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Abstract

The database programming language DBPL [?] is a successor of Pascal/R [?] and integrates a
set- and predicate-oriented view of relational database modelling into the system programming
language Modula-2 [?]. Based on integrated programming language and database technology
it offers a uniform framework for the implementation and maintenance of database application
software.

This document describes the rationale for the design of DBPL, defines the elements of the
DBPL language, and explains the use of the system software available for VAX /VMS systems.
A small, self-contained application program is presented in chapter ?? to illustrate funda-
mental aspects of application programming in DBPL (data definition, data manipulation,
modularization, user-interaction).

Chapter ?? gives a detailed description of the syntax and semantics of DBPL. It is based
on the Modula-2 Report by N. Wirth as published in N. Wirth: Programming in Modula-2,
Springer-Verlag, Berlin, Heidelberg, New York, 3rd Edition, 1985. All modifications to the
Modula-2 Report are indicated in the margins (T, L).

Intended Audience

This manual is written for readers who have a general knowledge of procedural programming
languages and of the relational data model. Users of the DBPL system software should read
the installation instructions (Chapter ?7) first. Chapter ?? and ?? introduce the main
language concepts and should be of general interest. The example program in Chapter 7?7
illustrates the spirit of modular program development using DBPL. Chapter 7?7 is intended
as a reference for programmers and language implementors.
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Data- and Rule-Based Database Programming in DBPL [?]
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VAX-11 Modula-2 Users Guide

VAX-11 Symbolic Debugger Reference Manual

VAX-11 Linker Reference Manual

Revision History

April 1990:
Initial version, corrections to DBPL report as of November 1988. Installation instruc-
tions for DBPL VAX/VMS software version 2.03.

November 1990:
Installation instructions for DBPL VAX/VMS software version 2.1.



Contents



Chapter 1

Rationale of DBPL

The development of data-intensive applications, such as information systems or design appli-
cations in mechanical or software engineering, involves requirements modeling, design spec-
ification, and, last but not least, the implementation and maintenance of large database
application programs. The database programming language DBPL presented in this manual
concentrates on the last issue to offer a uniform and consistent framework for the efficient
mmplementation of database applications.

As a first cut, data-intensive applications may be characterized by their needs to specify
and manipulate heavily constrained data that are long-lived and may be shared by a user
community. These requirements are direct consequences of the fact that those data serve as
(partial) representations of some organizational unit or physical structure that exist in their
own context and on their own time-scale independent of any computer system. Due to the size
of the target system and the level of detail by which it is represented, those representational
data may become extremely voluminous — in current data-intensive applications up to O(10%)
or even higher.

In addition to the need for global management of large amounts of representational data,
typical database applications also have a strong demand to process small amounts of local
computational data that implement individual states or state transitions.

In essence, it is this broad spectrum of demands — the difference in purpose, size, lifetime,
availability etc. of data — and the need to cope with all these demands within a single
application that determines the daily life of a database programmer.

DBPL [?] is a successor of Pascal/R [?] and addresses the above issues by extending a well-
understood system programming language (namely Modula-2 [?]) by a small set of abstraction
mechanisms needed for database application programming [?]. DBPL extends Modula-2 into
three dimensions:

e Bulk data management through a data type set (relation).

e Abstraction from bulk iteration through access expressions.

o Persistent modules and transactions for sharing, recovery, and concurrency control.
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The design of the DBPL language was influenced by requirements of the DAIDA environment
for database application development [?, 7, ?] that asks for a target language that

e makes extensive use of sets and first-order predicates, and

e provides complete separation of typing and persistence.

An essential guideline for the design of DBPL can be characterized by the slogan “power
through orthogonality”. Instead of designing a new language (with its own naming, binding,
scoping and typing rules) from scratch, DBPL extends an existing language and puts particu-
lar emphasis on the interoperability of the new “database” concepts with the given program-
ming language concepts. In particular, DBPL aims to overcome the traditional competence
and impedance mismatch [?] between programming languages and database management
systems by providing

e a uniform treatment of volatile and persistent data,

e a uniform treatment of large quantities of objects with a simple structure and small
quantities of objects with a complex structure, as well as

e a uniform (static) compatibility check between the declaration and the utilization of
each value.

Implementation details (e.g., storage layout of records, clustering of data, existence of sec-
ondary index structures, query evaluation strategies, concurrency and recovery mechanisms)
are deliberately hidden from the DBPL programmer. A key idea in the design and implemen-
tation of DBPL is to let the runtime system choose appropriate implementation strategies
based on “high-level” information extracted from the application programs. As it turns out,
the widespread use of access expressions (see 7?) (i.e. first-order logic abstractions of bulk
data access) in typical DBPL programs facilitates such an approach.

Following the spirit of Modula-2, DBPL violates in some cases the design principle of “or-
thogonality of language concepts” in order to enable a well-engineered implementation of
the language. For example, DBPL does not support persistence of pointers and procedure
variables. This was not only motivated by the predominance of associative identification
mechanisms in the classical Relational Data Model, but also by the far-reaching consequences
of this identification mechanism on the concurrency control and distribution support [?, ?].

Modula-2 was chosen to be the basis for DBPL as it is characterized by a clear module
concept and a strict type system. It is further excelled by its balance between simplicity and
expressive power.

In contrast to some persistent programming languages [?, 7, 7, ?], the evolution of database
schemata and of application programs is outside the scope of the language DBPL and is
delegated to specific components of the DAIDA environment [?, 2, 2, ?].

To summarize, the most prominent feature of the DBPL is the type-complete integration of
sets and first-order predicates into a strongly typed, monomorphic language with persistence
as an orthogonal property of individual compilation units.



Chapter 2

Language Concepts for Database
Programming

The following subsections highlight the central new language concepts of DBPL. Programmers
familiar with a “traditional” programming language like Modula-2 only need to understand
these few additional features to successfully utilize the database capabilities of DBPL. Due
to its orthogonal language design, there are no special rules governing the naming, typing,
binding, scoping, sequencing etc. of these Modula-2 extensions.

In particular, it should be noted that every correct Modula-2 program is also a correct DBPL
program, i.e., DBPL is a fully upward compatible Modula-2 extension.

2.1 Data Type Relation

A relation type declaration specifies a structure consisting of a set of elements of the same
type. The cardinality of this set is basically unlimited. Relations extend the notion of sets
by allowing to specify a key, i.e. a substructure of the set element that is guaranteed to have
a unique value within a relation and, therefore, provides (associative) identification.

In DBPL, the definition of a relation type may contain any nesting of records, arrays, variant
records and relations. The only restriction is that on each level of nesting there has to be at
least one non-relational attribute and that key attributes of non-first normal-form relations
(NF? relations) are non-relational.

TYPE
Nodes = RELATION OF CARDINAL;
Edges = RELATION OF RECORD a,b: CARDINAL; END;
NF2Rel = RELATION a,b OF
RECORD
a,b: CARDINAL;
subrel: Edges;
END;
VAR
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N, NWE: Nodes;
E: Edges;
P: NF2Rel;

In the above example, Nodes and Edges are true set types, whereas NF2Rel is a nested relation
type with key attributes a and b.

Relation types are “orthogonal” type constructors, i.e. they coan can occur as elements of
arbitrary structures like arrays or records,

VAR
Table: ARRAY[O..10] OF Nodes;

and relation variables can appear in arbitrary scopes and extents, for example, in objects of
other data types, i.e.

e as persistent, global, local, dynamic variables, and

e as value and reference parameters.

PROCEDURE SwapNodes (VAR n1, n2: Nodes);
VAR
n: Nodes;
BEGIN
n:= nl; nl;= n2; n2:= n;
END SwapNodes;

Note, that relations in the “classical” Relational Data Model are simply relations with ele-
ments of “flat” record types, i.e. records that only contain fields of the base types (INTEGER,
REAL, ...).

Modula-2 identifies elements of arrays by index expressions and record components by field
names. Analogically, relation elements are identified by their key values. Therefore, substruc-
tures of hierarchical objects are uniformly accessed by a sequence of the previously mentioned
identification mechanisms.

P[1,5] .subrel := Edges{}

This assignment replaces the value of the subrel attribute of an element p with the key values
p.a=1 and p.b=5 in the relation P by the empty relation of type Edges.

2.2 Aggregates

DBPL allows the denotation of structured values by means of aggregates, which are simply an
enumeration of (possibly structured) values prefixed by the name of the type to be constructed.
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N:= Nodes{1,2,3,4};
E:= Edges{ {1,2}, {2,3}, {3,4}};
P:= NF2Rel{ {1,4,E} };

As illustrated by the example above, the type identifier can be omitted in nested expressions
where the aggregate type can be deduced from its context.

2.3 First-Order Predicates

Any boolean expression in DBPL can contain first-order predicates with existential (SOME)
and universal (ALL) quantifiers ranging over relation expressions. The use of (nested) pred-
icates often allows to avoid explicit iterations over relations and thereby facilitates access
optimization to be performed by the DBPL system:

IF SOME n IN N (NOT SOME e IN E (e.a = n)) THEN
WriteString("There is a node without outgoing edges")
END;
IF NOT ALL e IN E (
SOME n IN N (e.a = n) AND
SOME n IN N (e.b = n)) THEN
WriteString("There are edges from/to non-existent nodes')
END;

First-order predicates play a central role in the formulation of access expressions which are
the subject of the next paragraphs.

