To appear in “Proceedings International IEEE/RIDE Workshop on Interoperability, Vienna, April 1993

Lean Languages and Models:
Towards an Interoperable Kernel

for Persistent Object Systems *
Joachim W. Schmidt Florian Matthes
Universitat Hamburg, DBIS Current Address: DEC SRC
Vogt-Kolln Strafie 30 130 Lytton Avenue
D-2000 Hamburg 54 Palo Alto, CA 94301

{J_Schmidt, matthes}@dbisl.informatik.uni-hamburg.de

Abstract

Reliable interoperation between independently developed systems frequently requires type-
safe access to persistent data objects and generic services while today’s system architec-
tures and interoperation tools still focus primarily on store-level access to volatile data and
simple monomorphic or untyped services.

In this paper, we summarize our experience gained in a long-term project that provides
persistence abstractions and generic database support in a strongly typed database envi-
ronment which includes optimizing gateways to commercial relational database servers and
module-based distributed programming tools. To keep the presentation focussed, we make
use of a uniform language model based on higher-order polymorphic types to capture the
essential interoperation semantics including classical cross-language calling mechanisms,
remote procedure call models as well as relational and object-based database gateways.

This uniform language model is also the conceptual core of the Tycoon' database en-
vironment being developed at Hamburg University. Tycoon lifts Persistent Object System
interoperability to a higher level of genericity and precision while further reducing overall
system complexity by a lean approach to languages and models for data, execution and
storage.

Since it is central to the concept of lean production to substantially reduce the manu-
facturing penetration by importing and reusing external services, interoperability is crucial
to our approach.

*This research was supported by ESPRIT Basic Research (FIDE).
!Typed Communicating Objects in Open Environments

1 Introduction

Persistent Object Systems (POS) are integrated software artifacts that provide flexible and
efficient access to and adequate operations on large and long-lived (sets of) data objects.
Operations on simple data objects include searching, sorting, arithmetic, textual input
and printing. More complex data objects (bit images, vector graphics, text documents,
sounds, ...) require special-purpose operations for data retrieval, data presentation and
data manipulation.

Persistent Object Systems have to address characteristic interoperation needs such as:

Persistent Object Management It is necessary to identify, store, retrieve and manipu-
late objects that outlive a single program execution and that may even exist indepen-
dently of the application that created them. Appropriate naming and scoping mech-
anisms are required to establish temporary or persistent bindings between persistent
objects created independently, possibly using different tools on different machines.

Data Integrity Type systems represent a particularly successful approach to enforce in-
tegrity constraints on data objects local to a single program. Similarly, language-in-
dependent mechanisms have to be provided for shared, persistent objects.

Generic Functions Many functions required in a Persistent Object System can be ob-
tained by instantiating generic services. Sorting, searching, query processing, form
management or report generation are typical examples of tasks that are accomplished
best by instantiating generic algorithms with type-specific arguments. Interoperation
protocols have to be capable of handling these generic functions without diminishing
data integrity or duplicating code.

In this paper we seek to contribute to the answers of three interrelated questions: What
are appropriate semantic models to describe POS interaction? How can these semantics
be captured in a sound and concise linguistic framework? What is the impact of such
lean languages and models on their supporting system architectures and their import and
export interfaces?

The paper is organized as follows. In the first part we present our experience gained in
using the database programming language DBPL for the construction of Persistent Object
Systems. In Section 2 we argue that interoperability in mixed-language, cross-platform and
multi-site environments can be substantially improved by making the linguistic framework
for naming, scoping, typing, binding etc. uniformly applicable to all computational objects,
be they small or large, short-lived or persistent, local or remote. DBPL achieves a high
degree of type-safe system interoperability by providing built-in problem-specific language
support for POS applications [34, 22, 24]. In Section 3 we report on our experience with
importing into DBPL application functionality provided by servers external to DBPL.
We concentrate on a gateway between the DBPL system and Ingres/SQL and discuss
requirements for generic gateway construction.

In the second part of the paper (Sec. 4), we briefly sketch ongoing research in the
Tycoon project [21, 26, 25]. This research aims at lean and language system architectures
where Persistent Object Systems achieve essential parts of their functionality by importing
external services into a conceptually sound linguistic framework.

Our running example is a miniature application involving simple data objects, namely
telephone numbers, fax messages and telephone directories. Incremental program modi-
fications illustrate how to add persistence, distribution, bulk data handling and external
services.

2 Improving Inter-Object Interaction at the Instance
Level

We present a canonical language-based model of Persistent Object Systems and demon-
strate how this model correctly captures modularization, distribution, persistence and bulk
data abstractions as provided by the DBPL database programming environment.

2.1 Naming, Typing and Binding for Safe and Flexible Object
Interaction

In this section we introduce (informally) a model to describe the naming, typing and
binding concepts involved in Persistent Object System interoperability. The model itself
(subsequently referred to as the Tycoon POS model) is based on concepts of higher-order
type systems [20, 10, 5] and is sufficiently expressive to serve as a language-independent
framework for program translation, generation and binding. The presentation of the actual
DBPL system and its gateways in the following sections makes use of a limited subset of
the Tycoon POS model. The potential of the full model will be discussed in Section 4.

The model is not biased towards specific features of object-oriented languages. It is
designed to capture equally well interoperability aspects that arise in the interaction with
classical imperative languages (Cobol, Fortran, C, Pascal) and (relational, hierarchical,
object-oriented) database systems.

It should be noted that the model as presented here is too expressive to serve as a
“good” programming language notation. For example, it features dependent types in their
full generality that complicate type checking and compilation. However, by introducing
level distinctions and annotations to separate static and dynamic types, one can re-establish
the static typing property and obtain efficient language implementations (see Section 4).

The Tycoon POS model is based on the notion of types, signatures, values and bindings.
Types are understood as (partial) specifications of values. Values and types can be named
in bindings for identification purposes and to introduce shared or recursive structures at
the value and the type level. Signatures act as (partial) specifications of static and dynamic
bindings. Bindings are embedded into the syntax of values, i.e. they can be named, passed
as parameters, etc. Accordingly, signatures appear in the syntax of types to describe these

aggregated bindings. The exact mutual dependencies are defined as follows.

The syntax for types includes a set of base types B; (Int, Real, String, ...), a type
constant Any (the trivial type), user-defined type variables, function types, aggregated
signatures, parameterized type expressions (type operator definitions) and type operator
applications:

Type::= B; | Any | TypeName |
Fun(Signatures) Type | Sig(Signatures) |
Oper(Signatures) Type | Type(Bindings)

Function types are used to describe the signatures of parameterized objects like functions,
procedures, methods, generators or relational queries. Aggregated signatures are used to
describe the signatures of language entities like records, tuples, structures, modules, object
definitions, database definitions, or object files.

Type operators denote parameterized type expressions that map types or type operators
to types or type operators. Many programming languages have built-in type operators that
map types to types (Array, List, File, Pointer, ...); some languages have support for user-
defined type operators that map types to types (e.g., type definitions in ML [28] and Haskell
[15]); very few languages support higher-order type operators (Quest [6], Tycoon [26]).

Our notation for type operator definitions and type operator applications
(Array(E=Int), Stack(E=Stack(E=Int)), Dictionary(Key=String Value= String)) em-
phasizes the analogy between the concept of (higher-order) functions, mapping (function)
values to (function) values, and the concept of (higher-order) type operators.

Stgnatures are sequences of value, location or type signatures. A value signature asso-
ciates a value name with a type (peter :Student). A location signature associates a location
name with a type (var age :Int). A type signature associates a type name with a supertype
specification (Student <:Person).

