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Abstract. Growing IT landscapes in and among enterprises face the
challenge of increasing complexity, which complicates root cause analy-
sis and calls for automated support. This paper presents an approach to
correlate events, e.g. anomalies in multi-level monitoring stream data, for
instance conversion rates or network load monitoring. Events, e.g. oper-
ational activities like application deployments and marketing activities
can be taken into account, too. We exploit an Enterprise Architecture
documented as a graph to focus on those correlations, where relationships
are already known. Therefore, different data source types are identified.
We present a minimal prototypical implementation called MLAC that
shows first results of the feasibility of the approach, in particular to cor-
relate events and level shift anomalies in an artificial web-shop setup. It
includes a dynamic visualization of the correlations in the EA graph.

Key words: event correlation, anomaly detection, outlier detection,
stream data types, anomaly types, enterprise architecture, multi-level
monitoring, runtime monitoring, time series data

1 Introduction

The management of large IT landscapes is a big challenge for enterprises. Digi-
talization is currently recognized as a major trend. Therefore, IT landscapes of
enterprises can be assumed to become even larger and more complex, also due
to the interconnection of IT landscapes from different enterprises. One key chal-
lenge is to identify root causes for problems occurring within these IT landscapes.
This is difficult, because often a bunch of monitoring tools is used, which com-
plicates the correlation of events. Moreover, the effects of problems sometimes
emerge in multiple key performance indicators (KPIs), e.g. in monitoring data
recorded from business processes, applications, hardware and networks. Thus,
a monitoring solution covering all sources is desirable. In addition to that, our
hypothesis is that the dependency information, such as captured by Enterprise
Architecture Management (EAM) tools, could facilitate the identification of root
causes.

http://wwwmatthes.in.tum.de


2 Jörg Landthaler, Martin Kleehaus and Florian Matthes

A layered perspective on monitoring solutions is not new, cf. [1]. Similar
to that a standard Enterprise Architecture Management (EAM) model distin-
guishes between business, application and infrastructure layers, where each per-
formance indicator can be assigned to. Moreover, events constitute an efficient
way of dealing with relevant information from time series data and has been
used by several researchers, cf. Section 2. Our idea is to perform anomaly detec-
tion on each of the performance indicators and to correlate changes of different
performance indicators and also events induced by operational activities on the
basis of the information contained in EA models. An Enterprise Architecture
(EA) model can be used to document dependencies of performance indicators of
different EA layers a priori and is often maintained by EA specialists for their
own needs. This can be exploited to focus first on correlations, where relation-
ships are already documented. We assume that the correlations detected by this
approach speed up the process of root cause analysis, because there is already a
documented dependency. Figure 1 illustrates the idea of our approach. Further-
more, approaches exist to discover these dependencies automatically, known as
EA discovery, that could be used to automate the process of the graph generation
at least to some degree.

A simple use case to illustrate the applicability of our approach could be for
example the conversion rate as a KPI in the business layer of an EA that depends
on multiple servers. On the servers the corresponding web-shop application or
parts of it (e.g. load-balancer, web-servers, databases) are deployed and running.
Here, several standard performance indicators of servers could be used to detect
erroneous behavior of the server, e.g. ping results, cpu load, network bandwidth
and alike.

This work is part of the integrated multi-level monitoring part-project [2],
[3] of the TUM Living Lab Connected Mobility (LLCM) project. The inter-
disciplinary TUM LLCM project [4] envisions an open platform to support and
provide new mobility concepts. For this open platform central integrated mon-
itoring services shall be developed including a capability to logically connect
monitoring information from different layers of the EA model. However, our
general-purpose approach can be applied to a multitude of application scenar-
ios.

The key contributions of this work are a new approach to detect correlations
of different types of anomalies and events occurring in an IT landscape based
on information gathered from an enterprise architecture and a minimal viable
prototype called MLAC to demonstrate the feasibility of the approach. There-
fore, we also identify different data source types and discuss potential anomaly
detection methods and further suitable events.

The remainder of this paper is organized as follows: Section 2 shortly reviews
relevant prior and related work. Our general idea of multi-level anomaly corre-
lation (MLAC) is described in Section 3. In Section 4 we identify different types
of data streams and their anomalies and changes. The prototypical implemen-
tation is described in Section 5. In Section 6 we discuss limitations of both: the
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Fig. 1. Illustration of our approach for the correlation of anomalies in KPI streams
(monitoring data) and events among different layers of an enterprise architecture model.
Correlations can be detected among anomalies and anomalies, anomalies and events
and on events and events within one or across multiple layers of the EA.

idea and our prototype. We also present ideas for future work. Finally, Section
7 briefly concludes this paper.

