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Abstract

A gateway from DBPL (being a superset of Modula-2) to the commercial Ingres
is described. DBPL extends Modula-2 in several ways, in particular, it introduces a
new bulk and persistent data type “relation”, and high-level relational expressions
(queries) based on the predicate calculus. The gateway enables the user to write
normal DBPL programs addressing Ingres databases. In contrast to typical imple-
mentations that embed SQL statements into a programming language, the interface
becomes fully transparent to DBPL programmers: they need not to be familiar with
SQL and Ingres. In this way the impedance mismatch problem is avoided. DBPL
queries and other statements referring to Ingres tables are automatically converted
into corresponding SQL statements, and the output from Ingres automatically be-
comes the property of the DBPL program. The gateway supports queries that refer
both, Ingres and DBPL relations. This paper presents design assumptions of the
gateway and implementation methods. In addition, we discuss design and imple-
mentation difficulties.

1 Introduction

This paper presents motivations, design assumptions and implementation methods of the
gateway from the database programming language DBPL [ScMa92, MRSS92] to the com-
mercial database management system Ingres [IngrA89, IngrB89].

The coupling of programming languages with relational database systems is usually
based on embedding a query language into a programming language. The border distin-
guishing querying and programming languages has become, however, more and more fuzzy.
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Many functionalities typical for programming languages and programming environments
have been fixed in the SQL standard as capabilities of the “query language”. Besides the
infamous impedance mismatch, this approach involved another disadvantage (less discussed
in the literature) known as bottom-up evolution, i.e. extending incrementally and ad hoc
the functionalities of query languages. In the result many positive features that were the
motivation of the initial development are lost. This concerns mainly SQL which evolved in
the direction of programming languages (which is especially striking in the Oracle PL/SQL
[Orac91]).

Initial trends in the development of query languages were different from that of program-
ming languages. A basic assumption was simplicity and naturalness of the whole query
interface, called user-friendliness. The positive aspects of user-friendliness include data
independence, declarativity, simplification of notions concerning data views, macroscopic
operations allowing the user to determine extensive computations in a compact form, and a
syntax similar to a natural language. However, user-friendliness also means the restriction
of the language‘s functionality and power, as well as non-orthogonality of the language’s
constructs (e.g.due to syntax). Real applications may consist of a large number of queries
and other constructs, thus other aspects of user-friendliness are of vital importance, such as
preventing the user from his/her own errors, computational completeness, and supporting
various programming abstractions.

In comparison to query languages, Database Programming Languages (DBPL-s) have
the following positive features: strong and static type checking (what gives the possibility
to remove many errors before a program is executed), syntactic and semantic orthogonality
(what reduces the number of necessary primitives in the language, as well as the size of
manuals), full computational and pragmatic universality with respect to the processing
of all data types, clean semantics, and the support for various programming abstractions
(modules, procedures, functions, etc.)

DBPL-s adopt the concept of a query language as a powerful construct of a program-
ming language. This is the case in DBPL [ScMa92, MRSS92|, which extends Modula-2
in several directions. In particular, it introduces persistence, bulk data (relations) and
high-level relational expressions (equivalent to queries), which make possible an associa-
tive access to relations.

Despite various advantages of DBPL, we are aware that it has little chance of success
in the commercial world. There are several reasons for this. As observed in [Banc92],
products of research activity suffer from the “new programming language syndrome”: very
few organizations are ready to adopt a new programming language or a new system. DBPL
is a new product working with its own database format. Clients of database systems usually
prefer the long existence of the databases, since investment in gathering data, writing
programs, education of staff, organization of technological routines of data processing,
etc. is high. DBPL was produced at a university as a scientific project and no company
is willing to support it long term. In general, commercial systems are equipped with a
large family of useful and necessary utilities which have no special scientific interest, thus
they are not implemented in the DBPL environment. We do not expect, therefore, that
potential clients of database systems will decide to use DBPL as the only tool for the full



development of database applications.

University software, such as DBPL, can be available in the commercial world as a sup-
plement to popular systems. Many professionals who are dissatisfied with the capabilities
and programming style offered by languages such as embedded SQL are potential DBPL
clients. This is an important reason for creating a gateway from DBPL to commercial
systems. Furthermore, the implementation of the gateway will give the DBPL community
- students and researchers - the opportunity to access large commercial database systems
and thereby use, within the DBPL programming environment, their various capabilities.

Below we describe five possible approaches in making a gateway; there are, however,
strong arguments against the first four listed here.

1. A precompiler for SQL embedded in DBPL
This approach is typical and the easiest to implement. However, almost all advan-
tages of DBPL, such as strong typing, style of programming, abstraction capabilities,
avoidance of the impedance mismatch, etc. would be lost.

2. Packages of procedures calling Ingres routines
The procedures will allow full access to Ingres databases through dynamic SQL. This
approach shares the disadvantages of the previous approach. Both approaches would
mix two very different languages, thus the impedance mismatch problem cannot be
avoided.

3. Package of procedures on the level of Ingres files
The procedures organize the access to Ingres database files without an intermediate
language. The main disadvantages of this approach are that the SQL optimizer, con-
currency mechanisms of Ingres, indices, catalogs, etc. will not be used. Additionally,
implementors must deal with the physical organization of Ingres databases which is
probably not easy and not well specified.

4. A gateway from DBPL to Ingres on the level of Ingres files

In contrast to the previous approaches an Ingres database is not seen as a specific
object served by special procedures but as a normal DBPL database. As a result a
1:1 mapping between Ingres and DBPL data is stored and used during the access.
As in approach 3 above, the disadvantage of this approach is that the SQL optimizer
and Ingres concurrency control, etc. will not be used. These last two options may
imply difficulties in achieving concurrency with other Ingres applications acting on
the same database.

5. Interface from the DBPL run-time system to the Ingres SQL machine
All references from DBPL programs to Ingres databases are transformed into dynamic
SQL statements during run-time. This permits use of the SQL optimizer and all
capabilities of Ingres that are “below” the SQL machine (concurrency, indices, views,
Ingres/Star, gateways, etc.).