2.4 Access Expressions

Access Expressions are selection and construction rules for relations. They generalize and
unify the concepts of set-oriented retrieval, element-oriented iteration and (updateable) views
found in relational database systems.

Selctive access expressions define subrelations of existing relation variables. The following
expressions select the elements e of the relation variable E, fulfiling the selection predicate
e.a=5 respectively SOME n IN N (e.a =n):

EACH ¢ IN E: e.a = 5
EACH e IN E: SOME n IN N (e.a = n)

The first selection expression selects all edges having 5 as their start node, whereas the second
selection expression selects all edges starting from a node contained in the set N.

Constructive access expressions denote relation expressions that are derived from combina-
tions of existing relations:
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{n1,n2} OF EACH n1 IN N, EACH n2 IN N: TRUE
{el.a,e2.b} OF EACH el IN E, e2 IN E: (el.b = e2.a)

The first expression constructs the cartesian product NxN. The second constructive expression
builds a set of edges, containing an edge for each pair of nodes that are connected by a path
of length 2.

Please note that access expressions (like boolean expressions) have to be used in a conforming
context. There are three possible contexts for access expressions in DBPL:

Relation constructors build a new relation containing (copies of) the elements denoted by
an access expression: (set-at-a-time operations)

Edges{EACH e IN E: e.a = 5}
Edges{EACH e IN E: SOME n IN N (e.a = n)}
Edges{{n1,n2} OF EACH ni IN N, EACH n2 IN N: TRUE}

Relation iterators iterate over a subrelation denoted by a selective access expression: (element-
at-a-time operations)

FOR EACH e IN E: e.a = 5 DO WriteCard(e.b, 1) END;
FOR EACH e IN E: SOME n IN N (e.a = n) DO WriteCard(e.b, 1) END;

Selector and constructor declarations allow to name and parameterize a given access expres-
sion (see section ?? and ??). (Lambda abstraction)

SELECTOR StartAt WITH(x: Node): Edges;
BEGIN EACH e IN E: e.a = x END StartAt;

CONSTRUCTOR AllPossibleEdges: Edges;
BEGIN EACH n1 IN N, EACH n2 IN N: TRUE END Edges;

As quantifiers may be nested and the range expression of the inner quantifier may depend on
the quantified variable of the outer scope, it is possible to “descend into nested relations:

E:= Edges{e OF EACH p IN P, EACH e IN p.subrel: TRUE}

On the other hand, the nesting of aggregates and relational constructors in the projection list
of a construction predicate facilitates the construction of nested relations.

NF2Rel { { e.a, e.b, {e}} OF EACH e IN E: TRUE }

To summarize, access expressions and first-order predicates form a relationally complete query
formalism, exceeding the power of existing relational DBMS.
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2.5 Relation Operations

In addition to relation iteration and relation assignment as illustrated above, DBPL has
predefined relation operations for set-oriented insertion, deletion and update:

E:= E2; E:+ E2; E:- E2; E:& E2

Furthermore, there are the usual infix operators (=, <, >, <=, >=, <>) to compare two
relations of the same type on equality, (strict) set containment, or inequality. Therefore, one
can write more succintly E <= E2 instead of

ALL e IN E SOME e2 IN E2 ((e.a=e2.a) AND (e.b=e2.b))

2.6 Databases and Persistence

Any module (separate compilation unit) can be declared as a database module by prefixing
it with the keyword DATABASE. All variables declared in a database module are persistent, i.e.
their lifetime is not restricted to a single program execution and exceeds the lifetime of all
programs importing them. Furthermore, they are shared variables, i.e. they can be accessed
by several programs (concurrently). Procedure variables and pointers are not allowed within a
database module. The declaration of databases is not restricted to definition modules, which
permits the definition of persistent abstract data types.

Persistent variables may only be accessed during transaction execution (see section ??). The
DBPL runtime system will detect all violations to this rule.

The initialization of persistent variables has to be accomplished before they are accessed for
the first time. This is done by extending the original semantics of the module initialization
code of Modula-2. Every database module may contain a supplementary initialization code,
which is executed only once at the beginning of the existence of a persistent variable.

DATABASE MODULE PersistentGraph;

TYPE

Nodes = RELATION OF CARDINAL;

Edges = RELATION OF RECORD a,b: CARDINAL; END;
VAR

N : Nodes;

E : Edges;

TRANSACTION InitDB;
(* this transaction will be called only one during DB lifetime *)
BEGIN
N:= Nodes{1};
E:= Edges{{1,1}};
END InitDB;
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DATABASE

InitDB;
BEGIN

(* standard Modula-2 initialization code *)
END PersistentGraph.

2.7 'Transactions

As the unit of concurrency control and recovery, a transaction comprises a sequence of actions
and is regarded atomic concerning its effect on the database. Transaction in DBPL can be
named and parameterized. In case of nested or recursive calls of transactions, the inner calls
are treaded as ordinary procedure calls, i.e. DBPL only provides a “‘flat transaction model.

The following transactions deletes all nodes in N that are reachable through a path of arbitrary
length of edges in E from a giving starting node n. It uses a standard depth-first search
traversal strategy.

TRANSACTION DeleteSuccessors(n: Node);
(* iterative solution *)
VAR

visited: Nodes;

PROCEDURE VisitNode(n: Node);
BEGIN
visited:+ Nodes{n};
FOR EACH succ IN N:
SOME e IN E ((e.a = n) AND (e.b = succ))
AND NOT succ IN visited DO
VisitNode(succ);
END;
END VisitNode;

BEGIN
visited:= Nodes{};
VisitNode(n);

N:- visited;
END DeleteSuccessors;

If there are other transactions reading or updating the database variables N or E simultane-
ously, the DBPL system will execute them together with DeleteSuccessors in a serializable
schedule.
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2.8 Selectors

Selectors are means to describe value-based constraints on relation variables. The application
of a selector defines a selected relation variable, which is equivalent to an updatable view in
database systems.

The declaration of a selector has the following general structure:

SELECTOR sp ON (R : RelType)
WITH ( formal parameters )
FOR ( access restrictions )
BEGIN
selective access expression
END sp;

The ON-parameter allows selectors to be bound to a relation type and not only to a specific
relation variable.

SELECTOR NodesWithEdges ON (X: Nodes);
BEGIN

EACH n IN X: SOME e IN E ((e.a = n) OR (e.b = n))
END NodesWithEdges;

By declaring access restrictions in the signature of a selector (FOR-parameter), it is possible
to restrict the operations allowed on relation variables. The access restrictions are connected
to the selector type.

SELECTOR ReadNodesWithEdges ON (X: Nodes) FOR (=);
BEGIN

EACH n IN X: SOME e IN E ((e.a = n) OR (e.b = n))
END ReadNodesWithEdges;

Within an expression, the value of a selected relation variable is equal to the value of a
relation created by a relational query expression, based on the selective access expression of
the selector.

NWE:= N[NodesWithEdges]

Informally, the semantics of updates to selected variables is defined as follows:

updates are executed if and only if a new relation value can be constructed, such
that the non-selected part of the new relation is equal to the non-selected part of
the relation before the update, and the selected part of the new relation is equal
to the right-hand-side of the update statement.

With the current selector semantics, any violation to this constraint will cause the update
operation not to be executed at all.
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N[NodesWithEdges] := Nodes{1,2,5};

As node 5 does not belong to any edge in E, the assignment above will not be executed.

By virtue of these semantics of updates on selected relation variables, selectors can be used
to enforce value-based integrity constraints on relation variables. Using the optional access
restrictions in a selector heading one can constrain access to selected relation variables even
further, namely to those kinds of operations explicitely listed in the heading of the selector.
Access restrictions are statically verified by the compiler:

N[ReadNodesWithEdges]:= N;

Since the declaration of ReadNodesWithEdges restricts the use of the selected relation variable
to read operations, the compiler disallows the assignment above.

2.9 Constructors

Constructors are named and paramaterized construction rules for relations. They are used to
define derived relations by a list of constructive access expressions. These expressions refer
to relation variables or to other derived relations. Omne can show an equivalence between
constructors in DBPL and certain models of deductive database programs, which have been
shown to correspond to Horn-clause logic. Constructors are therefore considerably more
expressive than the relational query formalisms.

2.9.1 Declaration

The signature of a constructor defines its name, formal parameters and result type. Similar
to selectors, constructors are first-order objects, which are typed according to their signature.
The body of a constructor declaration is a list of relational expressions, defining a relation of
the result type.

CONSTRUCTOR NonDirectedEdges: Edges;
BEGIN

EACH e IN E: TRUE,

{e.b, e.a} OF EACH e IN E: TRUE
END NonDirectedEdges;

2.9.2 Application

The application of constructors is restricted to relational expressions (i.e. update operations
on derived relations are inadmissible). The substitution of actual parameters is executed
according to the rules defined for selectors (see 7). The value of a constructor application is
obtained by an evaluation of the predicates within the constructor body, which may contain
further constructors.