2 Related Work

Time series data typically occurs in the domain of monitoring. A plethora of work
has been done on monitoring KPIs for each of the EA layers, including extensive
reviews, e.g. on the topics of business process monitoring [5], network monitoring,
e.g. [6] or application monitoring, e.g. [7]. Several monitoring approaches monitor
data from two layers, e.g. grid monitoring [8] or eventually even three layers, e.g.
cloud monitoring, see e.g. [9].

A handful of approaches attempt to combine event data extracted from mon-
itoring data from several EA layers. For instance Zeginis et al. [10] collect mon-
itoring data from all EA layers, but they do not correlate the data. Vierhauser
et al. [11] propose the ReMinds framwork that uses complex event processing to
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correlate events based on monitoring data, but only uses monitoring data from
the infrastructure and application layers. Baresi et al. [12] and Mos et al. [13]
correlate events from all EA layers. However, none of these approaches exploits
the structural information among the entities in the layers.

The domain of detecting outliers and anomalies has a long history. Even the
very first definition of an outlier dates back to 1980, and is given by Douglas M.
Hawkins [14] ”An outlier is an observation that differs so much from other obser-
vations as to arouse suspicion that it was generated by a different mechanism.”
In the following decades, especially in the domain of time series forecasting
many methods have been developed, e.g. robust regression [15], ARMA models
[16] [17] [18] [19], and ARIMA models [20] [21], mostly for forecasting purposes.
They have been used for anomaly detection later on.

Albeit anomaly and outlier detection can be applied on several data types, we
only focus on work capable of using time series data. Analogue to the time series
forecasting domain many methods are designed for specific application domains.
Aggarwal [22], Chandola et al. [23] and Hodge et al. [24] provide an extensive
overview of outlier detection techniques spanning multiple research areas and
application domains. Gupta et al. [25] provide an extensive overview of anomaly
detection for temporal data like time series data, data stream, distributed data,
spatio-temporal data or network data. Ranshous et al. [26] compiled a consid-
erable survey about anomaly types that occur in dynamic networks and intro-
duced five methods how to detect these anomalies. A further survey conducted
by Akoglu et al. [27] comprises not only anomalies types and detection meth-
ods in dynamic networks but also provides an extensive overview about static,
dynamic, attributed and plain graphs. Furthermore, the authors highlight the
effectiveness, scalability, generality, and robustness aspects of the introduced
methods and address major techniques that facilitate the root cause analysis of
the detected anomalies. We restrict ourselves to a suitable amount of types for
the illustration of our approach.

Finding the root causes of anomalies has been extensively studied in var-
ious domains. In computer networks, effort has been made on handling both
real-time events and link information by means of an extension of the Princi-
pal Component Analysis (PCA) algorithm [28], or by the so-called hierarchical
domain-oriented reasoning mechanism [29]. Yan et al. [30] present an approach
to determine the anomaly localization by passively monitoring the end-to-end
performance associated with end-users from inside an Internet Service Provider
(ISP) network. The authors of [31] describe a fault localization methodology in
an end-to-end service system by using belief networks. The graph models the
dependency among network components layered in a multi-level system. Each
layer is associated with multiple possible failure modes. After detecting anoma-
lies in the system, belief propagation algorithms are running on the graph and
the posterior beliefs are examined to pick out the most likely causes for the
anomalies.

Although these aforementioned techniques are good approaches to determine
the root cause of anomalies by incorporating multiple data flow layers, they
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provide only a very inaccurate investigation of the troubleshooting and does not
consider the business processes on top of the described network. The developers
of the large-scale monitoring systems VScope [32] and Monalytics [33] attempt
to efficiently find the root causes of anomalies by considering the relationships
between components and sensors. In contrast, our approach attempts to find the
root cause of anomalies by comparing simultaneously occurring outliers in time
series data and events collected from several enterprise architecture layers.

Many proposals leverage machine learning and data mining techniques for
finding root causes in systems. One approach is to learn from historical data and
find anomalies in the current data. [34] presents a decision tree learning approach
to diagnose failures in large internet sites. The authors of [35] uncover root
causes of failures in sensor network applications by performing discriminative
frequent pattern mining based on frequent patterns generated by the so-called
Apriori algorithm. Both methods employ supervised algorithms, whereas Kim
et al. [36] introduce an unsupervised model for finding the cause of anomalies
in a service oriented web architecture. The model combines historical and latest
service metric data to rank sensors that are potentially contributing to a given
anomaly. All listed methods do not attempt to find the root cause of anomalies
by detecting correlations between time series data created by means of relevant
KPIs based on the particular enterprise layer.