In this project we implemented the fifth approach. The interface is fully transparent
to DBPL programmers: knowledge of SQL and Ingres is not necessary. DBPL state-
ments referring to Ingres databases are automatically converted into corresponding SQL
statements. The output from Ingres automatically becomes the property of the DBPL
program. This approach does not support the opinion that SQL should be the “intergalac-
tic language” [SRLG490] for the next database era. We do not believe that SQL, as a
programming language, presents the maturity that should be continued (despite fixing it
in huge standards).

The paper is organized as follows. In Section 2 we present briefly similarities and differ-
ences between DBPL and Ingres SQL. In Section 3 we discuss possible methods of mapping
DBPL constructs into SQL statements and present the methods chosen. In Section 4 the
conversion of low-level features of DBPL into dynamic embedded SQL is described. In
Section 5 we present architectural assumptions of the gateway in connection with the ar-
chitecture of DBPL. In Section 6 implementation difficulties and open or unsolved problems
are discussed.

2 Similarities and Differences of DBPL and Ingres
SQL

2.1 Data Structures

The differences in data structures supported by Ingres and DBPL are as follows:

1. DBPL permits the full orthogonality of type constructors which results in the possi-
bility of defining nested relational structures. Ingres allows flat relations only.

2. Primary keys of relations in DBPL are an important conceptual issue. This deter-
mines the semantics of some operators. In Ingres primary keys are declared and
internally used, but information about primary keys is irrelevant for querying and
programming.

3. Atomic data types in DBPL and Ingres are slightly different: DBPL uses a machine-
independent convention for naming and understanding types (cardinal, integer, char,
...), while Ingres uses another convention with roots in traditional data processing.
The following table presents atomic data types supported by Ingres and shows pos-
sible DBPL equivalents. Variable-length data types have no equivalents in DBPL;
they can be represented by long fixed-length strings.



H Ingres type ‘ Format and size ‘ Assumed DBPL type Comments H
char(1)- fix-length char string | ARRAY[..] OF CHAR
char(2000)
cl - c2000 fix-length printable ARRAY][..] OF CHAR

char strings

varchar(1)- var-length char string can be mapped
varchar(2000) to fixed-length
text(1)- another var format arrays
text(2000)
integerl 1-byte integer CHAR
integer2 2-byte integer INTEGER
integerd 4-byte integer LONGINT
float4 4-byte floating REAL
float8 8-byte floating LONGREAL
date 12-byte date ARRAY([0..11] OF CHAR | require special
money 8-byte money value ARRAYJ0..7] OF CHAR | functions
table-key 8 bytes ARRAY[0..7] OF CHAR
object-key 16 bytes ARRAY[0..15] OF CHAR

4. Ingres deals with null-values through special features, while DBPL does not introduce
this concept at all.

5. DBPL does not allow duplicate tuples either in stored relations or in intermediate
query outputs. Since these Ingres
capabilities cannot be utilized in DBPL, the programming of some tasks in DBPL

Ingres allows duplicate tuples in both cases.

may prove impossible and, in addition, will be inconvenient for those users familiar

with SQL.

2.2 Levels of Database Interfaces

Both Ingres SQL and DBPL make the distinction between querying a database and pro-
cessing a database. The consequences of this distinction are different for DBPL and Ingres
SQL.

Formerly, SQL was designed for simple retrieval only. Later extensions involved some
programming capabilities, that is, inserting, deleting and updating. The assumption con-
cerning semantic domains of relational query languages (so-called “value-orientation”)
makes it difficult to express updating operations through queries. In SQL updating can be
accomplished by the highly-specialized “update” construct or by a more powerful method
employing cursors. Programming difficulties result from the impossibility of storing the
value of a cursor (i.e. a pointer to a tuple) in a separate variable, and vice-versa. This
approach to cursors is inconsistent w.r.t. some updates, e.g. updating a tuple during a
cursor loop may cause the loop to process this tuple twice. Some semantic effects are



surprising for the programmer, e.g. the opening of a cursor for a query, which returns an
empty result, causes a run-time error.

In DBPL the main reason for the distinction between queries and other constructs
of the language is query optimization. DBPL is based on the assumption that queries
problematic for query optimizers should be forbidden syntactically. As a consequence,
functional symbols and operators are not allowed within DBPL predicates. This restriction
results in a potential for good performance, however, it violates the orthogonality principle.
For example, “Get employees having tax less than 3007, where tax is given by a function
of the salary, cannot be expressed as

EACH X IN EMPLOYEES: tax( X.SALARY ) < 300

The user must change her/his way of thinking, for example, s/he can reformulate this
query using the procedural construct:

FOR EACH X IN EMPLOYEE: TRUE DO
IF tax(X.SALARY) < 300 THEN
some processing of X
END;
END;

The distinction between querying and processing a database in SQL and DBPL cor-
responds to the distinction between high-level and low-level programming. High-level
programming assumes the “many-data-at-a-time” principle, while low-level works “one-
datum-at-a-time”, as found in classical programming languages. DBPL integrates both
levels while SQL deals with the high level only: the low level is delegated to the host lan-
guage. In DBPL and SQL these levels do not match each other: some high-level constructs
of DBPL cannot be expressed by constructs of SQL and vice versa. Mapping low-level con-
structs of DBPL into high-level constructs of SQL causes difficulties in establishing general
rules. This means that an interface connecting DBPL and SQL cannot utilize the full power
of these systems. For example, it is impossible to express in SQL such DBPL queries that
address nested relations. On the other hand, it is practically impossible to utilize such
SQL capabilities as arithmetic operators, aggregate functions, grouping, etc.in DBPL.

2.3 High-level Constructs of DBPL

By high level constructs we denote such programming capabilities which support data
independence and follow the “many-data-at-a-time” principle. We list all high-level con-
structs of DBPL that may concern Ingres databases with short comments concerning their
semantics and possible equivalents in SQL. All examples refer to the classical supplier-part
database presented in the Appendix.

The following high-level constructs are introduced in DBPL:

1. Selective access expressions, for example:



EACH X IN supp: X.city = "London"
EACH X IN supp: SOME Y IN sp (X.sno = Y.sno)
Selective access expressions can be used inside the FOR iterator; in this case the

range variable has the status of an updatable programming variable. Selective access
expressions have a direct counterpart in SQL.

