, F., Edmonds, A.: An archi-
tecture for self-managing microservices. In: Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud. AIMC ’15, New York,
NY, USA, ACM (2015) 19-24

. Calado, P.: Building products at soundcloudpart iii: Microservices in scala and

finagle. Technical report, SoundCloud Limited (2014)

Kramer, S.: The biggest thing amazon got right: The platform. https://gigaom.
com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
(2011) Accessed: 2017-11-18.

Ihde, S.: From a monolith to microservices + rest: the evolution
of linkedin’s service architecture. http://www.infoq.com/presentations/
linkedin-microservices-urn (2015) Accessed: 2017-11-18.

Francesco, P., Malavolta, 1., Lago, P.: Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: International Conference
on Software Architecture (ICSA). (2017)

Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, 1., Iovino, L., Di Salle,
A.: Microart: A software architecture recovery tool for maintaining microservice-
based systems. In: IEEE International Conference on Software Architecture
(ICSA). (2017)

Aalst, W.M.P.v.d., Desel, J., Oberweis, A., eds.: Business Process Management,
Models, Techniques, and Empirical Studies. Springer-Verlag, London, UK, UK
(2000)

Rabl, T., Gémez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. CoRR abs/1208.4167 (2012)

Josephsen, D.: Building a Monitoring Infrastructure with Nagios. Prentice Hall
PTR, Upper Saddle River, NJ, USA (2007)

Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology: Advances in Database Technology. EDBT ’98, London, UK, UK,
Springer-Verlag (1998) 469-483

15.
16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

MICROLYZE - Recovering service-oriented Software Architecture 15

Netflix: Eureka. https://github.com/Netflix/eureka Accessed: 2017-10-18.
Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microser-
vices. CoRR abs/1609.05830 (2016)

Briickmann, T., Gruhn, V., Pfeiffer, M.: Towards real-time monitoring and con-
trolling of enterprise architectures using business software control centers. In:
Proceedings of the 5th European Conference on Software Architecture. ECSA’11,
Berlin, Heidelberg, Springer-Verlag (2011) 287-294

Group, T.0.: ArchiMate 3.0 Specification. Van Haren Publishing (2016)
Zachman, J.A.: A framework for information systems architecture. IBM Systems
Journal 26(3) (1987) 276-292

Haren, V.: TOGAF Version 9.1. 10th edn. Van Haren Publishing (2011)

van der Aalst, W.M.P.: Extracting event data from databases to unleash process
mining. In: BPM. Springer (2015) 105-128

Newman, S.: Building Microservices. 1st edn. O’Reilly Media, Inc. (2015)
Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow. CoRR
abs/1606.04036 (2016)

Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google, Inc. (2010)

O’Brien, L., Stoermer, C., Verhoef, C.: Software architecture reconstruction: Prac-
tice needs and current approaches. Technical Report CMU/SEI-2002-TR-024, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2002)
O’Brien, L., Stoermer, C.: Architecture reconstruction case study. Technical
Report CMU/SEI-2003-TN-008, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA (2003)

Cuadrado, F., Garcia, B., Duenas, J.C., Parada, H.A.: A case study on soft-
ware evolution towards service-oriented architecture. In: Advanced Information
Networking and Applications-Workshops, 2008. AINAW 2008. 22nd International
Conference on, IEEE (2008) 1399-1404

van Hoorn, A., Rohr, M., Hasselbring, W., Waller, J., Ehlers, J., Frey, S., Kiesel-
horst, D.: Continuous monitoring of software services: Design and application of
the kieker framework. (2009)

van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework for application
performance monitoring and dynamic software analysis. In: Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering. ICPE ’12,
New York, NY, USA, ACM (2012) 247248

Haitzer, T., Zdun, U.: Dsl-based support for semi-automated architectural com-
ponent model abstraction throughout the software lifecycle. In: Proceedings of the
8th international ACM SIGSOFT conference on Quality of Software Architectures,
ACM (2012) 61-70

Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino, L., Di Salle,
A.: Towards recovering the software architecture of microservice-based systems. In:
Software Architecture Workshops (ICSAW), 2017 IEEE International Conference
on, IEEE (2017) 46-53