Signatures::= {TypeSig | ValueSig | LocationSig}
TypeSig::= TypeName <:Type

ValueSig::= ValueName :Type

LocationSig::= var LocationName :Type

Aggregated signatures are used to describe named declarations as they occur in function
headings, module signatures, external declarations in C programs or in database schema
definitions.

Signatures specify invariants on bindings and allow the verification of the correctness
of (value or type) expressions depending on names without having access to the actual
binding in which the name is defined. For example, based on the signature age :Int, the
type-correctness of the expression age + 1 can be verified without having access to the
actual value bound to age. Signatures therefore play a central role in type-safe module
systems.

In a well-formed signature sequence, types only depend on type variables introduced to
their “left”, avoiding non-well-founded cyclic supertype specifications:

Person <:Any Student <:Person peter :Student

The syntax for values includes base values b;; : B;, like 0, 3.4, “xyz”, true, a canonical
value of the type Any, function values including built-in functions like +, —, * of type
Fun(x :Int y: Int) Int and user-defined functions and aggregated bindings:

Value::= b;; | any | fun(Signatures)Expr | bnd(Bindings)

The syntax bnd(Bindings) defines that aggregated value and type bindings are first-class
values, generalizing classical concepts like value, function and type aggregation in records,
structures, abstract data types or modules. The syntax of expressions in functions is
deliberately not specified here in order to be able to describe POS involving multiple
languages. We assume that every language provides read and write access to locations
in the store that are reachable through function arguments and declarations in the static
scope of a function. Moreover, every language should have primitives for function definition,
function application, binding formation and binding element selection in addition to the
standard operations on the base types and basic control structures. For simplicity, we treat
statements as expressions returning the value any :Any, possibly producing side-effects
on the store.

Bindings are sequences of type, value and location bindings. A type binding Age=Int
defines a name for a type. A value binding pi=3.1415 defines a name for a value. A location
binding petersAge=var(c;) 3 defines a name for an anonymous location identified by (o)
that in turn contains a value (3).

Bindings::= {TypeBnd | ValueBnd | LocationBnd}
TypeBnd::= TypeName=Type

ValueBnd::= ValueName=Value

LocationBnd::= LocationName=var(o;) Value

Bindings model type, constant, variable and function declarations in programming lan-
guages and instances of database schemata in database systems.
Several names may be bound to the same location (aliasing, sharing):

bnd(fred=var(a;) “Fred”
peter=var(ay)bnd(name=“Peter” son=var(a;) “Fred”)
mary=var(asz)bnd(name=“Mary” son=var(ay)“Fred”))

To avoid redundancies, location bindings could be written simply as son = var(a;), fred
= var(ay) and a separate store could provide the location to value mapping (a; — “Fred”),
az —bnd(...), as —bnd(...), However, mixing store and binding information simplifies
the presentation of the following examples substantially.

By convention, the name of a location in an expression designates the contents (r-value)
of the location. Only in certain contexts (e.g., if passed as a variable parameter in Algol-
like languages) does it designate the location itself (1-value) [29]. All imperative languages
also provide an assignment operation to update destructively the contents of a location by
a new value, possibly affecting multiple location bindings at once (side effects).

The expression evaluation rules for a language L could be specified by an evaluation
function that takes a function value, a set of matching argument bindings and a store
returning a result and a modified store.

Evaly, :Value x Bindings X Store — Value x Store

As we will see later in more detail, there are two basic mechanisms for interoperation be-
tween two languages [; and L, in Persistent Object Systems. Both mechanisms, dynamic
cross-language function calls and static sharing of type, value and location across address
spaces, are captured by the Tycoon POS model. These two mechanisms are tightly inter-
related since functions take values as arguments and return values. Moreover, functions
are treated as first-class values and can therefore be shared and passed on as function
arguments and results.

As usual, types are intended to classify values, and signatures are to classify bindings.
Moreover it is possible to define generic functions (functions that take type bindings as
arguments), value-dependent type operators, abstract data types (bindings that contain
partially-specified type components and operations on that type). The formal type rules
for this model (defining well-formed types, the types of values, the subtype relationship
between types and the signatures of bindings) become therefore quite subtle.

In traditional systems, types and signatures are handled exclusively at compile-time,
while values and bindings only appear at run-time. In persistent systems, the distinction
between compile-time and run-time blurs, and it becomes possible, for example, to inspect
value and type bindings at compile-time, giving rise to powerful reflective algorithms [19,
35]. In the following, we present several examples where a generalized treatment of values,
types, signatures and bindings can be exploited for improved POS interaction.

2.2 Modularity: The Basis for Interoperability

In this section we introduce the basic modularization concepts of DBPL (inherited from
Modula-2 [37]).

DBPL programs are divided into modules with well-defined import relationships. Def-
inition modules define signatures for type, value and location bindings defined in imple-
mentation modules. Program modules export a single, parameterless function value, the
main program.

An interface and a skeleton DBPL module exporting basic data types and values to
handle telephone numbers would look as follows:

definition module Phone;

type Number = array [0..20] of char;

var localPrefix, home :Number;

procedure operator(prefix :Number) :Number;
end Phone.

implementation module Phone;
procedure operator(prefix :Number) :Number;

begin ... return ... end operator;

begin (* module initialization: *)

localPrefix:=“4940”; home:=concat(localPrefix,“85312");
end Phone.

During type checking of these compilation units, the DBPL compiler extracts type and
value signatures that are represented as follows in the Tycoon POS model:

CompileEnv = Sig(Phone <:Sig(Number <:array...
var localPrefix :Number var home :Number
operator :Fun(prefix :Number) Number)

linkPhone ‘Fun(imports :Sig()) Phone)

The interface module is represented as a type signature which associates the interface name
Phone (understood as a type variable) with a supertype that is an aggregate of all types
and values signatures exported by the interface. The implementation module is represented
as a single function, linkPhone, that takes an aggregated binding of all imported module
values (in this case an empty binding) and returns a binding that conforms to the interface
signature Phone.?

The signatures of Phone and linkPhone are both elements of a flat name space modelled
by a signature bound to the type variable CompileEnv. This name space is managed
implicitly via search paths to look up compiled interfaces, called “symbol files”, in a typical
DBPL system implementation.

The code generated for the implementation module Phone is stored as a named binding
in a flat name space that collects all compiled modules. This name space is represented
in the Tycoon POS model as a named value linkEnv whose type matches the signatures
specified by CompileEnv:

linkEnv = bnd(linkPhone=fun(imports :Sig()) ...)

This name space is also utilized by the DBPL linker to compose all module initialization
functions that make up an executable application program. The main module

module Main import Phone; ... end Main.
is represented by the following link function:
linkMain :Fun(imports :Sig(phone :Phone)) Main
It leads to the following module initialization sequence:

initEnv=bnd()
phoneE=initEnvU{phone=IlinkEnv.linkPhone(initEnv)}
mainE=phoneEnvU{main=linkEnv.linkMain(phoneE)}

2As we will see later, we would lose some modelling precision if we were to treat the implementation
module as a simple binding of type Phone.

The module value returned by linkPhone is an aggregate of two bindings to two distinct,
newly created locations and binding to a function value.

bnd (localPrefix=var(a;) “4940”
home=var(a;y)“4940 85312”
operator=fun(prefix :Number) ...)

2.3 Cross-Platform Interoperability

The distributed version of DBPL [16, 17] exploits the basic module concepts described in
the previous sections to add an additional layer of type-safety to standard remote procedure
call mechanisms (RPC) in federated client-server programming models.