E:= Edges{NonDirectedEdges}
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2.9.3 Recursive Constructors

A set of constructor declarations may contain cyclic references. The semantics of the ap-
plication of such a recursive constructor is defined by the least fixed point of a system of
relation-valued functions. The existence and uniqueness of this fixed point is guaranteed for
a (syntactically) restricted class of constructors.

CONSTRUCTOR Closure ON (X: Edges): Edges;
BEGIN

EACH e IN X: TRUE,

{el.a, e2.b} OF EACH el IN X, EACH e2 IN Edges{Closure(X)}: el.b = e2.a
END Closure;

The above constructor defines a relation that contains an edge for all node pairs that are
connected by a (directed) path of arbitrary length.

Using recursive constructors one can express the transaction of section 7?7 that deletes all
transitive successors of a given node more declaratively as

TRANSACTION DeleteSuccessors(n: Node);
BEGIN
N:- Nodes{EACH succ IN N: SOME e IN Edges{Closure(E)}
((e.a=n) AND (e.b=succ))}
END DeleteSuccessors;

This version of the transaction should be as least as efficient as the previous iterative solution
and it leaves even more possibilities for access optimizations to be performed by the DBPL
run-time system.



Chapter 3

DBPL Language Report

3.1 Syntax

A language is an infinite set of sentences, namely the sentences well formed according to
its syntax. In DBPL, these sentences are called compilation units. Each unit is a finite
sequence of symbols from a finite vocabulary. The vocabulary of DBPL consists of identifiers,
numbers, strings, operators, and delimiters. They are called lexical symbols and are composed
of sequences of characters. (Note the distinction between symbols and characters.)

To describe the syntax, an extended Backus-Naur Formalism called EBNF is used. Angular
brackets [ | denote optionality of the enclosed sentential form, and curly brackets { } denote
its repetition (possibly 0 times). Syntactic entities (non-terminal symbols) are denoted by
English words expressing their intuitive meaning. Symbols of the language vocabulary (termi-
nal symbols) are strings enclosed in quote marks or words written in capital letters, so-called
reserved words. Syntactic rules (productions) are designated by a § sign at the left margin of
the line.

3.2 Vocabulary and representation

The representation of symbols in terms of characters depends on the underlying character set.
The ASCII set is used in this paper, and the following lexical rules must be observed. Blanks
must not occur within symbols (except in strings). Blanks and line breaks are ignored unless
they are essential to separate two consecutive symbols.

1. Identifiers are sequences of letters and digits. The first character must be a letter.
$ ident = letter {letter | digit}.

Examples:

x scan Modula ETH GetSymbol firstLetter

14
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2. Numbers are (unsigned) integers or real numbers. Integers are sequences of digits. If
the number is followed by the letter B, it is taken as an octal number; if it is followed
by the letter H, it is taken as a hexadecimal number; if it is followed by the letter C, it
denotes the character with the given (octal) ordinal number (and is of type CHAR, see
6.1).

An integer i in the range 0 <= i <= MaxInt can be considered as either of type
INTEGER or CARDINAL; if it is in the range MaxInt < i <= MaxCard, it is of type
CARDINAL. For 16-bit computers: MaxInt = 32767, MaxCard = 65535.

A real number always contains a decimal point. Optionally it may also contain a decimal
scale factor. The letter E is pronounced as “ten to the power of”. A real number is of

type REAL.

$ number = integer | real.

$ integer = digit {digit} | octalDigit {octalDigit} (“B" | “C") |
$ digit {hexDigit} "H".

$ real = digit {digit} “." {digit} [ScaleFactor].

$ ScaleFactor = “E" ["+" | "] digit {digit}.

$ hexDigit = digit | “A” | “B" | “C" | “D" | “E" | “F".
$ digit = octalDigit | “8" | “9".
$ octalDigit = “0" | “1" | “2" | “3" | “4” | “5" | “6" | “T".

Examples:
1980 3764B 7BCH 33C 12.3 45.67E-8

3. Strings are sequences of characters enclosed in quote marks. Both double quotes and
single quotes (apostrophes) may be used as quote marks. However, the opening and
closing marks must be the same character, and this character cannot occur within the
string. A string must not extend over the end of a line.

yyyyyy

$ string = “'" {character} “'" | {character} "'".

A string consisting of n characters is of type (see ?7).
ARRAY [0..n-1] OF CHAR
Examples:
"DBPL" "Don’t worry!'" ’codeword "Barbarossa'’
4. Operators and delimiters are the special characters, character pairs, or reserved words

listed below. These reserved words consist exclusively of capital letters and must not
be used in the role of identifiers. The symbols # and <> are synonyms, and so are &,

AND, and ~, NOT.
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+ < ALL EXPORT QUALIFIED

- > AND FOR RECORD

* <> ARRAY FROM RELATION

/ <= BEGIN ¥ REPEAT

:= >= BY IMPLEMENTATION RETURN

& .. CASE IMPORT SELECTOR
: CONST IN SET

, ) CONSTRUCTOR LOOP SOME

;1 DATABASE MOD THEN

( '} DEFINITION MODULE TO

[ | DIV NOT TRANSACTION

{ =+ DO OF TYPE

- :- EACH ON UNTIL

= :& ELSE OR USING

# ELSIF POINTER VAR

~ END PROCEDURE WHILE

EXIT WITH

5. Comments may be inserted between any two symbols in a program. They are arbitrary
character sequences opened by the bracket (x and closed by *). Comments may be
nested, and they do not affect the meaning of a program.

3.3 Declarations and scope rules

Every identifier occurring in a program must be introduced by a declaration, unless it is a
standard identifier. The latter are considered to be predeclared, and they are valid in all parts
of a program. For this reason they are called pervasive. Declarations also serve to specify
certain permanent properties of an object, such as whether it is a constant, a type, a variable,
a procedure, or a module.

The identifier is then used to refer to the associated object. This is possible in those parts of
a program only which are within the so-called scope of the declaration. In general, the scope
extends over the entire block (procedure or module declaration) to which the declaration
belongs and to which the object is local. The scope rule is augmented by the following cases:

1. If an identifier x defined by a declaration D1 is used in another declaration (not state-
ment) D2, then D1 must textually precede D2.

2. A type T1 can be used in a declaration of a pointer type T (see ??) which textually
precedes the declaration of T1, if both T and T1 are declared in the same block. This
is a relaxation of rule 1.

3. If an identifier defined in a module M1 is exported, the scope expands over the block
which contains M1. If M1 is a compilation unit (see Ch. ??), it extends to all those
units which import M1.
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4. Field identifiers of a record declaration (see ??7) are valid only in field designators and
in with statements referring to a variable of that record type.

An identifier may be qualified. In this case it is prefixed by another identifier which designates
the module (see Ch. ??) in which the qualified identifier is defined. The prefix and the

identifier are separated by a period. Standard identifiers appear below.

$ qualident = ident {".” ident}.

ABS (??) LONGINT (?77)
BITSET (??7) LONGREAL  (?7)
BOOLEAN (??) LOWEST (?7?)
CAP (?7) MAX (?72)
CARD (?7) MIN (?7?)
CARDINAL (??) NEXT (?72)
CHAR (77) NIL (?77)
CHR (?7) ODD (?72)
DEC (??) ORD (?77)
EOR (??) PRIOR (?72)
EXCL (?7) PROC (?77)
FALSE (??) REAL (?7?)
FLOAT (??) RESTRICTED (??)
HALT (??) THIS (?77)
HIGH (77) SIZE (77)
HIGHEST  (??) TRUE (?77)
INC (77) TRUNC (77)
INCL (7?) VAL (?77)
INTEGER  (?2)

3.4 Constant declarations
A constant declaration associates an identifier with a constant value.

$ ConstantDeclaration = ident “=" ConstExpression.
$ ConstExpression = expression.

A constant expression is an expression, which can be evaluated by a mere textual scan without
actually executing the program. Its operands are constants. (see Ch. ?7?).

Examples of constant declarations are

N = 100
limit = 2%*N-1
all = {0..WordSize-1}

bound = MAX(INTEGER) - N
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3.5 Type declarations

A data type determines a set of values which variables of that type may assume, and it
associates an identifier with the type. In the case of structured types, it also defines the

structure of variables of this type. There are four different structures, namely arrays, records,
sets and relations.

H+

$ TypeDeclaration = ident “=" type.
$ type = SimpleType | ArrayType | Record Type | SetType |

$
$

RelationType | PointerType | ProcedureType | SelectorType |
ConstructorType.

$ SimpleType = qualident | enumeration | SubrangeType.

Examples:

Color (red,green,blue)
[1..80]

ARRAY Index OF CHAR

RECORD key: CARDINAL;
left,right: TreePtr

END

Tint SET OF Color

TreePtr = POINTER TO Node

Function = PROCEDURE(CARDINAL) :CARDINAL

Index
Card
Node

String = ARRAY Index OF CHAR
Item = RECORD code: Color;

itemname: String;

price: INTEGER;

connectedTo: RELATION OF String;

END

Items = RELATION itemname OF Item
Connections = RELATION OF RECORD from,to: String END
ItemsInRange = SELECTOR ON (Items) WITH (CARDINAL,CARDINAL)

3.5.1 Basic types

The following basic types are predeclared and denoted by standard identifiers:

1

. INTEGER comprises the integers between MIN(INTEGER) and MAX(INTEGER).
. CARDINAL comprises the integers between 0 and MAX(CARDINAL).
. BOOLEAN comprises the truth values TRUE or FALSE.

