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Abstract—In this paper, we first describe the tension between
type-safety and flexibility in EA analysis tools. We then present
a web-based system that combines the benefits of static typing
with the flexibility of a dynamic and collaborative meta-modeling
platform.

In particular, we describe the underlying meta-model, the
syntax and semantics of the expression language, and derive
an associated type system, including polymorphic types, sub-
typing, and limited type inference. We then demonstrate the
benefits of static type-safety for enterprise architects, like syntax
highlighting, code completion, code navigation, and refactoring,
in particular in presence of dynamic meta-model changes. The
paper ends with a description of a case study using the tool for
the analysis of the application landscape complexity using data
from four German banks.

I. INTRODUCTION

Enterprise Architecture (EA) is defined as ”the fundamental
and holistic organization of an enterprise embodied in its
components, relations and its environment” [1]. However, due
to the increasing complexity of EAs [2], the alignment of
an enterprise’s information technology (IT) to its business
becomes a challenging task. Moreover, this task becomes
even harder when also taking into account the increasingly
turbulent business environment due to influencing factors like
technology innovation, market changes, and legal aspects [3].
To cope with both the EA’s complexity and the dynamics of
its environment, Enterprise Architecture Management (EAM)
involves the holistic planning, development, and controlling of
an EA and its evolution [4]. By ensuring the EA’s flexibility,
efficiency, and transparency, EAM is a method for achieving
efficient business IT alignment [5] and hence for improving an
enterprise’s overall business performance [3].

Various EAM approaches (e.g., TOGAF [6], ArchiMate [7]
and the Zachman Framework [8]) understand the EA as
a holistic and descriptive model of the enterprise. In the
remainder of this paper, we refer to this descriptive model
as the (qualitative) EA model. Prevalent EAM tools imple-
menting this model-based approaches support an adaptable
Meta-model, which facilitates the definition of organization-
specific EA models [9]. Furthermore, an agile and collaborative
EAM approach [5] addresses the challenge of a turbulent
business environment by enabling an iterative and collaborative
design and management of the EA. In this way, multiple EAM
stakeholders are contributing to an incremental development
of EA models and meta models, facilitating the immediate
and stakeholder-driven adaption of the EA on changes of the
economic, technical, and regulatory environment [4].

However, due to the size and complexity of EAs, their
systematic controlling as part of the EAM discipline is not

possible solely with qualitative EA analysis [3], [10], [11],
but also with quantitative EA analysis. Therefore, metrics are
required to provide a reliable assessment of the achievement of
predefined EAM goals, e.g., ensuring compliance, increasing
homogeneity, and reducing operating costs [12]. In model-
based EAM approaches, the metrics are defined by a proper
language capable of defining queries and calculations based on
the qualitative EA model [13]. Thereby, the metrics form the
quantitative model of the EA. However, the design question
whether the language for defining metrics is statically type-
safe [14] or not—and thus supposedly more flexible—has a
great impact onto the actual behavior of an analysis tool, e.g.,
regarding its robustness to changes of the underlying meta
model. In this context, static type-safety means that an EA
metric’s static semantics [15] is validated at compile-time. In
this paper, we highlight the benefits as well as challenges of
static type-safety in the context of EA analysis.

The remainder of this paper is structured as follows: In
Section II we describe a dynamic and collaborative approach
to meta modeling. Based on that, we discuss the expressiveness
required for EA analysis and subsequently derive an associated
type system in Section III. We then present the prototypical
implementation and benefits of a web-based system combining
the benefits of static type-safety with the flexibility of iter-
ative and collaborative meta modeling (c.f. Section IV). In
Section V, our approach is evaluated by conducting a case
study, whereas in Section VII we summarize the paper and
give an outlook to future research topics.

II. THE UNDERLYING META MODEL

As motivated in Section I, in model-based EAM the
metrics are based on the qualitative EA model. Specifically,
metrics are defined as queries and calculations referring to EA
model elements, e.g., types, attributes, and relations [13] (c.f.
Figure 1). Therefore, in order to compare a statically type-
safe approach to EA analysis with a rather flexible and unsafe
one, and in particular to outline the benefits of the former one,
we present a concrete meta model-based approach to EAM,
namely Wiki4EAM [16].