To give access to a local fax service at a site called “CentralOffice”, this site would
compile the following remote definition module and then export the compiled description
(typically together with its source text for documentation purposes) only to those clients
on the network who are to be authorized to use the service.

remote definition module Fax for “CentralOffice”;
import Phone;

type Status = (error, busy, done);

procedure dial(number :Phone.Number) :Status;
procedure send(text :array of char) :Status;
procedure receive(var text :array of char) :Status
procedure hangup();

end Fax.

In this scenario, signatures of compiled definition modules accumulated in the compilation
environment serve as protocol specifications:

CompileEnv = Sig(
Phone <:Sig(...) (see Sec. 2.2)
linkPhone :Fun(imports: Sig()) Phone
Fax<:Sig(Status <:Int
error :Status, busy :Status, done :Status
dial :‘Fun(number :Phone.Number) Status
send :Fun(text :array...) Status
receive :Fun(var text :array...) Status
hangup :Fun() Any)
linkFax :Fun(imports :Sig(phone :Phone)) Fax)

Note that an enumeration type declaration in DBPL introduces a new type name (a subtype
of the basic type int) and a number of values names of that type. Furthermore, the
signature of the receive function illustrates that DBPL variable parameters correspond to
location signatures in the Tycoon POS model.

Clients also need to have access to the definition module Phone that defines the ar-
gument type Phone.Number for the remote function dial. In the distributed DBPL envi-
ronment, unique identifiers are assigned to compiled remote interface definitions. These

identifiers are used during connection establishment to verify that all parts of a distributed
program have been compiled using compatible versions of the interface specifications. This
mechanism directly generalizes classical link-time consistency control mechanisms in non-
distributed systems.

Frequently clients require distribution transparency. In this case it is of considerable
advantage if a main program

module SendFax; import Phone, Fax;

begin

Fax.dial(“853228”);Fax.send(“Sample fax.”);Fax.hangup();
end SendFaxFromModula;

stays textually unchanged whether it uses a local definition module Fax or the above remote
definition mofule Fax for “Central Office” offered by a server somewhere in the network.
This distribution transparency is achieved as usual by a client stub and a server stub that
marshal and unmarshal the arguments and results supplied to functions defined in the
remote definition module [11].

In terms of the Tycoon POS model, RPC-based communication mechanisms are an
implementation technology that enables the creation of function value bindings between
names in a client program and function values in a server program. Using plain RPC mech-
anisms it is not possible to directly define location bindings spanning machine boundaries.
In particular, we would have to revise the module interface Phone not to directly export
the locations localPrefix and home. In section 2.4 we show how these traditional RPC
restrictions are lifted by the provision of (distributed) persistent variables in DBPL.

The crucial feature of DBPL is to retain (static) type safety across machine bound-
aries by maintaining a distributed compilation environment that allows local and remote
modules to share signatures for type checking purposes and to share module bindings for
transparent connection establishment. For example, in the system for the main program
SendFax the type variable Fax is shared between the fax client stub, fax servers stub, the
actual fax implementation and the main program:

DistributedCompileEnv=Sig(
Phone <:Sig(...) (see Sec. 2.2)
Fax <:Sig(...)
linkSendFax ‘Fun(imports :Sig(fax :Fax)) Main
linkFaxClientStub :Fun(serverld :Serverld) Fax
linkFaxServer :Fun(imports :

Sig(phone :Phone fax :Fax)) Main

linkFax :Fun(imports :Sig(phone :Phone)) Fax
linkPhone :Fun(imports :Sig()) Phone)

The Tycoon POS model is also capable of giving precise signatures to the the generic
client and server stub generators (built-in components of the distributed DBPL environ-
ment) working themselves on signatures and bindings:

clientStubGenerator :Fun(Scope<:Sig() Iface<:Sig())
Fun(serverld :Serverld) Iface

The clientStubGenerator is a higher-order function that takes an interface signature
Iface (an arbitrary subtype of the empty signature) and returns a link function. This link
function has type Fun(serverld :Serverld) Iface, i.e. based on a connection information
supplied dynamically at run-time, it will return a module value of type Iface, an aggre-
gation of bindings to stub procedures. Fach stub procedure generates a linear, portable
representation of its function arguments and transmits this representation to the server
(using a value of the not further specified type Serverld supplied as a module argument).
The Scope argument contains the signatures of transitively imported interfaces to access
their type information (e.g., to transmit values of type Phone.Number).

The task of the serverGenerator is similar. It takes the link function for a user-supplied
remote implementation (of type Fun(imports :Scope) Iface) and returns a link function
for a main program with the same imports. It creates a main program that listens for
client requests and dispatches them to parameterless wrapper functions. For each function
signature in Iface there is a wrapper function that takes arguments from a client connec-
tion channel and passes them as arguments to the corresponding function obtained from
linkRemotelmpl. The return value is again linearized and returned to the client that issued
the request.

serverGenerator :Fun(Scope<:Sig() Iface<:Sig()
linkRemotelmpl :Fun(imports :Scope) Iface)
Fun(imports :Scope) Main

The signatures of the generator functions illustrate a crucial feature of the Tycoon POS
model: it allows the user to capture type dependencies between the arguments and the
result of a generic function. For example, each application of the client stub generator to an
argument of type Iface will return a function that returns values of type Iface (parametric
polymorphism [27]). Since the supertype specified in the generator signature (Iface<:Sig())
is different from the type Any, this form of universal type quantification is also called
bounded parametric polymorphism [8]. On the other hand, in contrast to classical models
of polymorphism, we are assuming that the (function) value returned by the generators
depends on its type argument.

Finally, it should be noted that existing proposals and standards for languages to
describe data exchange protocols and remote procedure entry points [2] lack any support
for polymorphic values and functions. This lack of adequate type descriptions is reflected
by the fact that standards for remote database access (RDA [1]) use ad-hoc solutions to
transfer query results and query expressions (e.g., as plain string values) and that the
distributed DBPL system does not adhere to these standardization proposals.

2.4 The Potential of Persistent Objects

Interoperability aims at providing flexible and safe mechanisms to share data and programs
across system boundaries. The previous two sections tackled the problem of type-safe shar-

10

ing across compilation units and platform boundaries. This section demonstrates how the
concept of orthogonal persistence [4] as found in DBPL extends the potential for inter-
operability along two new dimensions: sharing over time and sharing between multiple
users.

The following two procedures (to be declared inside the implementation module Phone)
illustrate a classical approach in managing data objects that outlive a single programming
session via operating-system files:

procedure save(fileName :array of char);
var f :File.T;

begin f:= File.create(fileName);
File.writeBytes(localPrefix); File.writeBytes(home);
File.close(f);

end save.

procedure load(fileName :array of char);
var f :File.T;

begin f:= File.open(fileName);
File.read Bytes(localPrefix); File.readBytes(home);
File.close(f);

end Joad.

In the terminology of the Tycoon POS model, the save and load procedures use operations
on operating system files (exported by the module File) to implement persistent value
bindings. In fact, one can view a file system as a large aggregated binding that binds file
names (value identifiers) to locations (updatable files) of type file of Byte. In this view,
hierarchical file systems provide nested bindings and (symbolic) links correspond to aliases
(see Sec. 2.1).