. Quantified boolean expressions, for example:
ALL X IN part ( SOME Y IN sp (X.pno = Y.pno))

Quantifiers have several counterparts in SQL; we will discuss them later.

3. Constructive access expressions, for example:

{X, Y} OF EACH X IN supp, EACH Y IN sp:
(X.sno = Y.sno) AND (Y.gty > 200)

{X.sname,Y.pno} OF EACH X IN supp, EACH Y IN sp:
(X.sno = Y.sno) AND (Y.qty > 200)

They have a direct counterpart in SQL.

. Aggregate expressions used to construct tuple and relation values, for example:

partRel{ { "P7", "bolt", "green", 65, "London"},
{ ”P8”, ”Il'llt”, "red", 11’ "Rome" } }

partRel{}

They have no counterpart in SQL.

. Relation expression for materializing the relations described by access expressions,
for example:

JoinRelType{ {X.sname,Y.pname} OF EACH X IN supp, EACH Y IN part:
SOME Z IN sp(
(X.sno = Z.sno) AND (Y.pno = Z.pno) AND (Z.gqty > 200))}

Relational expressions can be used in all contexts allowed for stored relations, i.e.
they follow the orthogonality principle. SQL does not allow expressions as range
relations under a from clause.

. Union operator, for example:



suppRel{ EACH X IN supp: X.city = "London",
EACH Y IN supp: Y.status > 10,
{ "s8", "Miller", 20, "Paris"} t

Ingres SQL also supports union, but only on the top nesting level.

7. Relational operators =, #, <, <=, >, >= denoting relation equality, non-equality
and set-theoretic inclusions, for example:

suppRel{EACH Y IN supp: Y.status > 30} <=
suppRel{EACH X IN supp: X.city = "London"}

SQL does not support these comparisons.

8. Assignments on relations realizing all updates: := (assign), : — (delete), : + (insert),
and :& (update), for example:

mysupp := suppRel{ EACH Y IN supp: Y.status > 20 };

supp  :- suppRel{ "Si", "" 0, "" }; (* Delete *)
supp  :+ suppRel{ "S1", "Schmidt", 25, "Berlin"}; (* Insert *)
supp  :& suppRel{ "S1i", "Schmidt", 30, "Berlin" } (* Update *)

All operators follow the “many-data-at-a-time” principle. They can be implemented
in Ingres by two methods: by using high-level “update”, “insert”, “delete” statements
of SQL, or by fetching required tuples from Ingres tables to DBPL buffer, doing the
required operations and shipping them back to Ingres.

9. Standard DBPL functions: CARD (the number of relation elements), EXCL (exclude
a tuple), INCL (include a tuple). CARD has a direct counterpart in SQL. Semantics
of EXCL and INCL is based on primary keys, which presents a problem; we will
return to it later.

2.4 High-level Abstractions of DBPL and SQL

SQL views are special objects with independent existence in the Ingres database. They can
be dynamically created and deleted. In DBPL similar notions are called “constructors”
and “selectors” [ERMS91]. They are not, however, properties of the database but rather
properties of the source text of programs. They are first-class objects and may exist in the
database as values of variables, but only when proper assignments are executed in the user
program.

The capabilities of either selectors and constructors are different from SQL views. Se-
lectors can be considered as updatable views and may have parameters, thus they have
no equivalent in Ingres. Constructors are closer to the traditional view concept but they
extend it in two ways: they can be recursive (with a stratified fixed-point semantics) and



may have parameters. On the other side, some capabilites embedded in the SQL select
block (e.g. arithmetic and aggregate operators), which is used to create views, cannot be
expressed in DBPL selectors and constructors.

Thus selectors and constructors have a common conceptual intersection with Ingres
views but in general they are different objects. Since the mapping of selectors and con-
structors into views implies problems, we have chosen to construct the gateway between
DBPL and Ingres on architectural levels that are below these abstractions.

Ingres database procedures, integrities and access permissions are not considered in the
first stage of this project (and in this paper) since DBPL has no equivalent notions.

2.5 Null-values

Null-values are not implemented in DBPL. In Ingres SQL null-values are associated with
special facilities (a comparison operator is [not]/ null and indicator variables in embedded
SQL) and with a special treatment in aggregate functions. We partly agree with the
criticism of the null-value concept, see e.g. [Date87]. Null values are captured in DBPL
by variant records. However, there is no simple systematic mapping from existing SQL
databases to semantically equivalent DBPL type definitions.

2.6 Concurrency Control

Both DBPL and Ingres are multi-user database systems and employ their own methods
for dealing with transactions, locks, deadlocks, logs, etc. There is no danger of improper
interference of these mechanisms since from the point of view of Ingres, a DBPL application
is one of its clients. Since an Ingres application cannot be a client of DBPL, undetected
deadlocks cannot occur. Some problems may be connected with transaction processing
and recovery. Inside a DBPL transaction it is necessary to initialize an Ingres transaction.
This leads to nested transactions and two commits, one inside Ingres and the second inside
DBPL. Again, this problem seems to be minor since the time period between commits is
short (thus the probability of a crash between commits is low), and since we do not expect
that DBPL databases will be large this decreases the danger of fatal crashes.

2.7 Dynamic SQL and Data Interchange Between SQL and
DBPL

Dynamic SQL is an extension of the capabilities in embedded SQL allowing the user to
write generic programs. In dynamic SQL, statements are strings of characters which can
be manipulated during run-time while in normal embedded SQL statements are pieces of
the source program. (Their form is, therefore, fixed before compilation.) Since the gateway
from DBPL to Ingres must be generic (i.e. must work for all types of relations and for any
DBPL high-level expressions), we are forced to use dynamic SQL.