Wiki4EAM—a wiki-based approach to EAM [17]—
addresses the mismatch between existing unstructured in-
formation in enterprises and rigid information structures of
prevalent EAM tools, whereas instances of the EA model
are represented as wiki pages. In this approach, an initially
unstructured EA model is incrementally and collaboratively
enriched with structure (types, attributes, and relations) allow-
ing the emergent development of qualitative EA models. The
emergent structuring of wiki pages is supported by the so-
called Hybrid Wikis [16]. The Hybrid Wiki model in Figure 2
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Fig. 1. EAM stakeholders, the organizational context, as well as EAM goals
and concerns have an impact onto the EA [4]. Moreover, EA metrics forming
the quantitative EA model are based on the the qualitative model consisting
of EA model elements, i.e., types, attributes, and relations.

Space
space

TypeDefinition

AttributeDefinition

Page
type

0..1

1

Attribute

AttributeValue

NumberValue …

space

1

definition

0..1

TypeConstraint

NumberConstraint …

attributes

values

attributeDefinitions

typeConstraint*

*

0..1

*

multiplicity : Multiplicity [0..1]

<<enum>>

Multiplicity

Any number
At least one
Exactly one

Maximal one

1

1

* *

1

1

*

*

Fig. 2. The Hybrid Wiki data model by Matthes et al. [18].

facilitates the incremental definition of the data model’s types
(TypeDefinition), which in turn may have several attribute
definitions (AttributeDefinition) with certain multiplicities and
attribute types (TypeConstraint). The types and hence the im-
posed schema can be applied to wiki pages (Page, representing
instances of the data model) at run-time, leading to an emergent
structuring of initially unstructured content. Additionally, both
the instances and schema elements of the Hybrid Wiki model
are logically structured [15] into workspaces (Space).

Therefore, the elements of the Hybrid Wiki model serve
as a foundation for the definition of metrics for quantitative
EA analysis, whereas in particular the aspect of collaborative
and iterative meta modeling is a major challenge for the
quantitative model’s type-safety.

III. THE UNTYPED CORE EXPRESSION LANGUAGE

Based on the underlying meta model presented in Sec-
tion II, we firstly motivate the expressiveness a language has
to provide in order to define best-practice metrics [12]. There-
after, we describe a proper untyped core expression language,
and subsequently derive challenges for implementing static
type-safety.

As shown by Monahov et al. [19], an expression language
for the definition of prevalent EA metrics has to provide a
certain set of basic types, e.g., String, Number, Boolean, and

Sequence. Moreover, since metrics are implemented as queries
of the underlying EA model, the language has to support
the following classes of operators for manipulating sequences
(ordered multi-sets) of EA objects of a given type (e.g., all
objects of type Business Application):

• Query operators include projection (select), selection
(where), grouping (groupby), and sorting (orderby).

• Aggregation operators fold up all elements of a
sequence to a single value, e.g., count and sum.

• Quantifier operators return either true or false based
on a given predicate, e.g., any (Returns true if at least
one element fulfills the given predicate) and all (Re-
turns true if all elements fulfill the given predicate).

• Set operators produce a sequence based on the pres-
ence or absence of equivalent elements within another
sequence, e.g., except and intersect.

• Element operators choose a certain element of a
sequence, e.g., first and last

• Partitioning operators divide a sequence into sub
sequences, e.g., take and skip

These sequence operators are based on Microsoft’s Standard
Query Operators [20].