Even in this small example, one can recognize the conceptual problems of this approach
that hamper its usefulness for real-life data-intensive applications:

e Naming: The use of external file names is a common source of difficulties in sys-
tem management since programs become sensitive to changes in their computing
environment. It is interesting to note that early languages (notably Cobol) were
rather careful to document explicitly dependencies on external resources in their pro-
gram sources. Automatic (possibly parameterized) name-lookup functions (program-
, language- or operating-system specific) tend to complicate the naming issues for
persistent objects even more.

e Typing: Since the file system does not preserve the signatures of its bindings, it is
necessary for the save operation to store a limited form of type information (e.g., a
file type key) in each file that is to be checked by the load operation against the type
information expected by the importer (see also [3])

e Genericity: For each type of value held in main memory, traversal routines have to
be implemented that write linear value representations to files and read them back

11

into main memory preserving sharing and cycles. This is a highly repetitive and
error-prone task that can be automated by type-directed algorithms.

e Concurrency, consistency, recovery: Since the name space offered by the operating
system is not only persistent but also shared between several programs, it becomes
necessary for the programmer to insert special code to ensure that main memory and
persistent data are properly synchronized even in the presence of concurrent access
by several users. Furthermore, it is often necessary to ensure that destructive updates
of persistent data structures are performed atomically to handle system and program
failures graciously.

e Efficiency: In large-scale systems it is difficult to decide when to execute save and load
operations and at which granularity to transfer data between volatile and persistent
store, in particular, if the persistent data does not fit into main memory. It is therefore
desirable to separate these operational aspects from the algorithmic task at hand.

DBPL introduces the notion of a persistent module (database module) to define per-
sistent location bindings in a strongly-typed programming environment. For example, the
following local changes marked by underscores are sufficient to turn localPrefix and home
into persistent variables (compare Sec. 2.2).

database definition module Phone;
type Number = array [0..20] of char;
var localPrefix, home :Number;

procedure operator(prefix :Number) :Number;
end Phone.

implementation module Phone;

procedure operator(prefix :Number) :Number;

begin ... return ... end operator

database definition begin

localPrefix:=“4940”; home:=concat(localPrefix,“85312");
end Phone.

The compilation of these modules defines a collection of signatures that is identical to
the non-persistent environment CompileEnv defined in Sec. 2.2. The import semantics of
persistent modules differ from volatile modules: the execution of the module initialization
code linkPhone of a persistent module at link-time does not return a new set of bindings to
newly created process-local locations (copy semantics), but returns bindings to locations
that are shared between all programs importing the persistent module (reference seman-
tics). Therefore, side effects created by one application on persistent variables are visible
to other applications importing the same persistent module:

module Mainl import Phone;
begin Phone.localPrefix:= “004940” end Mainl.

12

module Main2; import Phone;
begin Phone.localPrefix:=concat(Phone.localPrefix, “-”)
end Main2.

The sequential execution of Mainl and Main2 would lead to the following location bindings:

bnd (localPrefix=var(ay) “004940-”
home= var(a;)“494085312”
operator=fun(prefix :Number) ...)

The statement sequence marked by the keywords database definition begin is executed
only once during the lifetime of the database module Phone, namely before it is imported
for the first time into a DBPL application program.

The main advantages of persistent modules lies in overcoming the naming, typing and
genericity problems associated with file-based solutions without introducing additional
linguistic complexity in the programming environment. Furthermore, DBPL supports
user-defined (parameterized) transactions to handle the concurrency-control, recovery and
integrity issues raised above based on standard database transaction models.

Bindings to persistent locations are implemented by maintaining (at compile- and at
run-time) a mapping between module-level location names and ezternal locations and
by having the compiler insert save and load operations at appropriate code positions for
values of appropriate granularity. The task of caching values from external locations in
main-memory locations bears similarity to traditional register allocation techniques [30, 22].
The save and load operations and the transaction primitives (begin, end, abort transaction)
also trigger concurrency-control and recovery mechanisms [33].

The DBPL approach to transparent persistence management blends well with the trans-
parent RPC-based distribution mechanisms described in Sec. 2.3. For example, it is possible
to import remote values and remote locations or to perform dynamic location bindings in
remote function applications (i.e. to pass variable parameters or pointers to remote func-
tions). Finally, it is possible to delay the marshalling and unmarshalling of bindings (e.g.,
in argument lists or records) until the value bound to a name is actually accessed (call by
need)>.

2.5 Bulk Types in DBPL

In the process of building a POS, it is often necessary to handle large, dynamic homoge-
neous collections of objects (e.g., class extents). Furthermore, it is necessary to represent
relationships between object collections and to perform efficient, set-oriented update and
retrieval operations.

Database systems have been designed to provide specific system and modelling support
for these tasks. Expanding on our running example, let us assume that there is a need
to store information on telephone numbers assigned to persons as well as fees per unit

3The latter mechanism has not been implemented in the DBPL system.

13

assigned to area codes. This kind of information is adequately described by the following
relational database definition:

createdb SQLPhoneDB ...
create table register (name char(50), num char(21))
create table fees (prefix char(50), cost int4)

The language SQL provides simple, efficient, declarative read and write access to the
information held in the database (insert into table, delete from table, select ... from
...where ...). However, it turns out to be surprisingly difficult to access SQL databases
from application programs, e.g., to use the Fax service to send a message to every person
named “Smith”. We do not want to go into the details of SQL host language embedding,
but the problems encountered can be classified as follows:

Naming Problems The only way to name SQL objects (databases, tables, attributes)
from a programming language is via strings. These strings adhere to quite non-
standard scoping rules. There is no mechanism to directly identify table elements.
Programmers therefore have to explicitly create cursors to navigate over tables. Es-
sentially, the programmer is forced to explicitly introduce programming language
variables (cursors, database handles, ...) for every DB object being accessed.

Typing Problems While it is easy to find an ad-hoc translation between values of the
SQL base types (int4, float8, ...), there are no mechanisms to share type infor-
mation (e.g., record or table types) between databases and application programs.
Every application program therefore has to repeat the type declarations made in the
database schema. Null-values in databases have to be handled via special “indica-
tor variables” in application programs. Most importantly, there is no static type
checking between type assumptions made in the application and those found in the
database. Mismatches are only detected at run-time or result in “arbitrary” values
being stored in communication buffers.

Binding Problems There is no mechanism to statically bind applications to databases.
Binding and scoping is performed typically via side-effects, e.g., by issuing a con-
nect(“SQLPhoneDB”) command, that affects the interpretation of all table names
used in subsequent statements. Finally, query expressions are subject to “textual”
substitutions that are incompatible with classical programming language semantics.
For example, the correctness of the query select x.num from :RangeExp where
x.name = “%Smith%” depends on the value of the string host variable RangeExp
(“quoted” with a “”). A legal substitution would be RangeExp:= “register, x”,
while RangeExp:= “fees, x” yields a scoping error and RangeExp:= “x>400" yields
a syntax error at run-time.

It should be noted that these problems are not specific to relational database languages;
the very same difficulties arise in newly designed persistent object management systems
that also provide special-purpose data definition and query languages [9, 18].

14

DBPL overcomes these difficulties by using the persistence and modularization concepts
described in Sec. 2.2 and extending the language by a generic bulk types operator relation
and predefined polymorphic operations on values of type relation. Due to the orthogonality
of the DBPL type system, it is possible to define a richer set of data structures than it is
possible in the classical relational model, but this flexibility is not required here [32]. The
SQL database schema is represented by the following persistent DBPL module:

database definition module PhoneDB; import Phone;
type String = array [0..49] of char;
type Entry =

record name :String num :Phone.Number end;
type Fee = record prefix :String cost :integer end;
type Register = relation name of Entry;
type Fees — relation prefix of Fee;
var register :Register; var fees :Fees;
end PhoneDB.