. CHAR denotes the character set provided by the used computer system.
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5. REAL (and LONGREAL) denote finite sets of real numbers.

6. LONGINT comprises the integers between MIN(LONGINT) and MAX(LONGINT).

3.5.2 Enumerations

An enumeration is a list of identifiers that denote the values which constitute a data type.
These identifiers are used as constants in the program. They, and no other values, belong to
this type. The values are ordered, and the ordering relation is defined by their sequence in
the enumeration. The ordinal number of the first value is 0.

$ enumeration = “(" IdentList “)".

$ IdentList = ident {",” ident}.

Examples of enumerations:

(red,green,blue)
(club,diamond,heart,spade)
(Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday)

3.5.3 Subrange types

A type T may be defined as a subrange of another, basic or enumeration type T1 (except
REAL) by specification of the least and the highest value in the subrange.

$ SubrangeType = [ident] “[" ConstExpression “.." ConstExpression “]".

The first constant specifies the lower bound, and must not be greater than the upper bound.
The type T1 of the bounds is called the base type of T, and all operators applicable to operands
of type T1 are also applicable to operands of type T. However, a value to be assigned to a
variable of a subrange type must lie within the specified interval. The base type can be
specified by an identifier preceding the bounds. If it is omitted, and the lower bound is a
non-negative integer, the base type of the subrange is taken to be CARDINAL; if it is a
negative integer, it is INTEGER.

A type T1 is said to be compatible with a type TO0, if it is declared either as T1 = TO or as a
subrange of T0, or if TO is a subrange of T1, or if T0O and T1 are both subranges of the same
(base) type.

Examples of subrange types:
[0..N-1]

[IIAII . IIZII]
[Monday. .Friday]
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3.5.4 Array types

An array is a structure consisting of a fixed number of components which are all of the same
type, called the component type. The elements of the array are designated by indices, values
belonging to the indez type. The latter must be an enumeration, a subrange type, or one of

the basic types BOOLEAN or CHAR.
$ ArrayType = ARRAY SimpleType {“" SimpleType} OF type.
A declaration of the form

ARRAY T1, T2, ..., Tn OF T

with n index types T1 ... Tn must be understood as an abbreviation for the declaration

ARRAY T1 OF
ARRAY T2 OF

ARRAY Tn OF T
Examples of array types:

ARRAY [0..N-1] OF CARDINAL
ARRAY [1..10],[1..20] OF [0..99]
ARRAY [-10..+10] OF BOOLEAN
ARRAY WeekDay OF Color

ARRAY Color OF WeekDay

3.5.5 Record types

A record type is a structure consisting of a fixed number of components of possibly different
types. The record type declaration specifies for each component, called field, its type and an
identifier which denotes the field. The scope of these field identifiers is the record definition
itself, and they are also accessible within field designators (see ??) refering to components of
record variables, and within with statements.

A record type may have several variant sections, in which case the first field of the section is
called the tag field. Tts value indicates which variant is assumed by the section. Individual
variant structures are identified by case labels. These labels are constants of the type indicated

by the tag field.

$ RecordType = RECORD FieldListSequence END.

$ FieldListSequence = FieldList {";" FieldList}.

$ FieldList = [IdentList “" type |

$ CASE [ident] ™" qualident OF variant {“|" variant}
$ [ELSE FieldListSequence] END].

$ variant = [Caselabellist “:" FieldListSequence].

$ Caselabellist = Caselabels {“,” Caselabels}.

$ Caselabels = ConstExpression [“..” ConstExpression].
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Examples of record types:

RECORD day: [1..31];
month: [1..12];
year: [0..2000]

END

RECORD
name,firstname: ARRAY [0..9] OF CHAR;
age: [0..99];
salary: REAL

END

RECORD x,y: TO;

CASE tag0: Color OF
red: a: Trl; b: Tr2|
green: c: Tgl; d: Tg2|
blue: e: Tbl; f: Tb2

END;

z: TO;

CASE tagl: BOOLEAN OF
TRUE: u,v: INTEGER|
FALSE: r,s: CARDINAL

END

END

The example above contains two variant sections. The variant of the first section is indicated
by the value of the tag field tag0, the one of the second section by the tag field tagl.

3.5.6 Set types

A set type defined as SET OF T comprises all sets of values of its base type T. This must be
a subrange of the integers between 0 and N 1, or a (subrange of an) enumeration type with
at most N values, where N is a small constant determined by the implementation, usually the
computer’s wordsize or a small multiple thereof.

$ SetType = SET OF SimpleType.

The standard type BITSET is defined as follows, where W is a constant defined by the
implementation, usually the word size of the computer.

BITSET = SET OF [0..W-1]
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3.5.7 Pointer types

Variables of a pointer type P assume as values pointers to variables of another type T. The
pointer type P is said to be bound to T. A pointer value is generated by a call to an allocation
procedure in a storage management module.

$ PointerType = POINTER TO type.

Besides such pointer values, a pointer variable may assume the value NIL, which can be
thought as pointing to no variable at all.

3.5.8 Procedure types

Variables of a procedure type T may assume as their value a procedure P. The (types of the)
formal parameters of P must be the same as those indicated in the formal type list of T. The
same holds for the result type in the case of a function procedure.

Restriction: P must not be declared local to another procedure, and neither can it be a standard

procedure.

$ ProcedureType = PROCEDURE [FormalTypeList].
$ FormalTypelist = “(" [[VAR] FormalType
$ {")” [VAR] FormalType}] )" [":" qualident].

The standard type PROC denotes a parameterless procedure:

PROC = PROCEDURE

3.5.9 Relation types

A relation type declaration specifies a structure consisting of elements of the same type, called
the relation element type. The number of elements, called the cardinality of the relation, is not
fixed. A relation with zero elements is called empty. The relation type declaration specifies
the element type as well as the relation key.

The relation key defines a list of components of the relation element type which uniquely
determines a relation element. An empty key component list is a synonym for an exhaustive
element component list; in this case, a relation is just a set of relation elements. A relation
key can only be specified if the relation element type is an array or record structure. A
key component is either specified by a qualified identifier designating a record field, or by a
constant expression designating an array component. Key components must not be part of a
variant in a variant record structure. The type of a key component must be a simple type or
a string.

$ RelationType = RELATION [RelationKey] OF type.
$ RelationKey = KeyComponent {"“,” KeyComponent}.
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$ KeyComponent = KeyDesignator {KeySubDesignator}.
$ KeyDesignator = ident | “[" ConstExplList “]".

$ KeySubDesignator = “." ident | “[" ConstExpList “]".
$ ConstExpList = ConstExpression {",” ConstExpression}.

Examples of relation types:

Address = RECORD
street: String;
city: String;
END;
AddrClass (office, stock);
Company = RECORD
companyname: String;
address: ARRAY AddressClass OF
Address;
phonenumber: CARDINAL;
END
RELATION companyname, address[office].city OF
Company
Deliveries = RELATION itemname OF
RECORD
itemname: String;
name, city: String;
quantity: CARDINAL;
END;

Companies

3.5.10 Selector types

Variables of a selector type T may assume as their values a selector S. The types of the formal
parameters and the result type of S must be the same as those indicated in the formal type
list of T.

Two selector types are compatible, if their formal parameter types and result types agree,
and if their access restrictions are compatible.

Access restrictions are used in selector declarations and in the intention list of a transaction
(see Ch. 7?). They define the set of operations applicable to selected relation variables and
persistent variables.

The access symbol = restricts the use of these variables to expressions, to range relations of
FOR EACH statements and as parameters in the standard relation handling procedures (see
Ch. ??). The access symbols :=, :+, :—, :& enable the use of a selected variable as the left side
of the corresponding relation update operations. Defining no access restriction is synonymous
to the full set of access symbols. If a selected relation variable is to be passed as a variable
parameter, all access rights have to be specified.

Access restriction A is called a restriction of access restriction B, if A is a subset of B. Two
access restrictions A and B are compatible, if A and B are equal.
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$ SelectorType = SELECTOR [ON “("qualident™)"] [WITH TypelList]
$ AccessRestriction [“" qualident].

$ Typelist = “(" FormalType {“,” FormalType} “)".

$ AccessRestriction = [FOR “(" AccessRight {“” AccessRight “)"}].
$ AccessRight = “:=" | "4" | =" | “&" | "=".

Example of a selector type:

ReadOnlyItems = SELECTOR ON (Items) FOR (=)

3.5.11 Constructor types

Variables of a constructor type T may assume as their values a constructor C. The types of
the formal parameters and the result type of C must be the same as those indicated in the
formal type list of T.

Two constructor types are compatible, if their formal pararameter types and result types
agree.

$ ConstructorType = CONSTRUCTOR [ON Typelist] [WITH Typelist]“:" qualident.