The untyped core expression language as a functional pro-
gramming language implements the aforementioned sequence
operators as higher-order functions [21], i.e., functions whose
parameters are also functions (e.g., predicates in case of
the filter operator). In the context of higher-order functions,
lambda-expressions [14], [22] are used to define anonymous
(nameless) functions. The untyped core expression language
uses C#’s lambda notation, whereas a list of parameters is
followed by an arrow (=>) and the function’s implementation,
i.e., the parameters are mapped to the given function mapping:

( p1 , p2 , . . . ) => (< f u n c t i o n mapping>)

For example, the following lambda expression defines a func-
tion with two parameters and maps these parameters to the
application of an arithmetic addition:

( a , b ) => ( a . add ( b ) )

Therefore, based on the meta model depicted in Figure 4
(type Business Application with an attribute Function points),
a query formulated with the untyped core expression language
and summing up the function points of all business applications
looks like the following:

f i n d ” B u s i n e s s A p p l i c a t i o n ”
. s e l e c t ( ba =>

ba [ ” F u n c t i o n p o i n t s ” ] . f i r s t ( ) )
. sum ( )

In this example, the find operator determines all objects of the
given type (Business Application), whereas the existence of
this type cannot be checked at compile-time do to the fact that
the language is not statically type-safe. Based on the sequence
of objects, the select operator takes a lambda as parameter,
which maps each business application to its function points.



Again, due to the type-unsafety of the language, the existence
and attribute type of the attribute cannot be checked at compile-
time. Moreover, since attributes of the underlying Hybrid Wiki
model potentially have multiple values, an attribute’s value
in the untyped core expression language is expected to be
a sequence of objects, wherefore the application of the first
operator is required to gather the single value of the attribute.
Finally, the sum operator sums up a sequence of numbers,
whereas again the actual type of the source sequence cannot
be determined at compile-time. As shown by Monahov et
al. [19], the language enables the definition of prevalent EA
metrics [12] on different layers of the EA [4] (e.g., business
layer and infrastructure layer).

As mentioned throughout the last paragraph, the untyped
core expression language does not allow the validation of
an expression’s static semantics [15]. Based on the afore-
mentioned example, this means that a tool implementing this
language is not able to check for the existence of Business
Application or the existence and type of its attribute Function
points at compile-time. As a consequence, the tool is not able
to statically analyze an expression’s semantic dependencies to
elements of the quantitative and qualitative EA model, e.g., the
aforementioned metric as element of the quantitative model is
referring to the attribute Function points as element of the
qualitative model. Therefore, if the attribute Function points
would be renamed, the metric would become inconsistent,
since the tool cannot apply an automated refactoring of the
metric’s definition due to the missing knowledge of the se-
mantic dependencies between elements of the quantitative and
qualitative EA model.

In order to facilitate the validation of a metric’s static
semantics, analysis of an expression’s semantic dependencies,
and automated refactoring on changes of model elements,
we extend the untyped core expression language by static
type-safety. Thereby, we derive a type system facilitating
the implementation of a statically type-safe language, which
includes the following properties:

• Sub typing: Inheritance [14], [21] is a common
approach for facilitating the re-use of functionality.
For example, in the aforementioned example the select
operator is defined for sequences in general, but can
be applied to sequences of arbitrary types of objects,
i.e., the select operator is reusable for all types of
sequences (e.g., a sequence of business processes,
functional domains, or infrastructure elements).

• Polymorphic types: In the aforementioned example,
the return type of the select operator depends on
the type of the source sequence on the one hand,
and on the return type of the lambda on the other
hand. Specifically, the select operator’s signature can
be described by Sequence < T > ×(T → U) →
Sequence < U >. However, in order to define
sequence operators with type parameters (T and U),
static type-safety in the context of EA analysis re-
quires polymorphic types [14].

• Restricted type inference: In order to avoid the
explicit annotation of types to identifiers and thus
to keep expressions readable and simple, in partic-
ular in the definition of lambda parameters, restricted
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Fig. 3. The type hierarchy of the typed model-based expression language.

type inference [14] allows the implicit determination
of the parameter types (e.g., in the aforementioned
expression the type of the lambda’s parameter can
be inferred automatically by observing the source
sequence’s type).

IV. THE TYPED MODEL-BASED EXPRESSION LANGUAGE

Based on the type system derived in Section III as well
as the meta model described in Section II, we designed and
prototypically implemented a statically type-safe language,
namely the typed model-based expression language (MxL).
The following section outlines the highlights of this language’s
type system as well as benefits of the static type-safety.