Names have been assigned to all types to be re-used in application programs importing
the database variables register and fees. DBPL provides a rich set of set-oriented update
operators and an extended relational calculus including recursion based on fixed-point
semantics to express bulk operations: [12]

if card(register) = 0 then ... end;

johnsEntry:= Entry{“John”, “2377};

register:= Register{johnsEntry};

register:+ Register{{ “Peter”, “249”}};
register:—Register{each n in register:n.num> “240"};

Relations can be viewed as collections of location bindings (indexed by the key values
defined in the relation type declaration). Consequently, it makes sense to provide element-
oriented update operators and destructive iteration capabilities:

register[“Peter”].num:= “2507;
transaction addPrefix;
begin for each n in register :true do
n.num:= concat(Phone.localPrefix, n.num) end

end addPrefix;

DBPL has special (generic) type rules for the built-in relation operators, e.g., to capture the
fact that the set-oriented insertion operator “:+” can be applied to relations of arbitrary
element type E, as long as the right-hand side expression is also a relation of the same
element type E:

fees:+ Fees{{“853”, 14}}

Relation types provide a good example for the use of type operators and type-par-
ameterized functions in the Tycoon POS model introduced in Sec. 2.1. As a first step to
define the signature of the interface PhoneDB, the built-in DBPL type environment could
be represented as follows:

15

DBPLBuiltinEnv = Sig(
Relation <:Oper(ElementType<:Any) Any
{} ‘Fun(E <:Any) Relation(Any)
CARD :Fun(E <:Any rel :Relation(E)) Int
:+ :Fun(E <:Any var lhs :Relation(E)
rhs :Relation(E)) Any
)

This environment declares a type operator Relation that maps arbitary types (subtypes
of type Any) to a hidden representation type (a subtype of type Any). The subsequent
function signatures make use of this type operator to express the type constraints on the
built-in DBPL functions. For example, the standard function CARD takes an arbitrary
type argument E, a relation rel of type Relation(E) and returns the cardinality of the
relation, a value of type Int.

Using the abstract type operator Relation exported from DBPLBuiltinEnv, the signa-
ture of PhoneDB looks as follows:

CompileEnv = DBPLBuiltinEnv U

Phone <:Sig(...)

PhoneDB <:Sig(
String <:array ...
Entry<:Sig(name:String num:Phone.Number)
Fee <:Sig(prefix :String cost :Int)
Register <:Relation(Entry)
Fees <:Relation(Fee)
var register :Register var fees :Fees)

3 Interoperability and Genericity

In the previous section we discussed dimensions of object interaction on the instance level.
In the framework of the DBPL language and system we presented support for safe inter-
object interactions based on naming, typing and binding mechanisms that apply uniformly
to computational objects whether they are local or remote, short-lived or persistent, small
or large.

The notion of interoperability applies, of course, to a more general setting in which
independently developed, generic systems have to cooperate, i.e. to provide for inter-object
interactions that handle all potential objects the systems may create and maintain. In this
section we report on our experience with such generic cross-language interoperability via
the DBPL/C and the DBPL/SQL gateway and outline general requirements for generic
gateway implementation. We will continue focussing on the underlying naming, typing
and binding concepts presented in terms of the Tycoon POS model introduced above.

16

3.1 Cross-Language Interoperability

The most primitive (but also most common) form of cross-language interoperability is
achieved by having a standardized, language-independent link format (e.g., COFF of Unix
System V) that allows static bindings in a language L;n, to bind to values or locations
defined in another language L.;,. In this setting, L;,, is able to import from L.;,. The
next step is to define standardized, language-independent parameters passing conventions
that allow argument values or argument locations defined in L;,,, to be bound dynamically
to function parameters defined in L.,,. If the roles of L;,,, and L.;, can be interchanged,
full cross-language interoperability (including “call-back” mechanisms) is supported.

Since this interoperability takes place at the value, location and binding level only,
all naming and typing consistency control enforced by the use of type names, types and
signatures in compilers is effectively lost in this scenario?.

The DBPL compilers for VAX, Sparc and Motorola architectures attack this problem
by providing the DBPL programmer with a mechanism to recover type and signature
information for external bindings via so-called foreign definition modules. For example,
the interface of the Fax module defined in Section 2.3 could be revised as follows to define
a FAX service implemented in the programming language C:

definition for C module Fax;
import Phone;
type Status = (error, busy, done);

end Fax.

The compiler will enforce the consistent use of the bindings exported by the external Fax
package in all importing DBPL programs. For example, it would catch the following type
error in the application of the function Fax.dial that attempts to pass an integer value as
a string argument:

module SendFax; import Phone, Fax;

begin

Fax.dial(853228);Fax.send(“Sample fax.”);Fax.hangup();
end SendFax;

The skeleton of a C-program to provide value bindings matching the signatures Fax looks
as follows.

typedef char* Phone_Number
typedef int Status

#define error ((Status) 0)

#define busy ((Status) 1)

#define done ((Status) 2)

Status Fax_dial(char™ number){ ... }

4There are, however, attempts to define “architecture-neutral distribution formats” that preserve (low-
level) type information until link-time [31].

17

Status Fax_send(char* text) { ... return done; ... }
Status Fax_receive(char** text) { ... return done; ... }

void Fax_hangup(){ ... }

The location binding in the signature of the function Fax_receive is achieved by declaring
the argument type for the parameter text with an extra level of (pointer) indirection.
The compiled C object file (File “fax.0”) can be viewed as a collection of function value
bindings.

faxCObjectFile = bnd(error=0 busy=1 done=2
Fax_dial=fun(number :char®) ...
Fax_send=fun(text :char®) ...
Fax_receive=fun(var text :char™®) ...
Fax_hangup=fun() ...)

In reality, the object file does not contain the constants defined by preprocessor macros and
the type information associated with the function®. The binding faxCObjectFile therefore
has the following signature:

faxCObjectFile :Sig(Fax_dial :Any Fax_send :Any
Fax_receive :Any Fax_hangup :Any)

The DBPL language environment provides a generic (type-dependent) function (a genera-
tor) that is capable of extracting relevant external bindings specified by a DBPL interface
signature Iface from a given external binding. In the Tycoon POS model this generator
has the following signature:

linkC: Fun(Iface <:Sig() prefix :string
externalObject :Sig()) Iface

The type signature Iface <:Sig() matches any actual type parameter that is an aggregated
signature without further constraints on the signature elements. For example, the interface
heading definition for C' module Fax causes the DBPL compiler to automatically gener-
ate the following module initialization code linkFax that calls linkC with module-specific
type and value arguments:

linkFax = fun(imports :Sig(phone :Phone))
linkC(Iface=Fax prefix="“Fax”
externalObject=faxCObjectFile)

The prefix “Fax” is used to locate the value bindings dial, send, receive, hangup in fax-
CObjectFile based on the (C) naming convention that the names of components in an
aggregated binding are prefixed by the name of their enclosing scope. If the generic linkC
function encounters value and location specifications in a DBPL signature for which no
matching bindings can be found, a “link error” is reported.

5See [13] for an approach to partially encode the signatures of values in their names to support a limited
form of cross-module type checking in C++.

18

An additional level of consistency could be achieved by implementing a tool that gen-
erates C type, constant and function prototype declarations based on the signature in-
formation extracted from a DBPL foreign definition module (and all its transitively im-
ported interfaces)®. Since modern C compilers are capable of verifying function declarations
against given prototypes, this tool would guarantee full type consistency for cross-language
bindings (static and dynamic) from DBPL to C. However, in view of the fact that the vast
majority of external library code is not shipped as source text but as untyped object code,
such a tool is of limited use in current programming environments.

Since relation types and relation operations are fully integrated into the DBPL lan-
guage, they can be freely combined with the cross-language binding mechanisms:

for each b in register :contains(n.name, “Smith”) do
Fax.dial(n.num); Fax.send(...); end

It is also possible to call DBPL transactions on bulk objects from C, e.g., dbpl_addPrefix().