Example of a constructor type:

ConnectionRule = CONSTRUCTOR ON (Items): Connections

3.6 Variable declarations

Variable declarations serve to introduce variables and associate them with a unique identifier
and a fixed data type and structure. Variables whose identifiers appear in the same list all
obtain the same type.

uon

$ VariableDeclaration = IdentList “:" type.

The data type determines the set of values that a variable may assume and the operators
that are applicable; it also defines the structure of the variable.

Examples of variable declarations (see examples in Ch. ?7):

i,j: CARDINAL

k: INTEGER
p,q: BOOLEAN
s: BITSET

F: Function
a: ARRAY Index OF CARDINAL



CHAPTER 3. DBPL LANGUAGE REPORT 25

w: ARRAY [0..7] OF
RECORD ch: CHAR;
count: CARDINAL
END
t: TreePtr

thispart: Item

parts: Items

oldparts: Items
suppliers: Companies
orders: Deliveries
InRange: ItemsInRange
adjacent: ConnectionRule

3.7 Expressions

Expressions are constructs denoting rules of computation for obtaining values of variables
and generating new values by the application of operators. Expressions consist of operands
and operators. Parentheses may be used to express specific associations of operators and
operands.

3.7.1 Access expressions

Access expressions denote rules for accessing relation variables. Access expressions can be
named and parameterized. A parameter substitution is used to build new access expressions
which can be stored in variables of type selector and constructor.

$ AccessExpression = SelectiveAccessExpression | ConstructiveAccessExpression.

$ SelectiveAccessExpression = ElementDenotation “:" expression.

$ ConstructiveAccessExpression = expression |

$ expression OF ElementDenotation {",” ElementDenotation} ™" expression.
$ ElementDenotation = EACH ident IN range.

$ range = expression | designator.

There are selective and constructive access expressions.

A selective access expression has the form
EACH v IN rg: se

It denotes the selection rule that refers to exactly those elements v of the range rg, that make
the selection expression se of type BOOLEAN true. The (lexical) scope of an element variable
is the selection expression se.

A constructive access expression has the form



CHAPTER 3. DBPL LANGUAGE REPORT 26

e OF EACH v1 IN r1, EACH v2 IN r2, ..., EACH vn IN rn: se

It denotes the construction rule that evaluates the expression e for exactly those combinations
of the elements v1, v2,..., vn of the ranges r1, r2,..., rn that fulfill the selection expression
se. The (lexical) scope of the element variables are the expressions e and se.

3.7.2 Selectors

Selectors denote selective access expressions where the range relation is a designator. They
are introduced by selector declarations and have a type (see 27 and ?7).

Selectors are used in relations (see ??), in for statements (see ??), in the intention list of
transactions (see Ch. ?7), and as designators (see ?7).

$ selector = designator [“(" [designator] “)" [ActualParameters]].

Let S be a selector declared as:

SELECTOR S ON (RPar: RType) WITH (ParList) FOR (AccList): RType;
BEGIN EACH r IN RPar: p(r,ParList) END S

Such a parameterized selector can be used to define new selectors by a (partial) parameter
substitution:

e The substitution of the ON-parameter of S by a designator R, S(R), denotes a non-ON-
parameterized selector SR, that is bound to R as its range relation. That selector is
equivalent to the declaration

SELECTOR SR WITH (ParList) FOR (AcclList): RType;
BEGIN EACH r IN R: p(r,ParList) END SR

e The relational ON-parameter of a selector can also be substituted by a selected rela-
tion variable denoted by any type-compatible (non-parameterized) selector [SRP]. The
resulting selector, S([SRP]), has as its access restriction the intersection of the access
restrictions of S and SRP.

e Substitution of the WITH-parameter list of S by actual parameters, S()(ActList), de-
notes a selector equivalent to the declaration

SELECTOR SP ON (RPar: RType) FOR (AccList): RType;
BEGIN EACH r IN RPar: pp(r) END SP

where pp is the predicate p after substitution of each occurence of the formal parameters
by the current values of the actual parameters.

e ON- and WITH-parameters can be substituted simultaneously: S(R)(ActList) is an
unparameterized selector equivalent to
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SELECTOR SRP FOR (AccList): RType;
BEGIN EACH r IN R: pp(r) END SRP

A selector with an ON-parameter of type RType but without a WITH-parameter can be
applied to a relation variable of type RType: R[SP] denotes a selected relation variable. For
the special case of a non-parameterized selector the application is denoted by [SRP]. The
designators R[SP], [SRP], [SP(R)] and [SR(P)] are synonymous. They denote a subvariable
of R, which is defined by the access expression

EACH r IN R: pp(r)

A selected relation variable can only be used in a context defined by the access restrictions
(AccList) of the selector type.

The interpretation of a selected relation variable depends on its actual context:

e If [SRP] is used in an expression it is synonymous to the relation expression
RType{EACH r IN R: pp(zx)}

e The semantics of assignments to selected relation variables are defined in ?7?.

e The substitution of a variable parameter in a procedure call by a selected relation vari-
able implies repeated evaluation of the access expression in the procedure or transaction.

Examples of selectors and selected relation variables (see examples in Ch. ?? together with
their types in Ch. ?? and ??):

InRange() (O,N) SELECTOR ON (Items): Items
InRange(parts) SELECTOR WITH

(CARDINAL, CARDINAL): Items
InRange([RedItems(oldparts)])  SELECTOR WITH

(CARDINAL, CARDINAL): Items

[RedItems (parts)] Items
orders[0fParts() ("Printer'")] Deliveries
[InRange(oldparts) (0,k)] Items

3.7.3 Constructors

Constructors denote access expression lists. They are introduced by constructor declarations
and have a type that is determined by the constructor heading (see 27 and ?7).

The use of constructors is restricted to relations and the intention list of transactions.
$ constructor = designator [ActualParameters [ActualParameters]].
Constructors can be generated by substituting formal parameters of existing constructors.

The rules for subtitution are the same as those for selectors with the exception, that a con-
structor may have more than one ON-parameter.



CHAPTER 3. DBPL LANGUAGE REPORT 28

3.7.4 Operands

Operands are denoted by literal constants, i.e. numbers, strings and sets (see Ch. ?7),
designators, aggregates or relations.

Designators

A designator consists of an identifier referring to the constant, variable, procedure, trans-
action, selector or constructor to be designated, or a selector enclosed in square brackets
denoting a selected relation variable (see 27).

$ designator = (qualident | “[" selector “") { “." ident | “[" ExpList “]" | “1"}.
$ ExpList = expression {",” expression}.

This identifier may possibly be qualified by module identifiers (see Ch. ?? and ??), and it
may be followed by component selectors, if the designated object is an element of a structure.
If the structure is an array A, then the designator A[E] denotes that component of A whose
index is the current value of the expression E. The index type of A must be assignment
compatible with the type of E (see 7?). A designator of the form

A[ELE2,... En] stands for A[E1][E2]...[En].
If the structure is a relation R declared by

R: RELATION k1, k2,..., kn OF ElementType

then the designator R[EL,... ,En] denotes that element of R whose key component values are
the current values of the selection expressions E1 to En. A variable designated in this way is
called a selected element variable. The types of the selection expressions must be assignment
compatible with the types of the key components k1.,. .. .kn identified by the relation type. The
type of a selected element variable is defined by the relation element type with the additional
constraint that the values of the key components are restricted to the values of the selection
expressions. This implies that the values of the key components of a selected element variable
cannot be altered. Note also, that R[E1,...,En] denotes an object of type ElementType only
if an element with key value E1,E2,... ,En exists in R. Thus selected element variables may
cause conflicts with type definitions and other constraints (see ?7).

If the structure is a record R, then the designator R.f denotes the field f of R. The designator
Pldenotes the variable which is referenced by the pointer P.

If the designated object is a variable, then the designator refers to the variable’s current
value. If the object is a function procedure, a designator without parameter list refers to
that procedure. If it is followed by a (possibly empty) parameter list, the designator implies
an activation of the procedure and stands for the value resulting from its execution, i.e. for
the “returned” value. The (types of these) actual parameters must correspond to the formal
parameters as specified in the procedure’s declaration (see Ch. 27).

Examples of designators (see examples in Ch. ?7?):
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k (INTEGER)

ali] (CARDINAL)

w[3].ch (CHAR)

t~.key (CARDINAL)

t~.left”.right (TreePtr)
arts["Printer"] (Item)

P

suppliers["Brown & Co","Zurich"].phonenumber (CARDINAL)

Aggregate expressions

An aggregate must be either of type RECORD or type ARRAY. The identifier preceding the
left bracket of an aggregate specifies the type of the aggregate. If an element of a relation or
a component of an aggregate is an aggregate the type identifier preceding the aggregate can
be omitted.

If the aggregate is of type ARRAY, all components must be assignment compatible with the
array element type and the number of components must be the same as the number of array

elements: if A=ARRAY [i..j] OF T and A{EO0,....En} is an aggregate then n=j i and the

component Ek corresponds to the array element with the index [i+k].

If the aggregate is of type RECORD the components and the record fields are associated in
the sequence of their declaration. The component expressions must be assignment compat-
ible with their corresponding record fields. Components associated with tag fields must be
constant expressions (see Ch. 5). Records containing variants without tag fields cannot be
built with an aggregate.