A. Type System of MxL

As described in Section III, MxL’s type system has to
support sub typing. Therefore, MxL organizes its types in
a type hierarchy, which is depicted in Figure 3. The type
hierarchy also contains the type Function, which is induced
by MxL’s nature of being a functional language.

Furthermore, a function’s signature can be speci-
fied by type parametrization [14] (e.g., the type Func-
tion<Number,Boolean>defines a function with a parame-
ter of type Number returning an object of type Boolean).
Similarly, the type Sequence can be parametrized to spec-
ify the type of a sequence’s elements (e.g., the type Se-
quence<Number>defines a sequence of numbers). As shown
in Figure 3, all types of the qualitative EA model are specified
as sub types of the type Page (representing instances of the EA
model, e.g., Business Application, Process, or Infrastructure
Element). Since these EA types are implemented by types
of the Hybrid Wiki model (c.f. Figure 2), this part of the
type hierarchy is flexible and changeable at run-time and thus
facilitates the incremental development of the EA model.

Furthermore, static type-safety enables the resolution of
identifiers occurring in MxL expressions and the validation
of an expression’s static semantics. The following MxL ex-
pression is semantically equivalent to the previously shown
untyped expression, i.e., it determines all business applications
(by the find-operation), and subsequently applies the sequence
operation sum with a lambda as parameter, mapping each
business application to its function points and summing them
up:

f i n d ’ B u s i n e s s A p p l i c a t i o n ’
. sum ( ( ba : ’ B u s i n e s s A p p l i c a t i o n ’ ) =>

ba . ’ F u n c t i o n p o i n t s ’ )
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Fig. 4. This example shows the computation of the average function points of
business applications. By showing the metrics used by (outgoing references)
or using (incoming references) a certain metric, the information flow through
the quantitative model can be identified as shown in this figure.

In this example, the type checker verifies the existence
of a type Business Application. In this example, the apos-
trophes are required since the type name contains a special
characters (space). Since the type of the find-operator’s result
is Sequence<Business Application>, the type checker ensures
that the lambda’s explicit type matches the expected parameter
type of the sum operator (c.f., polymorphic types [14] as
described in Section III), which is determined by the source
sequence’s type. Since this is the case, the type checker
knows that the identifier Function points in the lambda’s
implementation refers to an attribute of a business application
and can determine its attribute type. In the sum operation, the
result type of the lambda has to be Number, which is the
case in this example, wherefore the expression is semantically
consistent.

By the restricted type inference of MxL, this exemplary
expression can be shortened to the following one:

f i n d ’ B u s i n e s s A p p l i c a t i o n ’
. sum ( ba => ba . ’ F u n c t i o n p o i n t s ’ )

In this example, the type checker implicitly determines
the type of the lambda’s parameter. Furthermore, by an MxL
feature called implicit lambdas, this aforementioned expression
can be even more shortened to the following one:

f i n d ’ B u s i n e s s A p p l i c a t i o n ’
. sum ( ’ F u n c t i o n p o i n t s ’ )

In this case, the type checker determines that the type
of the parameter of the sum operation is not a function.
Hence, it interprets the parameter as the implementation of
a lambda, introduces an implicit and anonymous parameter,
and interprets the identifier Function points as member of this
implicit parameter. Hence, the expression is semantically equal
to the previous one.

Therefore, static type-safety not only enables the validation
of an expression’s static semantics at compile-time, but also
allows to shorten and simplify MxL expressions by using
certain implicit notations.

B. Transparency of Quantitative EA Models

In order to assess the impact of changes of certain metrics,
the user changing the metric has to know which other metrics
are referring to the given metric. Hence, the quantitative model
has to be transparent in the sense that dependencies between
metrics have to be made explicit to the users of the tool.