3.2 The DBPL/SQL Gateway

Cross-language linking as described in Sec. 3.1 is an instance-base interoperability mech-
anism limited to individual function and data values. DBPL generalizes these concepts
to provide transparent translation of families of data structures and expressions that are
defined in terms of generic types and polymorphic functions.

Analagous to external function bindings, DBPL supports bindings to external persistent
objects in addition to internal persistent DBPL objects [23]. For example, the following
modification of the header of module PhoneDB binds the location variables register and
fees to external SQL relations register and fees defined in an Ingres database named SQL-

PhoneDB:

database definition for Ingres module PhoneDB;
import Phone;

var register :Register; fees :Fees;
end PhoneDB.

All DBPL statements and expressions referring to these variables are translated fully trans-
parently into SQL update and selection expressions submitted to the Ingres SQL database
management system. These SQL expressions typically take DBPL program variables (value
and location bindings) as arguments and return (set) values that are converted appropri-
ately for further processing within DBPL. For example, the query

if all n in register n.phone > x then ... end

5Similar tools play a central role in window systems involving the PostScript language [36] and proposals
for distributed object management[14].

19

is translated into a select from where SQL expression that uses the actual value stored
in the DBPL location x of type String. Depending on the cardinality of the set-valued
result, a boolean value is then returned to the compiled DBPL code.

It should be noted that DBPL can handle arbitrarily nested (possibly recursive) query
expressions that mix volatile relations, persistent DBPL relations residing in local or remote
databases and SQL database relations. Therefore, much care has been devoted to develop
evaluation heuristics that minimize data transfer and make best use of index information
available for individual relations. Evaluation strategies are not determined at compile-time
but depend on cardinality and index information available at run-time.

Again, a conceptually simple generalization of an existing programming language con-
cept suffices to overcome the interoperability deficiencies of todays database programming
interfaces that have developed in a system-driven, bottom-up fashion.

3.3 Architectural Requirements of Generic Gateway Implemen-
tations

Although the system details of the DBPL/SQL gateway are quite delicate and often require
ad-hoc case analysis to achieve good system performance, this specific gateway implemen-
tation follows a more general pattern that directly reflects the model of typed programming
languages in terms of types, signatures, values and bindings presented in Sec. 2.1. In order
to extend a language L;,; by a generic gateway to an external language L..; successfully
(i.e., to embed L., as a sublanguage of L;,;), the following conditions have to be met.

The type syntax of L;,; must be sufficiently expressive to capture the structure of values
in L.z;. This may require extensions to the set of base types (e.g., to handle SQL date,
time and table key values) as well as extensions to the set of type constructors (e.g., to
handle SQL relations, views or indices). In DBPL, the base type extensions are covered
by user-defined abstract data types, while the type constructors are mapped to built-in
DBPL type constructors.

There have to be tools to aid in the mapping between signatures in L;,; and L.z.
Instead of writing a generator that maps from Ingres DB schema information to DBPL
database definitions or vice versa, we developed an interactive binding tool that automat-
ically extracts signature information from DBPL module descriptions and the Ingres data
dictionary and verifies the compatibility of these separately developed descriptions.

Tool support is also required at run-time to establish value and location bindings from
names in L;,; to entities in L., and vice versa. In the DBPL/SQL scenario this is achieved
by using DynamicSQL, a set of library routines shipped with the Ingres DBMS to create
cursors and communication buffers to convert Ingres values (element-by-element, attribute-
by-attribute according to their type structure) to DBPL values and to pass arguments (of
scalar types) to SQL query strings.

If expressions of L.y are to be generated from (a subset of) expressions in L;,; (e.g.,
SQL queries based on DBPL queries), the expression syntax of L;,; has to be sufficiently
general to emulate high-level external abstractions present in L..;. For example, DBPL’s

20

compiler

|

| pppL | DBPLRTS| | Ezzj DBPLRTS
‘ .

| runtime PSMS } PSMS
} system CTMS — | ‘ — CTMS

| SQLGate } } Ingres } SQLGate
} CPMS } CPMS

| CRDS | -————————~— 4~ - CRDS

‘ SMs T ws H sMs

o % ,,,,,,,,,,,,,, [‘

‘ Operating System (Unix, VMS) ‘

Figure 1: Integration of the SQL gateway into the DBPL system architecture

query expressions directly correspond to SQL select from where expressions, whereas a
mapping from arbitrary imperative loop statements to SQL expressions does not seem to
be feasible.

Finally, there have to be means to ensure that typing assumptions in the static compila-
tion context of L;,; (expressed, for example, as signatures of database variables) are met by
the corresponding bindings provided in L.,; at run-time. In the DBPL/SQL context, this
limited form of dynamic type checking is achieved by having the compiler generate run-
time type representations for external database variables that are checked during program
startup (accessing the SQL data dictionary).

In addition to these linguistic and technical prerequisites, a smooth integration of in-
ternal and external services also requires adequate architectural support, like access to the
scoping and typing phase of the compiler, support for separate compilation and persis-
tent storage of type and signature information, or abstract program representations that
support static (and possibly dynamic) program analysis and translation.

The majority of the additional interoperation services (cross-language binding, cross-
platform binding, transparent language translation) described in this paper are handled
by localized extensions of the layered DBPL architecture displayed in Fig. 1. For exam-
ple, the layer SQLGate inserted between the (predicate-based) transaction management
system CTMS and the predicate evaluation system CPMS (the non-recursive query eval-
uator) localizes virtually all extensions to the DBPL system required to handle external

21

databases (6K lines Modula-2 code of a total of 52K lines DBPL run-time system code).
SQLGate transparently dispatches subqueries accessing local database objects to CPMS
amd subqueries accessing external database objects to Ingres/Oracle.

4 Towards Open Communicating Environments

After seven years of development, the DBPL system has now reached a level of maturity and
interoperability that makes its linguistic abstractions readily available for implementors of
non-trivial Persistent Object Systems on several hardware-platforms.”

From a research point of view, an interesting side-effect of this DBPL implementation
effort is an insight into repeating patterns of language and system extension requirements,
some of which are outlined in Sec. 3.3. Consequently, our current work in the Tycoon
project investigates languages and architectures that facilitate such incremental, problem-
specific extensions in a type-safe environment.

In contrast to DBPL, Tycoon takes a rather radical approach by not maintaining up-
ward compatibility with existing programming languages (Modula-2) and data models
(complex-object models). Also its internal protocols for store access, program representa-
tion and linkage do not adhere to pre-existing standards. The rationale behind the design
of Tycoon is to provide a lean language and system environment that provides just the ker-
nel services and abstractions needed to define higher-level, problem-oriented “languages”
and “data models”.

The following two sections sketch how Tycoon overcomes limitations of classical lan-
guages and architectures and contributes to the development of future open communicating
environments.

4.1 Beyond Classical Database System Architectures

The complexity of relational database systems (and recent OODBMS) results essentially
from the fact that they are monolithic servers that bundle a large number of tightly coupled
services like memory management, concurrency control, recovery, data structuring, access
control, bulk data indexing, iteration abstraction, meta-data management, access control,
data distribution etc. Moreover, access to these services is only granted via a narrow
database language interface that severely restricts access to individual services.

The Tycoon system attempts to unbundle the above DBMS services by strictly separat-
ing data modelling, data manipulation and data storage issues. Horizontal bars in Fig. 2
indicate the three central Tycoon system abstractions:

e TL is a strongly-typed higher-order polymorphic programming language based on
the notions of types, signatures, values and bindings as introduced in Sec. 2.1. TL
serves as a uniform application and system programming language and therefore has
to support both, programming using high-level problem-specific data models as well

“The DBPL system is distributed by Hamburg University.