From the wide variety of outlier detection techniques available, we choose
the BIRCH algorithm proposed by Zhang et al. [37]. BIRCH is an unsupervised
stream data clustering method based on balanced trees. It has notable advan-
tages in comparison to other algorithms: It performs effectively over large data
sets, which is often the case in high frequency time series data and it produces
good clustering from only one scan of the entire data set.

3 Multi-Level Anomaly and Event Correlation (MLAC)

Our approach attempts to find potential correlations of events in an IT land-
scape. The main assumption for our approach is that anomalies or events that
are causally linked occur together within a certain time frame. Events can be
anomalies detected in monitoring time series data or events encoding operational
activities, e.g. version deployments or marketing activities. Therefore, each data
source is considered as a time series (monitoring data and operational events),
see also Section 4.

After the first processing step only events (anomalies detected in time series
data or operational events) are considered. For each event it is assessed, whether
other events occurred within a reasonable time frame. The total number of pos-
sible correlations is reduced by taking into account the information extracted
from an EA, i.e. possible correlations are considered only if a path between the
different data source layers exists in the graph representing the EA.

Within each time step of our algorithm, a limited amount of data is collected
for each data source. Subsequently, the time series pre-processing / change detec-
tion is performed and the events are assessed for possible correlations according
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to the EA graph. Moreover, a time window describing the maximal distance in
time for the possible correlation of events can be set. This process is repeated
for each time step.

It is possible to detect correlations among events only, anomalies detected in
time series data and events and also among anomalies stemming from different
time series data only, with the latter being of course the most interesting combi-
nation. This approach requires the user to maintain a correct and possibly large
EA graph on the one hand. On the other hand, it allows a large flexibility with
respect to the different data source types.

4 Data Source Types and Anomaly Detection Methods

Our approach takes into account anomalies detected on time series data as well
as special events. There are two views on this. Events can be imagined as time
series data with only binary or ordinal values, as depicted in Figure 3. Of course,
they can be saved much more efficiently by only saving the time stamp and the
value when changes occur. Similarly, anomalies can be imagined as events in
time series data. This relationship of the input data is depicted in Figure 2.
Consequently, the input to our algorithm can always be assumed to be a time
series and the output of the anomaly detection or event detection methods can
always be assumed to be events (except for log data).

Time Series Data

Anomalies or outliers
that are extracted from
time series data can be
treated as events.

Conceptually, events, 
e.g. version deployments
can be encoded
as simple time series.

Events

Fig. 2. Illustration of the relation between different possible inputs to our approach.

Nevertheless, there is a multitude of events in time series data that can be
relevant for the detection of possible correlations in the IT landscape. In the
literature different types of anomalies in time series data have been identified,
e.g. by [38] [21] [39]:

– additive outlier (AO) affects only a single observation and jumps back to
the normal behavior after the anomaly occurred. Additive outliers can adopt
a seasonal characteristic which appears as a surprisingly large or small value
occurring repeatedly at regular intervals.
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– innovative outlier (IO) presents an unusual innovation in the time series
and affects all later observation. In detail the observation can increase, decrease
or follow a constant shift. A mixed innovative outlier can be observed when
only one characteristic of the time series, e.g. trend or seasonal component, is
changed by the innovation.

– level shifts (LS) characterize outliers which experience a move in their orig-
inal level. Like an innovative outlier LS anomalies affect many observations
and have a permanent effect.

– temporary changes (TC) describe an anomaly which produces an initial
effect that dies out gradually with time.

– reallocation outlier (RO) introduced by Wu [39] affects a series of coher-
ent additive outliers. In addition, reallocation outliers exhibit the particular
characteristic that all the affects add up to null.

Fig. 3. Binary (left) and ordinal (right) event types encoding e.g. server ping responses,
version deployments or marketing activities (e.g. TV spots)

For our approach, the user needs to manually decide what type of anomalies or
events are relevant for each data source. Therefore, we classify a selection of the
possible events that can occur in the IT landscape:

– Events that can be encoded in binary or ordinal valued time series, e.g.
server ping responses, version deployments or marketing activities: Figure 3.

– Simple events in real-valued time series data, e.g. exceeding an upper bound
threshold or falling below a certain lower bound threshold, see Figure 6
for an illustration.