The static type-safety of MxL allows the validation of
an expression’s static semantics by resolving identifiers and
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Description Returns the sum of function points of all business applications

Return Type Number

Method Stub find 'Business Application'

.sum('Function points')
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Custom Functions
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STATIC::averageFunctionPoints

Fig. 5. The definition of the custom MxL function sumOfFunctionPoints
(c.f. Figure 4). The language automatically determines the relationships of this
function (incoming and outgoing MxL references) fostering the transparency
of the quantitative model.

checking their types. Based on this, the language obtains
all elements the expression refers to (e.g., functions, types,
attributes, etc.), analyzes them, and uses these dependencies
to maintain the quantitative model’s computation graph (c.f.
Figure 4). Figure 5 shows the definition of an MxL function
sumOfFunctionPoints, which has outgoing MxL references to
the sequence operation sum, to the type Business Application
(through the find-operation), and to the attribute Function
points. Assuming there is another function averageFunction-
Points using sumOfFunctionPoints (as depicted in Figure 4),
there is also an incoming MxL reference.

Therefore, when intending to change a certain metric,
the tool implementing MxL shows all other metrics directly
affected by this change (incoming MxL references). This sup-
ports the user in assessing the impact of a change. Moreover,
since maintaining all dependencies between metrics, the tool
is also able to automatically generate the visualization of the
quantitative model as a computation graph similar to that in
Figure 4.

C. A In-Browser Code Editor for MxL

For defining an EA metric by MxL at run time, we
improved the in-browser code editor of the untyped core
expression language by Monahov et al. [19]. Thereby, we
also use MxL’s static type-safety to enhance the code editor’s
features as described in the following:

• Syntax highlighting: The MxL in-browser code editor
supports syntactic highlighting by coloring keywords,
strings, etc. For example, the find keyword as de-
scribed in Subsection IV-A is colored blue in Figure 6.
Moreover, the semantic analysis by the MxL type
checker also allows semantic highlighting by coloring
types, attributes, or relations.

• Code completion: The MxL 2.0 in-browser code
editor provides a list of possible identifiers based
on a prefix as defined by the user. The list of pro-
posals contains elements from both the quantitative
(e.g., existing metrics) and qualitative (e.g., existing
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Fig. 6. The MxL in-browser code editor provides integrated development
environment (IDE) services like syntax highlighting and code completion [15]
with an integrated EA model documentation.

types and attributes) model. In the example shown
in Figure 6, the underlying qualitative model defines
a type Functional Domain as well as two attributes
Function points and Funding, whereas all of them
match the given prefix Fun. Furthermore, static type-
safety allows further refinement of the proposals list
based on the validation of the (partial) expression’s
static semantics.

• Integrated documentation: The MxL 2.0 in-browser
code editor displays the documentation of selected
proposals in the code completion list. For example,
in Figure 6 the user selected the proposal Function
points, wherefore the MxL code editor loads the doc-
umentation of this model element in order to provide
additional information to the user.

• Code navigation: The MxL code-editor supports
the navigation through incoming and outgoing MxL
references. While the code editor does not contain
click-able elements, the incoming and outgoing MxL
references (c.f. Subsection IV-B) allow the navigation
to MxL expressions using or used by a given one (c.f.
Figure 5).

• Error localization: The MxL code editor highlights
the origin of syntactic and semantic errors. When
determining syntactic (e.g., missing closing brackets)
or semantic (e.g., unknown type) errors, the MxL code
editor outputs the position (line and column) of the
error’s origin. For example, if the qualitative model
would not define a type Business Application, the MxL
code editor in Figure 6 would display a proper error
message referring to line 1 and column 5.

D. Refactoring of MxL Expressions

Since EA metrics are based on the qualitative model, the
metrics have to be adapted on changes of the qualitative model
in order to keep consistency, i.e., on changes of elements of
the qualitative model, all metrics referring to the changing
elements have to be updated.

As already discussed in Subsection IV-B, the validation
of an MxL expression’s static semantics by the MxL type
checker allows the determination of incoming and outgoing
MxL references. Therefore, for each element of both the
qualitative and quantitative model, MxL knows which MxL
expressions are referring to this element. As a consequence,
on changes of a certain element, all expressions referring to it
can be determined and thus adapted according to the change.