22

Tycoon Applications

Tycoon Libraries StdLib SQLLib
- Internal Implementation BulkLib ~ NeWSLib
- External Implementation I0Lib

TL second-order lambda calculus,
subtyping, imperative constructs
Compiler
Front-End System Browser
Compiler Symbolic
Back-End Debugger
untyped lambda calculus,
TML store semantics,
portable program format
Interpreter Generated External
P C-Code Libraries
TSP abstract store protocol
portable data format
Object Store

(Persistence, Concurrency Control, Recovery)

Figure 2: The Tycoon system architecture

as the implementation of these data models in terms of low-level implementation-
oriented data structures. Further aspects of TL are discussed in the Sec. 4.2

TML is a minimal intermediate language (22 instructions) based on an untyped
lambda calculus extended with imperative constructs that serves as a low-level,
portable T program representation in distributed heterogeneous environments. TML
was designed to support efficient host-specific target code generation as well as dy-
namic optimizations analogous to query and transaction rewriting in database sys-
tems.

TSP is a data-model-independent object store protocol based on the notion of a per-
sistent heap that shields TML evaluators (and TL programmers) from operational
aspects of the underlying persistent store like access optimization, storage reclama-
tion, concurrency or recovery. By forcing all higher levels of the system to use the Tsp
(software) protocol, it provides an ideal starting point to add system functionality at
the store-level (e.g. distribution transparency or access-control).

This layered protocol-oriented architecture aims at system scalability and portability

by de-emphasizing operational aspects of the protocol implementations. For example, two

implementations of TML currently exist, a compact, portable interpreter, immediately ex-

ecutable on a wide range of hardware-platforms and an optimizing code generator. Both

can be combined freely with several object store implementations ranging from garbage

23

collected, paged main memory implementations suitable for personal computers to sophis-
ticated persistent store implementations exploiting virtual memory hardware available on
file servers.

The ability to inspect abstract program representations at run-time, to generate new
executable code from program representations and to link newly created code to “live”
systems is a key technology for generic system interoperability. This functionality had to
be emulated in the DBPL project either by resorting to interpretation techniques (e.g., to
execute access plans generated by the query optimizer) or ad-hoc binding mechanisms in
the distributed DBPL system.

It will be interesting to compare the efficiency of the layered Tycoon architecture that
does not provide set-abstractions at the store level with the efficiency of traditional, tailored
DBMS query interfaces.

4.2 Beyond First-Order Type Systems

Given the architecture in Fig. 2, several tasks handled by hard-wired algorithms inside the
DBPL runtime system (Fig. 1) or inside an SQL database server can be defined in the TL
language. For example, it is possible to define new collection types (bulk data structures)
and iteration abstractions (query formalisms) as well as higher-level language concepts
for integrity maintenance and transaction management. In this section, we demonstrate
merely how these tasks can be delegated to external servers while giving the user the
illusion of a fully integrated persistent system.

In order to factor out repeating generic programming tasks from individual applications
into reusable library code, TL requires type abstraction capabilities that are beyond classi-
cal first-order type systems. The type-theoretic starting point for TL is F<, a second-order
lambda calculus with subtyping [7]. This is extended by a rather small set of standard
programming concepts (base types, tuples, arrays, control structures and exceptions) as
found in other functional or imperative programming languages. Furthermore, the type
concepts of F¢ are generalized to higher-order (in the spirit of Quest [6]), providing the
formal basis for generic interoperability as sketched in the Sec. 3.

In the following, we express an idea how the type-safe integration of external generic
servers is accomplished in the Tycoon system. Due to space limitations we cannot go
into the details of the language TLbut based on the informal Tycoon model presented in
Sec. 2.1 the reader should be able to follow the examples. A formal definition of TL can
be found in [26]. Here is a (simplified) interface taken from the current Tycoon libraries
that describes the signatures of the polymorphic functions exported by an SQL server:

interface SQIL export
error :Exception with sqlError :String end
Table(E<:Tuple end)<:Ok
openTable(Dyn E<:Ok name:String):Table(E)
insert(E<:Ok var table:Table(E) tuple:E):Ok
+, :-(E<:Ok var table:Table(E) tuples:Table(E)):Ok
delete(E<:Ok var table:Table(E) where(:E):Bool):0Ok

24

end

This interface exports an abstract type operator Table that maps a tuple type E (any
subtype of the empty tuple type) to a hidden type (an arbitrary subtype of the type Ok
which corresponds to type Any in Sec. 2.1). This parameterized hidden type describes the
type of SQL tables with elements of type E. The type operator Table is used in subsequent
function signatures of this interface, capturing the fact that the only way to manipulate
SQL tables is via these generic functions. There may be several modules implementing this
interface, i.e. defining type, value and location bindings that match the specified signatures:

module ingres import DynamicSQL export
let error=exception “Ingres Error”
with sqlError :String end
Let Table(E<:Ok) =
Tuple hostld, tableld :String ... end
let openTable(Dyn E<:Ok name:String) =
begin ... end

end
The scope for modules and interface names is represented explicitly via libraries:

library SQLLib with
interface DynamicSQL ... SQL
module ... ingres :SQL oracle :SQL
hide DynamicSQL ...

end

The library SQLLib exports an interface SQL and two modules implementing this interface,
and it hides several local modules required for gateway implementation. Libraries typically
appear as components of larger libraries:

library PhoneApplication with
library SQLLib
interface PhoneDB
module phoneDB :PhoneDB test :Main

end

The PhoneApplication subsumes an interface to an external Ingres PhoneDB (see DB
definition in Sec. 2.5):

interface PhoneDB import ingres export
Let Entry=Tuple name:String num:String end
Let Fee = Tuple prefix :String cost :Int end
var register :ingres.Table(Entry)
var fees :ingres.Table(Fee)
end

25

The binding to the external relation variables is established in the module implementation:

module phoneDB import ingres export
let var register=ingres.openTable(“register”)
let var fees=ingres.openTable(“fees”)

end

A main program may use the bindings provided by the phone database as arguments to
the SQL interface functions:

module test import ingres phoneDB export
open phoneDB
ingres.insert(register tuple “Peter” “249” end)
ingres.delete(fees fun(f:Fee) f.prefix>= “800")
end

This example illustrates how higher-order type systems contribute to lean languages and
systems. All the code necessary to implement the SQL gateway is encapsulated in a
library that has to be imported only by those applications that actually need this service.
Furthermore, the “type rules” which ensure that clients make proper use of this service
are also encapsulated by the library interface signatures and do not need to be hard-wired
into the language or its compilers. (Further examples of TL signatures for object-oriented
and deductive data models are given in [21]).

As a specific example, the SQL statement delete ...from ...where ... removes all
elements of a table that fulfil a given predicate which has to be compatible with the
table structure. These semantic restrictions are captured correctly by the signature of the
function delete in the interface SQL. It specifies that the function works uniformly over
all types E given a location binding to a table with elements of type E and a binding to a
function where mapping elements of type E to a boolean value (i.e. a predicate on domain

Given the flexibility of higher-order type systems, it is not necessary to limit the lan-
guage to a fixed set of base types. In fact, Tycoon does not provide any built-in operations
on base types (except the conditional for booleans). The usual arithmetic and string opera-
tions are all implemented in external libraries that are (dynamically) bound to the Tycoon
system. This makes it particularly easy to modify the internal representation of the base
types or to add new base types with their associated operations as abstract data types
(e.g. sound or pixel data types).