$ aggregate = [qualident] “{" ExpList “}".

Examples of aggregates:

Item{green,"Printer",999, {"Computer"}} (Item)
Node{25,t".left,NIL} (Node)

Relation expressions

RType{} denotes the empty relation of type RType.
Relation expressions denote sets of relation elements; relation elements can be given by
e selective or constructive access expressions as defined in 77,

e unparameterized selectors denoting elements defined by the selective access expressions
of their bodies,
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e unparameterized constructors denoting the access expression list of their bodies.

Note, that constructive access expressions include the case that a relation element is given by
an expression that evaluates a single value of the relation’s element type.

If several relation elements are specified, they all have to be of the same type, which is the
relation element type.

$ relation = qualident “{" AccessExpressionList “}".
$ AccessExpressionList = [AccessExpression { “" AccessExpression }].

Examples of relations:

Items{thispart} (Items)
Items{EACH p IN parts:p.code = red} (Items)
Items{InRange(parts) (0,7)} (Items)
Deliveries{EACH o IN orders: SOME p IN parts
(o.itemname = p.itemname)} (Deliveries)

Items{EACH p IN parts: p.code = thispart.code,

thispart} (Items)
Items{{p.code,p.itemname,100,p.connectedTo} OF

EACH p IN oldparts: p.price<1000} (Items)
Connections{TransConn(parts)?} (Connections)

3.7.5 Operators

The syntax of expressions specifies operator precedences according to four classes of oper-
ators. The operators NOT, SOME and ALL have the highest precedence, followed by the
so-called multiplying operators, then the so-called adding operators, and finally, with the
lowest precedence, the relational operators. Sequences of operators of the same precedence
are executed from left to right.

$ expression = SimpleExpression [RelOperator SimpleExpression] |
$ constructor | selector.
$ RelOperator = “=" | “#" | "<>" | <" | "<="] ">" | ">=" | IN.
$ SimpleExpression = ["+" | “="] term {AddOperator term}.

$ AddOperator = “+" | “=" | OR.

$ term = factor {MulOperator factor}.

$ MulOperator = “x” | “/" | DIV | MOD | AND | “&".

$ factor = number | string | set | designator [ActualParameters] |

$ relation | aggregate | QuantifiedExpression |

$ “(" expression )" | NOT factor.

$ ActualParameters = “(" [ExpList] ).

$ set = [qualident] “{" [element {"," element}] “}".

$ element = expression [“.." expression].

$ QuantifiedExpression = (SOME | ALL) ident IN expression predicate.

$ predicate = “(” expression )" | QuantifiedExpression.
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1
The available operators are listed in the following tables. In some instances, several different
operations are designated by the same operator symbol. In these cases, the actual operation
is identified by the types of the operands.
Arithmetic operators
symbol | operation
+ addition
- subtraction
* multiplication
/ real division
DIV integer division
MOD | modulus
These operators (except /) apply to operands of type INTEGER, CARDINAL, or subranges
thereof. Both operands must be either of type CARDINAL or a subrange with base type
CARDINAL, in which case the result is of type CARDINAL, or they must both be of type
INTEGER or a subrange with base type INTEGER, in which case the result is of type
INTEGER.
The operators +, —, and * also apply to operands of type REAL. In this case, both operands
must be of type REAL, and the result is then also of type REAL. The division operator /
applies to REAL operands only. When used as operators with a single operand only, — denotes
sign inversion and 4 denotes the identity operation. Sign inversion applies to operands of
type INTEGER or REAL. The operations DIV and MOD are defined by the following rules:
x DIV y is equal to the truncated quotient of x/y
x MOD vy is equal to the remainder of the division x DIV y (for y > 0)
x = (x DIV y)*y+ (x MOD y)
Logical operators
symbol | operation
OR logical disjunction
AND logical conjunction
NOT negation
These operators apply to BOOLEAN operands and yield a BOOLEAN result.
p OR q means “if p then TRUE, otherwise q”
p AND q means “if p then g, otherwise FALSE”
T

Quantifiers apply to operands of type RELATION and BOOLEAN and yield a BOOLEAN

result.
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symbol | operation

SOME | existential quantification
ALL universal quantification

The expression in a quantified expression must be of type RELATION. The expression in a
predicate must be of type BOOLEAN. Element variables in quantified expressions are called
bound element variables. The scope of a bound element variable is the subsequent predicate,
its type is the element type of the subsequent relation expression.

SOME r IN R (exp) is true, if some element r in the relation R makes the expression exp true.
Analogously ALL r IN R (exp) is true, if all elements r in R fulfill the selection expression
exp.

Set operators

symbol | operation

+ set union

- set difference

* set intersection

/ symmetric set difference

These operations apply to operands of any set type and yield a result of the same type.

x IN (s1 + s2) iff (x IN s1) OR (x IN s2)

x IN (s1 - s82) iff (x IN s1) AND NOT (x IN s2)
x IN (s1 * s82) iff (x IN s1) AND (x IN s2)

x IN (s1 / s2) iff (x IN s1) # (x IN s2)

Relational operators

Relational operators yield a BOOLEAN result. They apply to the basic types INTEGER,
CARDINAL, BOOLEAN, CHAR, REAL, to enumerations, and to subrange types.

symbol | relation

= equal

# unequal

< less

<= less or equal (set inclusion)

> greater

>= greater or equal (set inclusion)
IN contained in (membership)

The relational operators = and # also apply to sets and pointers. If applied to sets, <=
and >= denote (improper) inclusion. The relational operators =, #, <, <=, >, >= may
also be used to compare arrays of type string (see Ch. ??), and then denote alphabetical
ordering according to the underlying character set. A string of length nl can be compared
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with a string variable of length n2 > nl. In this case the string value is extended with a null
character (0C) which will be the last character to be compared.

The relational operators =, #, <, <=, >, >= may also be used to compare values of relation
type, and then denote relation equality or inclusion. The value of the expression

rl <= r2
where rl, r2 are relation expressions is equal to the value of the quantified expression
ALL v1 IN r1 SOME v2 IN r2 (vi.key = v2.key).

where v1.key=v2.key stands for a conjunction of comparisons of the key attributes.

The relational operator IN denotes set or relation membership. In an expression of the form
x IN e, the expression e must be of type SET OF T, where T is (compatible with) the type
of x, or the expression e must be of relation type and x of its element type. 1

Examples of expressions (refer to examples in Ch. 2?7):

1980 (CARDINAL)
k DIV 3 (INTEGER)
NOT p OR q (BOOLEAN)
(i+j) * (i-j) (CARDINAL)
s - {8,9,13} (BITSET)
alil + alj] (CARDINAL)
ali+j] * a[i-j] (CARDINAL)
(0< = k) & (k<100) (BOOLEAN)
t~.key = O (BOOLEAN)
{13..15} <= s (BOOLEAN)
i IN {0,5..8, 15} (BOOLEAN)
T
SOME p IN parts (p.code = red) (BOOLEAN)
[RedParts] <=
Items{EACH p IN parts: p.price < 100} (BOOLEAN)
thispart IN parts (BOOLEAN)
1

3.8 Statements

Statements denote actions. There are elementary and structured statements. FElementary
statements are not composed of any parts that are themselves statements. They are the
assignment, the procedure call, and the return and exit statements. Structured statements
are composed of parts that are themselves statements. These are used to express sequencing,
and conditional, selective, and repetitive execution.
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$ statement = [assignment | ProcedureCall |

$ [fStatement | CaseStatement | WhileStatement |
$ RepeatStatement | LoopStatement | ForStatement |
$ WithStatement | EXIT | RETURN [expression]].

A statement may also be empty, in which case it denotes no action. The empty statement is
included in order to relax punctuation rules in statement sequences.

3.8.1 Assignments

The assignment serves to replace the current value of a variable by a new value indicated by

an expression. The assignment operator is written as “:=” and pronounced as “becomes”.

$ assignment = designator UpdateOperator expression.
$ UpdateOperator = “:+" | “:=" | “&" | “:=".

The designator to the left of the assignment operator denotes a variable. After an assignment
is executed, the variable has the value obtained by evaluating the expression. The old value
is lost (overwritten). The type of the variable must be assignment compatible with the type
of the expression. Operand types are said to be assignment compatible, if either they are
compatible or both are INTEGER or CARDINAL or subranges with base types INTEGER
or CARDINAL.

A string of length nl can be assigned to a string variable of length n2>n1. In this case, the
string value is extended with a null character (0C). A string of length 1 is compatible with
the type CHAR.

A constructor of type T1 can be assigned to a constructor of type T2 iff their formal parameter
types and result types agree. The same holds for selectors and selector variables with the
additional constraint, that the access restrictions of T2 have to be a restriction of the access
restrictions of T1.

Assignments that update a relation variable rel of type RType by a relation expression rex,
using one of the relation update operators, :4, :—, :&, are equivalent to assignments using the
assignment operator, :=, and a more complicated relation expression.

Relation insertion:
rel:+ rex
is equivalent to

rel:= RType{EACH r IN rel: TRUE,
EACH x IN rex: NOT SOME r IN rel (x.key=r.key)l}.