SQL uses two methods for data communication. In the first method, the programmer
explicitly declares host variables for the attributes s/he wants to process. This method



is inapplicable in our case since in the generic and transparent interface it is impossible
to predict the number and types of host variables. We must apply another method im-
plemented in dynamic SQL. It introduces the so-called SQL Description Area (SQLDA),
which allows communication through pointers. SQLDA is a dynamically created data
structure essentially consisting of the following information:

sqln Integer indicating the size of allocated table sqlvar

sqld Integer indicating the number of columns in the result table
Usually sqld should be equal or smaller than sqln

sqlvar An sqln-size array of records:

sqltype  Integer indicating the type of the attribute
sqllen Integer indicating the length of the attribute
sqldata  Pointer to the attribute value

sqlind Pointer to a variable storing information about null-values
sqlname String denoting the attribute name

sqltype

sqllen

sqldata

sqlind
sqlname

The sgldata pointers are counterparts of the host variables in embedded SQL. They
should be filled in by an application program, and point to values, which are stored else-
where. They have two kinds of applications. In the first case (used by select statements)
they determine places, where the attributes of a retrieved tuple will be written. In the
second case, they determine actual parameters of an SQL statement. This technique as-
sumes application of statements containing question marks as “formal parameters”. E.g.,
for inserting a tuple in an Ingres table we must prepare the statement:

INSERT INTO relation name ( list of attributes ) VALUES ( ?, ?2,..,7 )

The number of question marks should be equal to the number of attributes. For example,
insertion into the supp relation requires preparing the statement

INSERT INTO supp ( sno, sname, status, city ) VALUES ( 7, 7, 7, 7 )

In this case the s¢ldata pointers point values, which will be substituted fot the question
marks when the statement is executed. In many cases, this technique is inconvenient; some
problems with it are presented later.

2.8 Low-level DBPL Capabilities

The low-level caoabilities of DBPL include the standard procedures LOWEST, HIGHEST,
THIS, NEXT and PRIOR. They enable processing of DBPL relations in a tuple-by-tuple
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fashion. The programmer can use them to find tuples having the lowest respectively highest
primary keys in the given relation. Given the primary keys of a tuple the programmer can
find thes, next, and prior tuples. Proponents of novel approaches to database programming
neglect these operators, considering them to be too implementation-oriented. Some tasks,
however, cannot be programmed without them, for example, merging of relations, or build-
ing a browsing utility (allowing the user to look over the relation through a window by
moving forward and backward). SQL gives no equivalents of these operators thus we have
so far no idea how to implement them. This concerns in particular the PRIOR operator.

3 Mapping DBPL Constructs into SQL

3.1 TUnproblematic Cases

e DBPL expressions without quantifiers ALL and SOME.
Consider the following DBPL expressions:

EACH X IN Rel: p(X)

{ projection list } OF EACH X; IN Rely,..., EACH X, IN Rel,: p(Xi,...,X,)
If the predicate p does not contain any quantifiers and all comparisons in p are
available in SQL, then these expressions are (respectively) equivalent to the follow-
ing SQL queries:

select X.* from Rel X where p(X)

select projection list from Rel; X;, ... , Rel, X,
where p(Xy,...,X,)

e Changing DBPL predicates returning boolean values.
Since SQL has no semantic domain with boolean values, a DBPL predicate p can be
converted into the following SQL statement:

select * from AuxRel where p
where AuxRel is the name of an auxiliary Ingres table containing exactly one tu-
ple. We need only a simple procedure returning TRUE if the select statement will
return a non-empty result, and FALSE otherwise. Below we give an example of this

conversion. The DBPL predicate (“Do all suppliers have a status higher than 107”)

ALL X IN supp ( X.status > 10 )
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is converted to the following SQL query:

select * from AuxRel
where not exists ( select * from supp X1
where not( X1.status > 10 ) )

e DBPL expressions with quantifier SOME in the prenex form. If a DBPL expression
contains only existential quantifiers in the prenex form, the conversion is also simple:
the DBPL expression

{ projection list } OF EACH X; IN Rely,...,EACH X, IN Rel,:
SOME Y, in Relnyi,...,SOME Y, in Reluyn. ( p )

where p contains no quantifiers, can be directly mapped to the following SQL query:

select projection list
from Rel; X;, ... , Rel, X,, Rel,41 Y;, ..., Rel 1y Y
where p

The above cases show also how we map DBPL projection lists into SQL equivalents. There
are no changes, since syntax in both cases is the same.

3.2 Predicates with Universal Quantifiers

SQL supports several methods for expressing queries which require the use of universal
quantifiers when formulated in other languages [Frat91]. These are the following:

e Through quantified comparisons

By a quantified comparison we denote a normal comparison followed by the key
words “all” or “any”, for example, “=all”, “<any”, “>=all”, etc. The syntactic
rule and semantics of these operators are the following. Let v be a value (or an
attribute) and X be a set of values. Syntactically, only predicates (v 6 any X) and
(v 0 all X) are allowed, where 6 is a normal comparison. The meaning of the first
predicate is 3z € X (26v), and the meaning of the second is V& € X (zfv). A simple
example shows that quantified comparisons are not as powerful as quantified formulas.
Consider Vo € N(z > 2V x < 3). Obviously, the predicate is true. Now observe that
both predicates Vo € N(z > 2) and Vo € N(x < 3) are false. Hence decomposition
of the former predicate into quantified comparisons does not work. Because of the
lack of universality of quantified comparisons the automatic conversion of DBPL’s
universal quantifiers is problematic, because DBPL uses them without restrictions.

e Through function “count”
The predicate ALL X IN R (p(X)) can be expressed in embedded SQL as
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(select count(*) from R X where not ( p( X ))) =0

(This is not a correct SQL statement, but such a query can be easily expressed in
embedded SQL.) Since function “count” requires materialization of its argument, this
method may lead to performance problems.

e Through operator “exists”
The predicate ALL X IN R (p(X)) can be expressed in SQL as

not exists ( select * from R X where not p( X ) )

The method seems to be the most promising because of its universality and potential
for optimization; thus it is used in the implementation.