– Anomalies extracted from linear or cyclical time series models using anomaly
or outlier detection methods.

– Complex time series data can be reduced to trend, cyclical, seasonal and
noise components using time series decomposition. The trend and cyclical
components can then be fed into anomaly and outlier detection methods for
linear or cyclical time series data.

– Events extracted from semi-structured or structured text documents, e.g.
log files.
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Fig. 4. Trend (left) and seasonal or cyclical (right) time series data modeling for
example conversion rates or network load monitoring data.

Some events in the IT landscape can be encoded simply as binary on/off values,
e.g. server ping responses. Marketing activities and relatively sparse events in
time can easily be encoded as ordinal time series values. The automated detection
of outliers in real-valued time series data is much more challenging. There are
several types of anomalies. As already discussed there are single outliers as well
as qualitative changes. The latter might be more relevant for concrete use cases.
Furthermore, there exists a plethora of different algorithms for anomaly and
outlier detection on time series and stream data. For each data source a specific
use case requires one or several different types of anomalies to be detected.

Fig. 5. Upper and lower bound thresholds on time series data that encodes e.g. pre-
ventive alerts on network bandwidth load monitoring data.
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Fig. 6. Illustration of different anomaly types extracted from time series data known
in the literature, e.g. additive (left), innovative (middle) and level shift (right). Most
relevant for a conversion rate time series are innovative anomalies. However an increas-
ing growth depicted in i) can be desirable, whereas smaller decreases ii) or a stopping
of growth could be considered normal, and iv) switching to a decrease in growth could
be considered as a relevant anomaly. Additionally, these changes in the trend can be
preceded by a significant drop or rise in the values of the time series.

5 The MLAC Prototype

The Multi-level events and anomaly correlation (MLAC) prototype is currently
designed as a workbench to evaluate the feasibility of our approach. The overall
architecture of MLAC and the data flow among its components is depicted in
Figure 7. In general, it follows a model-view-controller pattern approach, sepa-

Fig. 7. Illustration of the architecture of the MLAC prototype and its data flows.
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rating data management, processing of data and visualization of results. Within
the processing part it can be divided into two sub parts: pre-processing of the
time series data and the correlation of events. One result of this division into
components is that each component can rather easily be improved or replaced.
The individual components of the MLAC prototype are described in the follow-
ing:

– Database / Data Warehouse, Data Integrator, Data Generator: Cur-
rently, we generate artificial streaming data in a Data Generator component
and store it in a HSQLDB database. For real world applications a time series
database or a data warehouse to keep data is essential, e.g. Pentaho that col-
lects data using a Data Integrator component from various sources, e.g. from
marketing analysis tools like Google Universal or Piwik.

– Data Collector: This component of MLAC is an interface to access relevant
time series data from a database or adData warehouse. It queries the data
store and selects only time series data within the configured time frame.

– Anomaly Detector: The quality of the proposed correlations heavily de-
pends upon the quality of the detected anomalies or changes. Therefore,
the Anomaly Detector component provides an interface to invoke a suitable
anomaly detection algorithm on the time series data.

– Anomaly Correlator: The core component of MLAC is the Anomaly Corre-
lator. It runs in an endless loop, where within each loop the algorithm matches
all detected anomalies with respect to the edges in the EA graph and time
constraints.

– EAM Tool: The EA architecture in an enterprise context is often documented
in an EAM tool, e.g. ArchiMate or alike. Currently, the graph is directly
modeled in MLAC, but a component that imports the graph information from
EAM tools is planned.

– Visualizer: The visualizer component depicts the EA as a graph and high-
lights edges.

In order to perform a first evaluation of the feasibility of our approach, we choose
a very simple and artificial setup. The enterprise architecture setup of a simple
web-shop example is depicted in Figure 8 b): Ten servers on the infrastructure
level contribute to two different business level KPIs (conversion rates). Five
servers contribute linearly to each of the conversion rates. The server availability
is simulated and measured as simple binary time series (cf. Figure 3) representing
the server ping responses.