Relation deletion:

rel:- rex
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is equivalent to
rel:= RType{EACH r IN rel: NOT SOME x IN rex (r.key=x.key)}

Relation replacement:
rel:& rex
is equivalent to

rel:= RType{EACH r IN rel: NOT SOME x IN rex (r.key=x.key),
EACH x IN rex: SOME r IN rel (x.key=r.key)}

The expressions x.key=y.key here stand for a conjunction of comparisons of the respective
key attributes.

The execution of an assignment to a selected relation variable (see 77?)
R[SP]:= rex

is intended to meet the following two constraints: The value of the selected relation variable
after the assignment becomes equal to the relation expression, rex, while the value of the
non-selected rest of variable R remains unchanged. Note that, due to constraint violations, a
selective assignment may not be executable.

The assignment to a selected element variable (see ?7) is a special case of selective relation
assignment.

The standard procedure RESTRICTED (see ?7) allows to detect violations of a selector or a
key constraint that occured during relation insertion, deletion, replacement or assignment. L

Examples of assignments:

i:= k

pi= i=j

j:= log2(i+]j)

F:= log2

s:= {2,3,5,7,11,13}
alil:= (i+j) * (i-j)
t7.key:= 1

wli+1] .ch:= "A"

adjacent:= DirConn

parts Items{EACH p IN oldparts: p.price>k}
parts :- Items{EACH p IN parts: p.code=red}
parts :& Items{thispart}

parts[RedItems] := oldparts
[InRange(oldparts) (0,k)] := Items{}

oldparts := Items{}
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3.8.2 Procedure calls

A procedure call serves to activate a procedure or transaction. The procedure call may
contain a list of actual parameters which are substituted in place of their corresponding
formal parameters defined in the procedure declaration (see Ch. ??). The correspondence is
established by the positions of the parameters in the lists of actual and formal parameters
respectively. There exist two kinds of parameters: variable and value parameters.

In the case of variable parameters, the actual parameter must be a designator denoting a
variable. If it designates a component of a structured variable, the selector is evaluated
when the formal/actual parameter substitution takes place, i.e. before the execution of the
procedure. If the parameter is a value parameter, the corresponding actual parameter must
be an expression. This expression is evaluated prior to the procedure activation, and the
resulting value is assigned to the formal parameter which now constitutes a local variable.
The types of corresponding actual and formal parameters must be compatible in the case of
variable parameters and assignment compatible in the case of value parameters.

$ ProcedureCall = designator [ActualParameters].

Examples of procedure calls:

Read (i)
Write(j*2+1,6)
INC(al[i])

3.8.3 Statement sequences

Statement sequences denote the sequence of actions specified by the component statements
which are separated by semicolons.

won

$ StatementSequence = statement {";" statement}.

3.8.4 If statements

$ IfStatement = IF expression THEN StatementSequence
$ {ELSIF expression THEN StatementSequence}
$ [ELSE StatementSequence] END.

The expressions following the symbols IF and ELSIF are of type BOOLEAN. They are evalu-
ated in the sequence of their occurrence, until one yields the value TRUE. Then its associated
statement sequence is executed. If an ELSE clause is present, its associated statement se-
quence is executed if and only if all Boolean expressions yielded the value FALSE.

Example:
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IF (ch>="A") & (ch«<="Z") THEN ReadIdentifier
ELSIF (ch>="0") & (ch<="9") THEN ReadNumber
ELSIF ch = ’"’ THEN ReadString )

ELSIF ch = "’" THEN ReadString ("’")
ELSE SpecialCharacter
END

3.8.5 Case statements

Case statements specify the selection and execution of a statement sequence according to the
value of an expression. First the case expression is evaluated, then the statement sequence is
executed whose case label list contains the obtained value. The type of the case expression
must be a basic type (except REAL), an enumeration type, or a subrange type, and all labels
must be compatible with that type. Case labels are constants, and no value must occur more
than once. If the value of the expression does not occur as a label of any case, the statement
sequence following the symbol ELSE is selected.

$ CaseStatement = CASE expression OF case {“|" case}
$ [ELSE StatementSequence] END.
$ case = [Caselabellist “:" StatementSequence].

Example:
CASE i OF
O:p:= p OR q; x:= x+y|
1:p:= p OR q; x:= x-yl
2:p:= p AND q; x:= x*y
END

3.8.6 While statements

While statements specify the repeated execution of a statement depending on the value of
a Boolean expression. The expression is evaluated before each subsequent execution of the
statement sequence. The repetition stops as soon as this evaluation yields the value FALSE.

$ WhileStatement = WHILE expression DO StatementSequence END.

Examples:

WHILE j>O DO
j:= j DIV 2; i:= i+1
END
WHILE i#j DO
IF i>j THEN i:= i-j
ELSE j:= j-i
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END

END

WHILE (t#NIL) & (t~.key#i) DO
t:= t7.1left

END

3.8.7 Repeat statements

Repeat statements specify the repeated execution of a statement sequence depending on
the value of a Boolean expression. The expression is evaluated after each execution of the
statement sequence, and the repetition stops as soon as it yields the value TRUE. Hence, the
statement sequence is executed at least once.

$ RepeatStatement = REPEAT StatementSequence UNTIL expression.

Example:
REPEAT
k:= 1 MOD j; i:= j; j:= k
UNTIL j = O

3.8.8 For statements

The for statement indicates that a statement sequence is to be repeatedly executed while a
progression of values is assigned to a variable. This variable is called the control variable of
the for statement. It cannot be a component of a structured variable, it cannot be imported,
nor can it be a parameter. Its value should not be changed by the statement sequence. T

$ ForStatement = FOR ControlSection DO StatementSequence END.

$ ControlSection = ident “:=" expression TO expression [BY ConstExpression] |
$ SelectiveAccessExpression | ident ™" selector.
1
The for statement
FOR v := A TO B BY C DO SS END
expresses repeated execution of the statement sequence SS with v successively assuming the
values A, A+C, A+2C, ..., A+nC, where A+nC is the last term not exceeding B. v is called
the control variable, A the starting value, B the limit, and C the increment. A and B must
be assignment compatible with v; C must be a constant of type INTEGER or CARDINAL.
If no increment is specified, it is assumed to be 1. T

If the control section is given by a selective access expression, the element variable is called
control element variable. If a selector is used, its element variable is renamed by the identifier
preceding the selector; the selector has to be unparameterized. The scope of a control element
variable is the subsequent statement sequence.
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The control section is evaluated only once to determine all elements el, e2...., en in the range
relation that fulfill the selection expression. The iteration order of these elements is system

defined.

The control element variable obeys the same rules as a selected relation element variable (see
??). The value of the control element variable may be changed if the access restriction of the
range relation variable contains the access right :&.

Examples:
FOR i := 1 TO 80 DO j:= j+a[i] END
FOR i := 80 TO 2 BY -1 DO a[i] := a[i-1] END

FOR EACH o IN orders:
SOME p IN parts ((p.itemname=o.itemname) AND (p.code=red)) DO
i :=1 + p.quantity;
END;
FOR EACH item: RedItems(parts) DO
item.price:= item.price DIV 2;
END

3.8.9 Loop statements

A loop statement specifies the repeated execution of a statement sequence. It is terminated
by the execution of any exit statement within that sequence.

$ LoopStatement = LOOP StatementSequence END.

Example:

LOOP
IF t17.key> x THEN t2:= t1”.left; p:= TRUE
ELSE t2:= t17.right; p:= FALSE
END;
IF t2 = NIL THEN
EXIT
END;
tl:= t2
END

While, repeat, and for statements can be expressed by loop statements containing a single
exit statement. Their use is recommended as they characterize the most frequently occurring
situations where termination depends either on a single condition at either the beginning or
end of the repeated statement sequence, or on reaching the limit of an arithmetic progres-
sion. The loop statement is, however, necessary to express the continuous repetition of cyclic
processes, where no termination is specified. It is also useful to express situations exempli-
fied above. Exit statements are contextually, although not syntactically bound to the loop
statement which contains them.
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3.8.10 With statements

The with statement specifies a record variable and a statement sequence. In these statements
the qualification of field identifiers may be omitted, if they are to refer to the variable specified
in the With clause. If the designator denotes a component of a structured variable, the selector
is evaluated once (before the statement sequence). The with statement opens a new scope.

$ WithStatement = WITH designator DO StatementSequence END.

Example:
WITH t~ DO
key:= 0; left:= NIL; right:= NIL
END

3.8.11 Return and exit statements

A return statement consists of the symbol RETURN, possibly followed by an expression. It
indicates the termination of a procedure (or a module body), and the expression specifies the
value returned as result of a function procedure. Its type must be assignment compatible
with the result type specified in the procedure heading (see Ch. ?7).

Function procedures require the presence of a return statement indicating the result value.
There may be several, although only one will be executed. In proper procedures, a return
statement is implied by the end of the procedure body. An explicit return statement therefore
appears as an additional, probably exceptional termination point.

An exit statement consists of the symbol EXIT, and it specifies termination of the enclosing
loop statement and continuation with the statement following that loop statement (see ?7).