Existential quantifiers are also implemented through the operator “exists”. Below we
give an example of the conversion. The DBPL expression (“Suppliers supplying all parts”)

EACH X IN supp: ALL Y IN part ( SOME Z IN sp (
(X.sno = Z.sno) AND (Y.pno = Z.pno) ) )

is converted into the following SQL query:

select * from supp X1
where not exists (
select * from part X2
where not exists (
select * from sp X3
X3.sno
X3.pno ) )

where X1.sno

and X2.pno

3.3 Escape Methods

Since in some cases there is no convenient solution for converting DBPL constructs into
SQL, we need escape methods. Although being not very efficient, they allow the completion
of computations. We note the following methods:

1. Copying DBPL relation(s) to the Ingres side. It is likely that DBPL relations will be
used as auxiliary objects, thus we can expect they will not be too large. By copying
them to the Ingres side we give more freedom to the SQL optimizer, thus allowing
better performance. Once copied, the resulting expression will contain no reference
to DBPL relations. At the end of a transaction the relations should be copied back to
DBPL. This action can be optimized: only relations that have been updated needed
to be copied back; others may be destroyed on the Ingres side.

13



2. Copying Ingres table(s) to the DBPL side. During the processing of Ingres tables
copies on the DBPL side access to the original Ingres tables should be forbidden for
other Ingres transactions. After processing, the tables are copied back from DBPL
to Ingres (again with the possibility of optimization). However, we may expect that
Ingres tables will be rather large, thus this method may lead to low performance.

3. Tuple substitution according to Ingres or DBPL relation(s). This method assumes
that Ingres or DBPL relation(s) will be processed tuple-by-tuple, thus there will be
no references to them inside a DBPL predicate. The method, although well-known,
implies implementation problems, and still, there is no evidence that it will yield
good performance.

3.4 DBPL Expressions Mixing DBPL and Ingres Relations

Two kinds of mixing can be distinguished. In the first case, a DBPL statement contains
sub-statements independent of external variables. As an example, consider the expression

EACH X IN supp: SOME Y IN sp ( Y.pno = "P1" )

Assume that supp is an Ingres table and sp is a DBPL relation. Since the internal sub-
predicate does not reference the external variable X, we can evaluate it on the side of
DBPL, and then generate a proper SQL statement. This method is applied in the imple-
mentation: using a procedure that recursively scans a predicate tree, discovers independent
subpredicates, evaluates them, and then modifies the tree by reducing it and inserting the
calculated truth values resp. temporary relations.

In other cases mixing requires escape methods. For example, for the following DBPL
expression

EACH X IN supp: SOME Y IN sp ( (X.sno = Y.sno) AND (Y.pno = "P1i") )

there is no possibility to separate calculations. In such a case the DBPL relations partici-
pating in the expression are copied to the Ingres database. This method cannot be applied
to nested relations. In order to avoid copying full Ingres relations to the DBPL side a
more efficient method can be applied. It assumes, that only tuples which are necessary to
evaluate the DBPL expressions, are copied from Ingres databases. The problem is similar
to the query processing in distributed databases, and some known methods (e.g. employ-
ing the semi-join concept) can be applied. This method is not general, since it requires
some “monotonicity” or “additivity” of DBPL expressions (i.e. a larger argument table
implies that the result of an expression is not smaller). This property does not hold e.g.
for expressions containing universal quantifiers.

3.5 Predicates with a Range Relation Given by a Subpredicate

SQL does not allow select blocks in the from clause, thus direct mapping of predicates with
range subpredicates (range relations described by relation expressions) is impossible. We
can use several methods:
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1. Unnesting: transformation of a SQL query with a select block nested under from
clause into an equivalent statement without such a nesting. Although there are simple
examples when such a method can be applied, there are difficulties in establishing
general rules.

2. Creating a temporary range relation on the Ingres side.
3. Creating a temporary range relation on the DBPL side.

4. Creating a view on the Ingres side.

The last method seems to be the most promising, since it leaves freedom for the standard
SQL optimizer. However, because of additional operations on data dictionaries, creating,
using and deleting the view may be more expensive than materializing the range relation
. In the first stage of the project we implemented temporary range relations on the Ingres
side. All presented methods will not work if the expression determining the range relation
is parameterized by an external variable. In this case shipping tuples of participating
relations from Ingres to the DBPL side seems to be the only method.

4 Conversion of DBPL Capabilities into Dynamic
SQL

4.1 Implementation of the FOR EACH Construct

The FOR EACH construct of DBPL leads to one of the most difficult implementation
problems. The semantics of the construct

FOR EACH wvariable IN relation : predicate DO
sequence of statements
END

can be explained as follows. The sequence of statements is executed for each tuple in
relation, for which predicate is true. The sequence of statements may contain arbitrary
DBPL statements, in particular other “FOR EACH” statements. The variable inside the
sequence of statements is considered as a normal programming variable. In particular, all
updates of the relation can be done by this variable. The updating semantics is, however,
not straightforward: the variable contains a main memory copy of the processed tuple and
all updates modity the copy only. At the end of each loop the original tuple in the relation
is modified according to the values of this eventually modified copy.

An example of the FOR EACH construct:

FOR EACH X IN supp : X.city = "London" DO
X.status := X.status + 10;
FOR EACH Y IN sp : X.sno = Y.sno DO
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WriteString(X.sname); WriteString(Y.pno); WriteInt(Y.qty);
Writeln;
END;

END;

The above semantics has a direct counterpart in SQL relying on the application of cursors.

Dynamic SQL assumes that the buffer for fetching/flushing a tuple is organized through
SQLDA areas. Since DBPL allows nested FOR EACH and other constructs refering to
database relations, SQLDA areas must be managed by a stack. The same is true for names

of cursors and names of SQL. PREPARFE statements.

The dynamic SQL version is neither clear nor well specified in SQL manuals. We also

discovered a few bugs. Thus the final solution is the result of a frustrating sequence of
experiments rather than careful reading of manuals. To serve the FOR EACH construct

we need the following steps:

1.

Generate a SQL query from the argument of the FOR EACH statement. The state-
ment presented above will produce the query

select X1.* from supp X1 where Xl.city = "London"

Execute PREPARFE and DESCRIBE SQL commands with the argument being the
query generated in the previous step. This step is necessary to obtain attribute names
of the relation.

Generate an extended SQL query
<previous query> FOR DIRECT UPDATE OF <list of all attributes>
The statement presented above will produce the query

select X1.* from supp X1 where X1.city = "London"
FOR DIRECT UPDATE OF sno, sname, status, city

Generate a new statement name and push it on the stack.
Create a new SQLDA and push it on the stack.