If one server is not running, the conversion rate will drop for one fifth of its
normal value. Note that multiple servers can shut down in parallel. The conver-
sion rate hence contains level shifts and we perform an outlier detection using
the BIRCH algorithm on the conversion rates. We use the common heuristic to
consider the smallest cluster to contain most likely outliers. The idea is that the
detection of changes in the server ping responses is sharp. This is done to evalu-
ate if the BIRCH algorithm is a suitable algorithm to detect level shift changes
in the conversion rates. Figure 8 illustrates the textual and visual output of our
prototype.
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Fig. 8. Screenshots of the prototype’s different outputs: a) Illustration of source data
streams (multiple time series depicted in one plot for a clear graphical presentation), b)
Graphical illustration of the detected correlations in the EA model depicted as a graph:
Correlations indicated by bold red edges, c) Textual output of detected correlations.
In this example two business KPIs (conversion rates) are plotted in the upper part of
a) and the lower of the two drops around 17:37:14 for about one second. At the same
time server 9, the bottom line in plot a) fails to answer. For this artificial example our
approach is capable of detecting the correlation, which is displayed textually in the
three bottom lines of c) and also indicated by the bold red line in b). Note that [40] is
used for b).



12 Jörg Landthaler, Martin Kleehaus and Florian Matthes

Using this simple artificial setup, we can see that the BIRCH algorithm
needs to be fine-tuned using the distance threshold parameter that controls the
diameter of clusters and indirectly also controls the total possible number of
clusters for a particular data set. It is necessary to find a value in a range so
that the BIRCH algorithm results neither in a single large cluster nor in as many
cluster centers as there are values. Despite these manual needs for fine-tuning,
the BIRCH algorithm is capable of detecting the points in time, where level
shifts occur. Using the heuristic that the smallest cluster center contains the
outliers, it is not possible to detect zero outliers (if there are none in human
terms). We use a value that detects more outliers than necessary. This is due to
the simple setup. Moreover, using the EA graph we can filter out unnecessary
outliers, because there are no other events in the system at the same time.

So far a simple evaluation with a toy setup shows that the approach is feasible
in general and that a fine-tuning of the distance threshold parameter influences
the quality of the detected anomalies. It is possible to tune it in a way that
relatively simple level shifts in a time series with small noise can be detected
and that a small over-fitting can be accepted because of the sharp nature of the
events of the toy example.

6 Limitations and Future Work

A current limitation of the prototype and subject to future work is that changes
are not correlated among disjoint time steps, i.e. a change that occurs a short
time period before or after a change on a different stream are not considered
to be correlated. This can be resolved by a window of a fixed number of time
steps around the currently considered time step. However, it would increase the
total number of necessary comparisons by the number of considered time steps.
Moreover, a current limitation is that the data streams need a joint time axis.
A support for variable time axis granularity is planned.

Currently the prototype is build purely in Java. It should be extended to be
accessible and configurable via a web-based frontend in the future. Additionally,
the data should be stored in either a time series database or a data warehouse
like Pentaho [41]. A time series database has the advantage of a highly optimized
software for storing and querying time series data. In contrast to that Pentaho
has the advantage of easy integration of existing data sources. Moreover, the
integration of a complex event processing framework, e.g. Drools Fusion [42]
could simplify and empower the configuration of the prototype.

A major limitation of our approach in general is that it depends heavily on a
properly maintained enterprise architecture documentation (the EA graph) and
the quality of the detected anomalies and changes. With respect to the quality of
detected anomalies several improvements can be thought of: Anomalies depend
on the size of the sliding window, i.e. the number of data points considered.
Hence, the anomaly detection methods could be performed on different window
sizes and a subsequent majority voting could improve the anomaly detection.
Also, machine learning methods could be applied on the resulting anomalies to
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improve the quality of the anomaly detection. Last but not least, several different
methods like BIRCH and AnyOut could be applied simultaneously on the same
data in order to detect anomalies of higher quality.

As future work we intend to experiment with different anomaly detection al-
gorithms, especially after the application of time series decomposition algorithms
on real world data.

7 Conclusion

The MLAC prototype correlates changes in monitoring data streams from dif-
ferent elements in enterprise architecture. A major benefit is the reduction of
necessary comparisons by comparing only anomalies or changes along the edges
of a graph encoding an enterprise architecture. Anomalies can be detected with
any anomaly or outlier detection algorithm. Therefore, we identified different
types of anomalies from a use case point of view. Moreover, we can extend the
approach to encode changes or activities like software deployments or marketing
activities as monitoring data streams. We achieve promising results with our
first minimal viable prototype. It encodes server availability of multiple servers
that linearly influence fictive business KPIs. We use a BIRCH implementation
to detect anomalies on the business KPI monitoring data streams. However, it
is clear that the quality of detected possible correlations heavily depends upon
the quality of detected anomalies.

For future work it is essential to evaluate the approach on real world data.
Besides this, the prototype can be extended in various ways with the most in-
teresting being the test of different anomaly detection algorithms for different
monitoring stream data.
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