5 Conclusion

Within a uniform framework based on the notions of types, signatures, values and bindings,
this paper presents two approaches to reduce the complexity of Persistent Object Systems
and to increase significantly programmer productivity.

26

The relational database language DBPL provides built-in system and language support
for a uniform handling of computational objects whether they are local or remote, short-
lived or persistent, small or large. Generic gateways provide transparent and optimizing
access from DBPL to external programming languages and commercial database systems.

The Tycoon environment minimizes the amount of built-in system and language sup-
port by exploiting higher-order type concepts and by strictly separating the issues of data
storage, data manipulation and data modelling into three distinct formalisms and system
layers.

We expect such lean languages and systems, where most of the functionality of a Per-
sistent Object System is achieved by importing external services into a conceptually sound
linguistic framework, to possess a higher potential for scalability, portability and interop-
erability than classical “all-in-one” database systems.

References

[1] ISO / IEC JTC 1 / SC21/ WG 3. Information processing systems — open system
connection (OSI) — remote database access (RDA), generic model. Technical report,

1SO 9579, 1991.

[2] ISO / IEC JTC 1 / DIS 8824. Abstract Syntax Notation One (ASN.1), draft inter-
national standard. Technical report, [SO, 1992.

[3] M. Abadi, L. Cardelli, B. C. Pierce, and G.D. Plotkin. Dynamic typing in a statically
typed language. Report 47, DEC Systems Research Center, 130 Lytton Avenue, Palo
Alto, 94301 CA, June 1989.

[4] M.P. Atkinson and P. Bunemann. Types and persistence in database programming
languages. ACM Computing Surveys, 19(2), June 1987.

[5] L. Cardelli. Structural subtyping and the notion of power type. In Proceedings of the
Fifteenth ACM Symposium on Principles of Programming Languages, 1988.

[6] L. Cardelli. Typeful programming. Report 45, DEC Systems Research Center, 130
Lytton Avenue, Palo Alto, 94301 CA, May 19809.

[7] L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of system F
with subtyping. In T. Ito and A.R. Meyer, editors, Theoretical Aspects of Computer
Software, TACS’91, Lecture Notes in Computer Science, pages 750-770. Springer-
Verlag, 1991.

[8] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys, 17(4):471-522, December 1985.

9] R.G.G. Cattell. Next-generation database systems. Communications of the ACM,
34(10), October 1991.

27

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

T. Coquand and G. Huet. Constructions: a higher order proof system for mechanizing
mathematics. Technical Report 401, INRIA, Domaine de Voluceau Rocquencourt
78153 Le Chesnay Cedex - France, May 1985.

J.R. Corbin. The Art of Distributed Applications. Sun Technical Reference Library.
Springer-Verlag, 1991.

J. Eder, A. Rudloff, F. Matthes, and J.W. Schmidt. Data construction with recursive
set expressions in DBPL. In Proceedings of the Kiev East/West Workshop on Next
Generation Database Technology, volume 504 of Lecture Notes in Computer Science,

April 1991.

M.A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

Object Management Group. The common object request broker: Architecture and
specification. Document 91.12.1, Rev. 1.1, OMG, 1991.

P. Hudak and P. Wadler. Report on the programming language Haskell version 1.2.
SCM SIGPLAN Notices, 21(7):219-233, July 1986.

W. Johannsen, L. Ge, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. Database
application support in open systems: Language support and implementation. In Proc.

IEEFE 4th Int. Conf. on Data Engineering, Los Angeles, USA, February 1988.
W. Johannsen, W. Lamersdorf, K. Reinhard, and J.W. Schmidt. The DURESS

project: Extending databases into an open systems architecture. In Advances in
Database Technology, EDBT 88, volume 303 of Lecture Notes in Computer Science,
pages 616-620. Springer-Verlag, 1988.

W. Kim and F.H. Lochowsky. Object-Oriented Concepts, Databases and Applications.
ACM Press Books, 1989.

G.N.C. Kirby. Persistent programming with strongly typed linguistic reflection. FIDE
Technical Report Series FIDE/92/40, Fachbereich Informatik, Universitaet Hamburg,
Germany, 1992.

P. Martin-Lof. An intuitionistic theory of types: predicative part. In H.E. Rose and
J.C. Sheperdson, editors, Logic Colloguium 1973, pages 73-118, Amsterdam, 1975.
North Holland Publishing Company.

F. Matthes. Persistent Object Systems: Linguistic and Architectural Foundations.
Springer-Verlag, 1993. (in German, to appear).

F. Matthes, A. Rudloff, J.W. Schmidt, and K. Subieta. The database programming
language DBPL: User and system manual. FIDE Technical Report FIDE/92/47,
Fachbereich Informatik, Universitaet Hamburg, Germany, July 1992.

28

23]

[24]

[34]

F. Matthes, A. Rudloff, J.W. Schmidt, and K. Subieta. A gateway from DBPL to
Ingres. FIDE Technical Report Series FIDE/92/54, Fachbereich Informatik, Univer-
sitaet Hamburg, Germany, November 1992.

F. Matthes and J.W. Schmidt. The type system of DBPL. In Proceedings of the Sec-
ond International Workshop on Database Programming Languages, Salishan, Oregon,

pages 255-260, June 1989.

F. Matthes and J.W. Schmidt. Towards database application systems: Types, kinds
and other open invitations. In Proceedings of the Kiev East/West Workshop on Next
Generation Database Technology, volume 504 of Lecture Notes in Computer Science,

April 1991. (also appeared as TR FIDE/91/14).

F. Matthes and J.W. Schmidt. Definition of the Tycoon language TL — a preliminary
report. DBIS Tycoon Report 062-92, Fachbereich Informatik, Universitaet Hamburg,
Germany, October 1992.

R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348-375, 1978.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press,
Cambridge, MA, 1990.

R. Morrison, M.P. Atkinson, and A. Dearle. Flexible incremental bindings in a persis-
tent object store. Persistent Programming Research Report 38, Univ. of St. Andrews,
Dept. of Comp. Science, June 1987.

J.E. Richardson. E: A persistent systems implementation language. Technical Report
868, Computer Sciences Department, University of Wisconsin-Madison, August 1989.

RSRE. TDF specification. Technical report, Defense Research Agency, RSRE, St.
Andrews Road, Malvern, Worcestershire WR 14 3PS, UK, October 1991. (2 parts).

J.W. Schmidt and F. Matthes. Modular and rule-based database programming in
DBPL. FIDE Technical Report Series FIDE/91/15, Fachbereich Informatik, Univer-
sitaet Hamburg, Germany, February 1991.

J.W. Schmidt and F. Matthes. Naming schemes and name space management in the
DBPL persistent storage system. In Proceedings of the Fourth International Workshop
on Persistent Object Systems, Martha’s Vineyard, Massachusetts. Morgan Kaufmann
Publishers, January 1991.

J.W. Schmidt and F. Matthes. The database programming language DBPL: Ratio-
nale and report. FIDE Technical Report Series FIDE/92/46, Fachbereich Informatik,
Universitaet Hamburg, Germany, July 1992.

29

[35] D. Stemple, T. Sheard, and L. Fegaras. Linguistic reflection: A bridge from program-
ming to database languages. In Proc. HICSS, Hawait, pages 4655, 1992.

[36] Sun Microsystems. NeWS 2.1 programmer’s guide. Manual 800-4888-10, Sun Mi-
crosystems, 1992.

[37] N. Wirth. Report on the programming language Modula-2. Springer-Verlag, 3rd
edition, 1985.

30