For example, the MxLfunction sumOfFunctionPoints in
Figure 5 refers to an attribute Function points. Therefore, if
implemented in the untyped core expression language (c.f.
Section III), changes of this attribute would lead to inconsis-
tencies of the function. However, due to MxL’s static type-
safety and the MxL dependency management as described
in Subsection IV-B, changes of the attribute Function points
implies an adaption of the MxL function sumOfFunctionPoints,
whereas the adaption depends on the kind of the change:

• When renaming elements, all occurrences of the
element’s old name are replaced by its new name in
all expressions referring to the renamed element.

• When changing the type of an element, the valida-
tion of the static semantics of all expressions referring
to the changed element is redone. If the validation
fails, the user is informed about inconsistent expres-
sions.

• When deleting an element, the user can choose to
either trigger a cascaded deletion of all expressions
referring to this element, or to keep these expressions,
which, however, would become inconsistent regarding
their static semantics (if there is not a more general
version of the deleted object, e.g., an equally-named
attribute in a super type).

• When creating an element, it is checked if the new
element is a specialized version of an existing one
(e.g., the creation of an attribute might overwrite an
equally named attribute of a super type). If there is a
general version of the new element, the applicability
of the specialized version in all occurrences of the
general version will be checked.

Therefore, when renaming the attribute Function points to
Functional scope, the implementation of the function sumOf-
FunctionPoints in Figure 5 would be automatically changed
to

f i n d ’ B u s i n e s s A p p l i c a t i o n ’
. sum ( ’ F u n c t i o n a l scope ’ )

V. EVALUATION

Based on the prototypical implementation of MxL as
described in Section IV, we conducted an analytical and
observational evaluation [23] of our approach, whereas the
observational evaluation took place mainly in our own research
environment. The observational evaluation of the tool is dis-
cussed in the following section.

A. Evaluation Setting

In a related research activity, our research group identified
metrics from literature and industry for measuring the com-
plexity of application landscapes (AL), e.g., topology-based
metrics [24], heterogeneity-focused metrics [25]. Based on
these identified metrics, an integrated qualitative core model
covering the concepts required for the calculation of all metrics
was developed. An excerpt of this core model is depicted
in Figure 7, whereas the full core model also covers types
of the infrastructure layer [4]. Subsequently, four industry
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Fig. 7. An excerpt of the qualitative model of the application landscape as
part of the EA forming the base for the definition of the quantitative model.

partners provided data corresponding to the developed core
model, so that we were able to calculate the metrics based on
industrial data. However, due to the industry partner’s different
approaches to EAM, there was a strong variation regarding the
existence or type of certain concepts in the actual provided data
sets.

Furthermore, during the research process, we continuously
consolidated and adapted the qualitative and quantitative mod-
els of the application landscapes according to the regular
input of our industry partners. Therefore, we applied MxL’s
prototype in the context of complexity metrics for application
landscapes in order to use and evaluate the benefits of static
type-safety.

B. Highlights of the Evaluation

For the evaluation of MxL’s prototype, we firstly imported
the varying data sets of our industry partners into the prototype,
and subsequently implemented the quantitative model, i.e., up
to 29 different metrics for each of the data sets (the actual num-
ber of implementable metrics depended on the provided data).
Thereby we observed that MxL’s type system as discussed
in Subsection IV-A seems to be adequate for the definition
of prevalent model-based EA metrics. By reimplementing all
metrics of the EAM KPI Catalog [12] we can even support
this claim.