Execute PREPARF and DESCRIBE SQL statements for the given extended query,
statement name and SQLDA.

Generate a new cursor name and push it on the stack.
Declare the cursor.

Open the cursor. This is the preparation step for fetching tuples from the Ingres
relation.
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10. Extract the relation name from the query.

11. Generate the SQL update statement

UPDATE relation name SET attribute; = 7,..., attribute, = 7
WHERE CURRENT OF cursor name

For the example above we generate the statement

UPDATE supp SET sno = ?, sname = 7, status = 7, city = 7
WHERE CURRENT OF dbcurs;

12. Generate a new statement name and push it on the stack.

13. Execute the SQL PREPARE statement w.r.t. the generated UPDATE statement

and the new statement name.

Now, on the top of the stack we have two statements, one cursor and one SQLDA. Fetching
tuples requires the SQL FETCH command (with the cursor addressing the first statement),
while flushing the tuple requires the SQL. FXECUTE command addressing the second
statement.

The above procedure is complicated, although the task is typical. In our opinion, design
solutions concerning cursor processing in embedded SQL were burdened by attempts to
hide the fact that cursors are pointer-valued variables. In effect, this programming interface
is hard to accept.

4.2 Implementation of High-level Relational Assignments

For each of the four kinds of high-level relational assignments in DBPL (assign, insert,
update, delete) we must consider four cases:

1. On the left hand side of assignment there is a DBPL relation, and on the right
hand side is an expressions refering to DBPL relations only. This case is already
implemented in DBPL.

2. On the left hand side of the assignment there is a DBPL relation, and the right hand
side expressions refers to Ingres relations. This case, dependingly on the kind of
assignment and the kind of expression, is implemented by two methods: (1) creating a
temporary relation from the expression and applying the previous case; (2) generating
SQL statement from the expression and then making the proper operations on the
right hand side relation on-the-fly.

3. On the left hand side of assignment there is an Ingres relation, and the right hand
side refers to DBPL relations only. In this case an intermediate relation is created
inside DBPL, then proper actions are done on the external relation.
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4. On the left hand side there is an Ingres relation, and the predicate on the right hand
side refers to Ingres relations only. In principle all processing can be done on the side
of Ingres through a sequence of SQL statements. However, SQL updating operations
are not sufficiently powerful. Thus we decided to make some operations on the DBPL
side. For the delete operator we recognize the case when the left hand side relation
is also referenced on the right hand side and for this case we generate a normal SQL
delete statement. For other cases we create a temporary table from the expression
on the DBPL side and then apply the second case.

The delete operator of DBPL presents an example of problems that appear in SQL.
In DBPL semantics of the operator is based on primary keys. The construct Ry : — Ry
means removing from R, all those tuples whose primary keys are the same as for one of
the Ry tuples; values of other attributes of R, are not taken into account. Assume R; is
an Ingres relation and Ry is a DBPL relation. The SQL method of passing parameters
to statements through question marks requires filling in values of all attributes. But, as
follows from DBPL semantics, some of attributes of Ry tuples may be meaningless, thus
we must somehow ignore them. The solution that we have found is tricky. We generate
the SQL statement

DELETE FROM R; WHERE p; AND p; AND ... AND p,

where n is the number of attributes. Predicate p; has the form
attribute, = 7

for key attributes, and the form
(=1 OR attribute;= ? )

for non-key attributes. For example, for the DBPL statement

S'llPP .- suppRel{ {"Sl","",O,""}, {ns2||’||||’o’||||} }’
we generate the SQL dynamic statement

DELETE FROM supp WHERE sno = 7
AND (1=1 OR sname = 7) AND (1=1 OR status = ?) AND (1=1 OR city = 7)

This statement is executed for each tuple of the right hand side relation.
We think that a programming language that requires such tricks cannot be appreciated
either from technical and scientific points of view.

4.3 Relational Comparisons

Since DBPL does not allow duplicate tuples, all comparisons can be performed by one
operator contains (denoted >=). Equality and strong comparisons are obtained by com-
parison of the numbers of tuples and contains. Semantics of relational comparisons in
DBPL assumes that only primary keys are taken into account. That is, the DBPL predi-
cate Ry >= Ry means
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Wprimarykeys( Rl ) 2 Wprimarykeys( RZ)

where © denotes projection, and 2 is an inclusion of sets. As in the previous case, we
must consider four cases of relational comparisons, dependingly wether left hand side and
right hand side relations are on the DBPL or Ingres side. In the case when one relation
is DBPL and another is Ingres, we apply a sequential scan through the right hand side
relation and check if the primary key of the tested tuple is present in the left hand side
relation. If both relations are from the side of Ingres, we change predicate R; >= R; into
a quantified predicate

ALL Y IN Ry( SOME X IN R;((X.key; = Y.key;) AND ...
AND (X~key1ast = Y'keymst)))

and then generate the corresponding select statement:

SELECT * FROM AuxRel WHERE NOT EXISTS(
SELECT * FROM R, Y WHERE NOT EXISTS(
SELECT * FROM R; X WHERE X.key; = Y.key; AND ...
AND X.keyjust = Y.keyiast ))

As before, AuxRel is the name of auxiliary Ingres table containing exactly one tuple and
key; is the name of i-th primary key attribute. If the result of the select is non-empty, it
means that the original query returns TRUF; otherwise FALSFE

5 Architecture of the Gateway

The general architectural view of the gateway, DBPL and Ingres is presented in Figure 1.
The entry Ingres interface is embedded SQL. It is standardized by the so-called X-Open
Standard. This is an agreement between companies supporting SQL concerning the source
of EXEC SQL statements. These statements are processed by a precompiler producing
source code in one of the popular programming languages. We considered applying another
interface consisting of procedure calls in C (normally created by the precompiler). For the
generic programming point this more convenient. However, it is not standardized, not
specified in the documentation and there is no guarantee that it will be supported in
the future in the same version; hence we did not follow this idea. We wrote a package
of procedures in embedded SQL + C capable of mapping all DBPL constructs. The
procedures are also available as a normal DBPL module. They allow the user to write
SQL statements inside DBPL programs, an advantage for some kinds of applications.
Exit points in DBPL implied more problems. We assumed that the DBPL compiler
should not be changed; all connections to Ingres should be done from the existing run-time
system. The DBPL run-time system consists of several layers and features of DBPL are
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Operating System