As shown in Figure 7, the concept Business Application
has an attribute Customization level classifying an application
into Buy, Make, or Buy and customize. However, in order to
aggregate the Customization levels of multiple applications,
the nominal scale has to be transformed to a numerical one
(e.g., one industry partners defined a transformation from Buy
to 1, from Make to 3, and from Buy and customize to 5),
which allows the calculation of an average Customization level
of all applications belonging to a given Functional Domain.
Since each industry partner aims for a different approach for
assessing an application’s Customization level, the question
arose which metrics are actually affected by the definition
of the Customization level. By the semantic analysis of the
quantitative EA model (c.f. Subsection IV-B) the tool was able
to answer this question automatically and to provide a full set
of metrics (transitively) depending on the Customization level.
Moreover, the EA tool’s dependency management also facili-
tated the automated determination of each metric’s individual
information model [26] (i.e., which data is actually required for
calculating a given metric), which was in particular helpful for

industry partners which were evaluating which metrics are ap-
plicable in their organization-specific environments. Therefore,
the transparency of the quantitative EA model was a valuable
feature of the EA tool’s prototype implementing MxL.

Furthermore, one of the industry partners agreed to proto-
typically use the EA tool for the implementation of further
organization-specific EA metrics. Thereby, just based on a
short and personal introduction to the tool, the involved enter-
prise architects immediately were able to implement custom
metrics by their own, whereas they emphasized in particular
the usefulness of the MxL code editor (c.f. Subsection IV-C).
According to these enterprise architects, especially the tool’s
feature of supporting the ad-hoc definition and debugging of
queries of the EA model was helpful for accomplishing this
task. However, they also mentioned some weaknesses of the
current state of the documentation of MxL, which forced them
to go for a trial-and-error approach in some occasions.

Since we have done the observation and implementation of
best-practice metrics for measuring the complexity of applica-
tion landscapes and the consolidation of the aforementioned
core model in parallel, the qualitative EA model was changed
continuously while already having defined metrics referring
to elements of the changing EA model. However, due to the
automated refactoring of MxL expressions as discussed in
Subsection IV-D, the semantic consistency of existing metrics
was preserved.

VI. RELATED WORK

While Sections III and IV described our own contribution
to the field of quantitative EA analysis, the following section
discusses related work in this field.

In general, Business Intelligence (BI) solutions [27] enable
the development of extensive and scalable quantitative models
by using Data Warehousing (DWH) and Online Analytical
Processing (OLAP). However, today’s BI tools lack either
support for collaboration or proper end-user empowerment,
or both [28], which prevents an agile approach to EAM as
motivated in Section I of this paper.

A very common and successful class of tools—in partic-
ular in business domains—are spreadsheets (e.g., Microsoft
Excel [29], Tableau [30], QlikView [31]), which facilitate
the development of quantitative models (e.g., for financial
reporting [32]) by end-users [33]. However, most of these
spreadsheet tools lack proper support for collaboration, e.g.,
access control or definition of ownerships and responsibili-
ties for certain data elements. Furthermore, as discussed in
Section III, spreadsheets are lacking transparency of their
design [34], wherefore spreadsheets are not suited for the
iterative development of quantitative models.

Since in recent years EAM has become a commonly
accepted function for achieving alignment of an enterprise’s
IT to its business, various tools have emerged in practice
supporting EAM [35]. However, these prevalent tools are
focusing the development and management of qualitative EA
models [9]. Although most of them are providing certain
reporting mechanisms for calculating predefined metrics, and
several EAM tools even allow the definition of customized
metrics by domain-specific languages (DSL), none of them



supports the iterative and or collaborative development of
quantitative models [36].

Buschle et al. [10] developed an EAM tool named En-
terprise Architecture Analysis Tool (EAAT), which is based
on the Predictive, Probabilistic Architecture Modeling Frame-
work [37]. EAAT is able to cope with uncertainties in the
EA model due to outdated, incomplete, incorrect, or missing
information. Hence, EAAT’s quantitative model is based on
probability distributions instead of actual values. In contrast,
this paper focuses on a completely different aspect of a
language for the definition of EA metrics, namely type-safety.

Moreover, there are various approaches targeting the quan-
titative analysis of specific aspects of an EA. For example,
Iacob et al. [38] are targeting the quantitative analysis of an
EA’s performance. Therefore, they are introducing an approach
based on the ArchiMate enterprise modeling language [7] for
quantifying the performance of individual model entities to
performance measures and aggregating them to an overall
architecture performance. However, the language for defining
metrics presented in this approach is statically unsafe with
regards to the underlying quantitative EA model.