98 ¢C

Figure 1: General view on the gateway, DBPL and Ingres

tailored to parts of different layers. Some work was necessary to make the architecture of
the run-time system cleaner. Afterwards it was possible to determine exit points “below”
the transaction processing system (thus the gateway does not deal with locking, unlocking,
log, recovery, etc.) and “below” the system responsible for evaluation of DBPL selectors
and constructors (thus the gateway also does not deal with them). Exit points to Ingres
are in the module responsible for evaluation of DBPL predicates and sometimes in the
lower layer responsible for tuple-oriented processing of relations.

We introduced a change to the DBPL data dictionary allowing the distinction between
DBPL and Ingres relations. Since the compiler is unchanged, a DBPL program processing
Ingres relations is exactly the same as that required for DBPL relations. This means that
each Ingres relation which has to be processed by DBPL should have a “twin” relation on
the DBPL side. Normally this twin is empty and not used but it must be declared and
stored. Twin DBPL relations allow the user to receive typing information and sometimes
they are internally used for storing intermediate results.

The architecture of the gateway is presented in more detail in Figure 2. A special
utility 1s written to change the status of DBPL relations. This utility compares types
of corresponding DBPL and Ingres twin relations. If the types are fully compatible, it
allows the user to change the status of the DBPL relation so that further processing will
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Figure 2: Architecture of the gateway

be performed on the Ingres relation. As a result of the above, it is impossible to change
the status of a relation which is not in first normal form.

Generation of SQL queries from DBPL predicates is done by a recursive scan of the
DBPL predicate tree. During the scan a list of SQL lexicals is built. Roots of the tree
corresponding to access expressions cause pushing lexicals select, from and where to the
list. Then, projections in the tree insert proper lexicals after select, range relations in the
tree insert proper lexicals after from, and conditional expression insert proper lexicals after
where. The list works as a stack: to take into account nested select blocks, the insertions
are done after this select, from or where, which is the nearest from the top of the list. When
the select block is completed it is “masked” (so it is not seen by further insertions). This
algorithm is modified fot exists and other lexicals to take into account all situations that
can occur in DBPL predicate trees. The final SQL query is obtained by direct generation
of the query text from the list of lexicals.

Some difficulties were connected with inventing procedures for testing and evaluating
DBPL predicates containing mixed references to DBPL and Ingres relations. The proce-
dures recursively scans a predicate tree and produces one of the following answers: pure
dbpl, pure ingres, top dbpl, top ingres, mized joins, badly mixed. The answer pure ingres
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means that the predicate contains only references to Ingres relations and can be converted
into a SQL query. Top dbpl means that the predicate contains independent subpredicates
that are pure ingres; thus they can be evaluated internally, and then, the whole predicate
becomes pure dbpl. Similarly, top ingres means that the predicate contains subpredicates
that are pure dbpl; they can be internally evaluated on the side of DBPL, then the resulting
temporary relations are copied to the Ingres side, thus the whole predicate becomes pure
ingres. In the case of mized joins we send the participating DBPL relations to the Ingres
side (the escape method), thus the predicate becomes pure ingres. The result badly mized
means that all good methods fail, and the only method is copying Ingres relations to the
DBPL side. For performance reasons we prefer to generate in such a case a run-time error
in the current implementation .

6 Implementation Difficulties and Open Problems

6.1 Difficulties Recognized from the Side of DBPL

1. The DBPL run-time system is programmed in Modula-2, thus all advanced data
structures are stored in dynamic memory. This concerns, in particular, syntactic
trees for high-level expressions and predicates, type descriptors, and data dictio-
nary. Receiving information from these structures requires navigation via pointers,
a feature which is cumbersome and error-prone. In Modula-2 there is no alternative
solution. This is an argument in favour of languages having the possibility to define
bulk types.

2. The construction and semantics of internal DBPL structures is not always well spec-
ified and clear.

3. Small optimizations concerning syntactic trees introduced additional difficulties in
recognizing their semantics and in traversing them.

4. No possibility of using arithmetic and other operators inside DBPL high-level ex-
pressions and predicates limits the full power of SQL

5. The semantics of range variables inside FOR EACH loop is based on copying, which
in some cases leads to semantic anomalies (unexpected effects).

6. The semantics for relational comparisons takes into account primary keys only. This
also may lead to unexpected effects.

6.2 Difficulties Recognized from the Side of SQL

1. Communication of dynamic SQL with the external world is based on prepared state-
ments, cursors, and SQL Description Areas. This interface is not well prepared for
nested and recursive processing, which is inherent for languages like DBPL. Therefore
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10.

11.

12.

13.

14.

we have to implement a special stack of statements, cursors and SQLDA-s together
with operators acting on this stack.

. Although the concept of primary key is basic to the relational model, SQL has no

direct possibility of updates based on primary keys. In contrast, in DBPL all updates
are based on primary keys. This causes problems in how to express some DBPL

updates in SQL.

No truth values: as a substitute we must generate formulas 1=1 or 1=0.

. No nested unions; they must be done on the DBPL side.

No queries returning boolean values.

No comparison of tuples for equality, and no (officially supported) explicit tuple
identifiers and operations on them.

No syntactic orthogonality of the count function with the select block. We would
prefer the syntax count( select ... from ...) instead of select count (*)
from .... The current syntax is illogical and makes difficulties in the automatic
generation of SQL queries.

There are difficulties in retrieving all information about Ingres tables; in particular,
this concerns recognizing which attributes are forming the primary keys.

SQL dynamic statements use question marks as “formal parameters”. This is incon-
venient and error-prone.

SQL gives poor testing capabilities for programmers, e.g. about names of available
relations, about their ownership, status, number of tuples, etc.