Furthermore, Clark’s XMF [39] is also related to this
paper. However, the language presented in this paper—MxL—
is tailored to the domain of EA analysis, i.a., by implementing
dependency managing, providing in-browser code editor fea-
tures, and enabling automated refactoring on changes of the
underlying qualitative EA model.

VII. CONCLUSION

The following section summarizes and concludes this pa-
per’s contribution including a critical reflection of our work.
Moreover, we outline possible future research activities based
on the approach presented in this paper.

As motivated in Section I, the increasing complexity of
EAs requires quantitative models in order to measure and
control the evolution of EAs. However, turbulent business
environments induce the need for a continuous adaption of the
EA and its qualitative and quantitative models. This issue is
addressed by agile approaches to EAM. However, the iterative
and collaborative design of the EA meta model is a major
challenge for the static typing of a language for defining EA
metrics.

To address this issue, we firstly introduced the underlying
meta model in Section II, and subsequently described an un-
typed core expression language for defining EA metrics. Based
on that, we derived a type system for the typed model-based
expression language (c.f. Section III. Subsequently, we out-
lined the prototypical implementation of a web-based platform
implementing MxL and discussed benefits of the language’s
static type-safety in Section IV, i.e., an improved web-based
code editor, dependency management, as well as automatic
refactoring on changes of the underlying meta-model. The
prototype was evaluated by a case study in a parallel research
activity for analyzing application landscape complexity using
data from four German banks (c.f. Section V).

Although successfully applied in our own research group,
the approach has to be studied in depth in a business envi-
ronment in order to comply to the observational evaluation as

defined by Hevner et al. [23]. And as already mentioned in Sec-
tion V, currently the prototype is employed in a German bank,
where it is used by enterprise architects for the holistic life-
cycle management of organization-specific metrics. Thereby,
we also want to evaluate also non-functional aspects, e.g.,
usability of the prototype and ease-of-learn of MxL in general.

Moreover, the evaluation of the prototype for defining
and computing complexity metrics for application landscapes
revealed performance issues, in particular when performing
complex graph algorithms, e.g., O(n3) algorithms on big
application landscapes (with applications as nodes and depen-
dencies between them as edges). This is mainly due to MxL’s
simple evaluation strategy, i.e., MxL executes queries solely in
main memory instead of parsing it to a query language which
is executed more efficiently (e.g., SQL).

As stated in Section III, a language for the definition of
best-practice metrics [12] has to support a certain minimal
expressiveness. While MxL fulfills this requirement, this is also
true for other language, e.g., OCL [40] and LINQ [41]—the
foundations of MxL. However, since aiming a language with
minimal but sufficient expressiveness as well as with regard
to future research concerning the further development of the
language (e.g., temporal analysis by accessing the information
model’s history via the language, as discussed in more detail
below), we decided to design and redevelop MxL tailored to
EA analysis.

Moreover, we want to tackle the following questions which
emerged during our research:

• Temporal EA analysis: In order to understand and
control an EA’s evolution, the enterprise architect has
to analyze the evolution of the EA metrics. Therefore,
in future research, we will focus on the temporal
analysis of EAs, which includes accessing the EA
model’s history as well as versioning of EA metrics
and their results.

• Evaluation strategies of MxL expressions: While
the current prototype executes a metric on demand
(i.e., when requested by a user), most EA metrics
have to be evaluated regularly according to a certain
schedule (e.g., at the beginning of each month) [12].
Moreover, the validation of the expression’s static
semantics of a metric and the resulting analysis of
dependencies between metrics and elements of the
EA model would allow the recalculation of a metric
on change of the underlying information model. Both
evaluation strategies (by schedule and on change) will
be considered in future research.

• EA metric visualizations: The visualization of the
result of metrics reinforces the human’s cognition and
supports the user’s understanding and interpretation of
the metric’s result [42]. Therefore, the employment of
our prototype with proper visualization components
based on the user-defined metrics (e.g., a time-series
graph for visualizing an EA metric’s evolution) is
another focus of our future research activities.
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