The system of navigation through cursors gives no possibility to navigate to the prior
tuple, what makes implementing browsing capabilities extremly difficult.

There are some not well-justified syntactic features of SQL statements; for example,
an update statement through a cursor requires the relation name despite the fact that
it was determined previously during declaration of the cursor.

Direct update through cursors may change the order of rows, what means that the
processing may lose consistency (e.g. the same row will be updated two times).

In programming of generic applications we need to “capture” some system reactions
to errors. These reactions are not well specified in the documentation of Ingres. For
example, we can recognize that a possible message is -40400, but we do not know all
the situations in which it is issued, and we are not sure if it is a standardized element
of the interface (which cannot be changed in next releases of the system).
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15.

16.

17.

18.

6.3

Automatic generation of the SQL STOP statement, in all possible places where the
error is expected, is controversial. STOPs after errors are frequently unacceptable,
because before the stop some operations must be performed. This forces use to use the
statement WHENEVER SQLERROR CONTINUE after each SQL statement, which
makes the text of the program longer and less readable. Besides, this statement does
not work in all cases (bugs?), what caused the necessity to correct the C program
resulted from precompilation.

To open a cursor for updating in dynamic SQL, the programmer must generate the
statement select ... from ... FOR DIRECT UPDATE OF ... which is not described

in the manual (we invented it by experiments).

An attempt to open a cursor for a query returning an empty result causes a run-time
error. Normally it is impossible to predict if the result of the user query is empty or
non-empty. This means that empty results of queries must be handled in a special
way.

Ingres SQL makes no differences between lower and upper cases for names of relations
and names of attributes, what creates some problems in DBPL.

Open and Unsolved Problems

. Mapping DBPL nested relations into two or more Ingres relations connected by

referential integrities. The problem lies in generating SQL statements from DBPL
predicates addressing a nested relation, and in composing DBPL nested tuple from
several tuples returned by Ingres.

Optimization of the case when a DBPL predicate mixes references to DBPL and
Ingres relations. For example, when a DBPL relation is nested, the only currently
available possibility is copying the Ingres relation(s) to the DBPL side.

Processing null-values by DBPL.
Mapping of DBPL selectors and constructors into SQL views.

The full power of SQL cannot be utilized from DBPL since it does not allow opera-
tors and functional symbols within predicates. Two approaches to this problem are
possible: extending the DBPL language, compiler and run-time system to handle
such cases, or recognizing this cases inside low level DBPL capabilities so that they
could be mapped as high-level capabilities to SQL.

Utilization various capabilities of Ingres in DBPL: the form management, rules,
database procedures, and so on.
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7 Conclusion

Implementation of the gateway from DBPL to the commercial Ingres achieves several
results. A direct pragmatic result is that Ingres databases are now available within DBPL
programs. From the technical and scientific points of view we considered it important
that it was possible to implement such a gateway. This work has also uncovered some
disadvantages of both DBPL and SQL. Considering DBPL, we recognized limitations of
high-level constructs, which may produce problems for users especially if they come from
the SQL world. The advantage of DBPL - strong typing - may become a great disadvantage
for some applications requiring generic procedures. The interface between DBPL and
persistent data is complex and the specification of it refers to low-level data structures.

The majority of problems were connected, however, with SQL. In contrast to the en-
thusiasm found in popular database textbooks our experience with SQL as a program-
ming language indicated that SQL is below the state-of-the-art. Many ad-hoc solutions,
irregularity of syntax and semantics, limitations, unclear rules of use, an approach to user-
friendliness which forbids untypical (but still reasonable) situations, lack of programming
abstractions, etc. make programming of generic programs difficult and frustrating. We
feel that SQL has yet to achieve the maturity necessary for next-generation databases. It
is our hope that this paper helps clarify some design pitfalls in database languages and
opens the way to provide solutions for their correction.
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8 Appendix: An Example Database (DBPL Syntax)

TYPE
supptype

parttype

sptype

suppRel
partRel
spRel

= RECORD smno : ARRAY[0..2] OF CHAR;

sname : ARRAY[0..19] OF CHAR;

status : INTEGER;

city : ARRAY[0..19] OF CHAR; END;
= RECORD pno : ARRAY[0..2] OF CHAR;

pname : ARRAY[0..19] OF CHAR;

color : ARRAY[0..9] OF CHAR;

weight : INTEGER;

city : ARRAY[0..19] OF CHAR; END;
= RECORD smno : ARRAY[0..2] OF CHAR;

pno : ARRAY[0..2] OF CHAR;

qty : INTEGER; END;

RELATION sno OF supptype;
RELATION pno OF parttype;
RELATION sno, pno OF sptype;
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VAR

supp : suppRel;
part : partRel;
sp : spRel;

PROCEDURE CreateSuppPartDB;

BEGIN
supp := suppRel{ {’S1’,
{’s27,
{’s37,
{’s4’,
{857,

partRel{ {’P1’,
{’p27,
{’pP3’,
{’pPa’,
{’p5”,
{’p6’,

part

spRel{ {’S1’,
{’s17,
{’s17,
{’s27,
{’s3”,
{’s4’,
END CreateSuppPartDB;

sp

’Smith’,
?Jones’,
’Blake’,
’Clark’,
’Adams’,
’Nut’ ,
’Bolt’ ,
’Screw’,
’Screw’,
’Cam’
’Cog’ ,
P17, 300
P37, 400
P57, 100
P17, 300
P27, 200
P4’ , 300

20, ’London’ }
10, ’Paris’ 7}
30, ’Paris’ 1},
b
b

20, ’London’ |,

30, ’Athens’ } };

’Red’ , 12, ’London’ 1},
’Green’, 17, ’Paris’ 1},
’Blue’ , 17, ’Rome’ },
’Red’ , 14, ’London’ },
’Blue’ , 12, ’Paris’ 1},
’Red’ 19, ’London’ } };

2

, {’S1?, 'P2’, 200 },
, {’S1?, 'P4’, 200 },

, {’S2?, "P2’, 400 },
, {’s4’, "P2’, 200 },

}
}
¥, {’s1’, ’P6’, 100 },
}
}
¥

3y, {’s4’, ’P5’, 400 } };
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