3.9 Selector declarations

Selector declarations introduce selectors. They consist of a heading defining the name and
the type of the selector and a body containing a selective access expression with a designator
as its range relation. Selectors are used to define value-based constraints on relation variables
or to restrict access rights on relations.

If the ON-parameter is omitted, the selector is bound to the global relation variable of the
reference type, which is given by the range relation in the selector body. If the ON-parameter
is specified, it has to be used as the range relation. The WITH-parameters have to be value
parameters and can be substituted to derive new specialized selectors.

A selector is called unparameterized, if neither ON- nor WITH-parameters are specified.
Access restrictions are explained in ?7? and are part of the selector type. The scope rules for
selector declarations are the same as for procedure declarations.
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$ SelectorDeclaration = SelectorHeading ;" SelectorBlock ident.

$ SelectorHeading = SELECTOR ident [OnParameter]

$ [WITH ParameterList] AccessRestriction [“:" qualident].

$ SelectorBlock = BEGIN EACH ident IN designator “:" expression END.
$ OnParameter = ON “(" ident " FormalType “)".

$ ParameterList = “(" FPSection { ;" FPSection} “)".

Examples of selector declarations:

SELECTOR RedParts: Items;
BEGIN EACH r IN parts: r.code=red END RedParts

SELECTOR RedItems ON (rel: Items);
BEGIN EACH r IN rel: r.code=red END RedItems

SELECTOR ColoredItems ON(rel: Items) WITH (color: Color);
BEGIN EACH r IN rel: r.code=color END ColoredItems

SELECTOR OfParts ON (orders: Deliveries) WITH (s: String);
BEGIN EACH o IN orders: o.itemname=s END 0fParts

3.10 Constructor declarations

Constructor declarations introduce constructors. They consist of a heading defining the name
and the type of the constructor and a body consisting of a list of access expressions. Con-
structors are used to intentionally define relations. Constructor declarations can be recursive
(with a fixed-point semantic).

ON-parameters have to be of type relation. They can be substituted by (selected) relation
variables or unparameterized constructors, i.e. their substitution yields a new constructor
with references to global or persistent relations. The WITH-parameters have to be value
parameters and can be substituted to derive new specialized constructors (see 77).

If neither WITH- nor ON-parameters are defined, the constructor is called unparameterized.
Unparameterized constructors can be evaluated through relation expressions (see ?7).

The scope rules for constructor declarations are the same as for procedure declarations.

$ ConstructorDeclaration = ConstructorHeading “;” ConstructorBlock ident.
$ ConstructorHeading = CONSTRUCTOR ident [ON ParameterList]

$ [WITH ParameterList] *:" qualident.

$ ConstructorBlock = BEGIN AccessExpressionList END.

Examples of constructors:
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CONSTRUCTOR DirConn ON (P: Items): Connections;
BEGIN
{a.itemname, c} OF
EACH a IN P, EACH c IN a.connectedTo: TRUE
END DirConn

CONSTRUCTOR TransConn ON (P: Items): Connections;
BEGIN
DirConn(P),
{a.from, b.to} OF
EACH a IN {DirConn(P)},
EACH b IN {TransConn(P)}: a.to = b.from
END TransConn

3.11 Procedure declarations

Procedure declarations consist of a procedure heading and a block which is said to be the
procedure body. The heading specifies the procedure identifier and the formal parameters.
The block contains declarations and statements. The procedure identifier is repeated at the
end of the procedure declaration.

Procedures can be divided into two classes, namely ordinary procedures and transaction pro-

cedures. The latter are marked by the symbol TRANSACTION instead of PROCEDURE.

There are two kinds of procedures, namely proper procedures and function procedures. The
latter are activated by a function designator as a constituent of an expression, and yield a
result that is an operand in the expression. Proper procedures are activated by a procedure
call. The function procedure is distinguished in the declaration by indication of the type of
its result following the parameter list. Its body must contain a RETURN statement which
defines the result of the function procedure.

All constants, variables, types, modules and procedures declared within the block that consti-
tutes the procedure body are local to the procedure. The values of local variables, including
those defined within a local module, are undefined upon entry to the procedure. Since pro-
cedures may be declared as local objects too, procedure declarations may be nested. Every
object is said to be declared at a certain level of nesting. If it is declared local to a proce-
dure at level k, it has itself level k+1. Objects declared in the module that constitutes a
compilation unit (see Ch. ?7) are defined to be at level 0.

In addition to its formal parameters and local objects, also the objects declared in the envi-
ronment of the procedure are known and accessible in the procedure (with the exception of
those objects that have the same name as objects declared locally).

The use of the procedure identifier in a call within its declaration implies recursive activation
of the procedure.

$ ProcedureDeclaration = ProcedureHeading ;" block ident.
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$ ProcedureHeading = (PROCEDURE | TRANSACTION) ident [FormalParameters].
$ block = {declaration} [USING IntentionList]

$ [BEGIN StatementSequence] END.

$ declaration = CONST {ConstantDeclaration “;" } |

$ TYPE {TypeDeclaration "} |

$ VAR {VariableDeclaration *;" } |

$ SelectorDeclaration “;" | ConstructorDeclaration |
$ ProcedureDeclaration “;" | ModuleDeclaration *;".
$ IntentionList = Intention { “" Intention}.

$ Intention = expression {"," expression} AccessRestriction.

Transaction procedures are the only means of interacting with the database. They consist
of a sequence of operations on persistent variables and have to be regarded as atomic with
respect to their effects on the database. The property of atomicity does not hold for variables
other than persistent variables.

Under some scheduling strategies transaction procedures are subject to automatic restarts. A
restart does not reset the global variables and parameters used in the transaction procedures.
In the case of nested or recursive calls of transaction procedures, the entire transaction is
“flattened”, i.e. inner calls are treaded as ordinary procedure calls.

An intention list may be used to denote the set of persistent variables accessed during ex-
ecution of a transaction procedure. The intention list is a means for passing additional
information about the transaction’s behavior to the compiler. The compiler may use this
information for some optimization.

Access to a persistent object is defined by its designator and (a superset of ) the needed access
rights. If a designator is denoted by a selector of type T, the access restriction in the intention
list has to be a restriction of T. An unparameterized constructor C may be used to request
read access to all (sub-)relations needed to evaluate C.

3.11.1 Formal parameters

Formal parameters are identifiers which denote actual parameters specified in the procedure
call. The correspondence between formal and actual parameters is established when the
procedure is called. There are two kinds of parameters, namely value and variable parameters.
The kind is indicated in the formal parameter list. Value parameters stand for local variables
to which the result of the evaluation of the corresponding actual parameter is assigned as
initial value. Variable parameters correspond to actual parameters that are variables, and
they stand for these variables. Variable parameters are indicated by the symbol VAR, value
parameters by the absence of the symbol VAR.

Formal parameters are local to the procedure, i.e. their scope is the program text which
constitutes the procedure declaration.

$ FormalParameters = “(" [FPSection {“;" FPSection}] “)" [*" qualident].
$ FPSection = [VAR] IdentList " FormalType.
$ FormalType = [ARRAY OF] qualident.
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The type of each formal parameter is specified in the parameter list. In the case of variable
parameters it must be compatible with its corresponding actual parameter (see ?7), in the
case of value parameters the formal type must be assignment compatible with the actual type
(see 77). If the parameter is an array, the form

ARRAY OF T

may be used, where the specification of the actual index bounds is omitted. The parameter
is then said to be an open array parameter. T must be the same as the element type of the
actual array, and the index range is mapped onto the integers 0 to N—1, where N is the number
of elements. The formal array can be accessed elementwise only, or it may occur as actual
parameter whose formal parameter is without specified index bounds. A function procedure
without parameters has an empty parameter list. It must be called by a function designator
whose actual parameter list is empty too.

Restriction: If a formal parameter specifies a procedure type, then the corresponding actual parameter
must be either a procedure declared at level 0 or a variable (or parameter) of that procedure type. It

cannot be a standard procedure.

Examples of procedure declarations:

PROCEDURE Read(VAR x: CARDINAL);
VAR i: CARDINAL; ch: CHAR;
BEGIN i:= 0;
REPEAT ReadChar(ch)
UNTIL (ch>= "O") & (ch<= "9");
REPEAT i:= 10*i + (ORD(ch)-ORD("0"));
ReadChar(ch)
UNTIL (ch<"0") OR (ch>"9");
x:= i
END Read

PROCEDURE Write(x,n: CARDINAL);
VAR i: CARDINAL;
buf: ARRAY[1..10] OF CARDINAL;

BEGIN i:= O;
REPEAT INC(i); buf[i]:= x MOD 10; x:= x DIV 10
UNTIL x = O;

WHILE n>i DO
WriteChar(" "); DEC(n)

END;
REPEAT WriteChar (CHR(buf[i] + ORD('"0'")));
DEC(i)
UNTIL i = O;
END Write

PROCEDURE log2(x: CARDINAL): CARDINAL;
VAR y: CARDINAL; (* assume x>0 *)
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BEGIN x: = x-1; y:
WHILE x>0 DO
x:= x DIV 2; y:
END;
RETURN y
END log2

0;

y+1

TRANSACTION AveragePrice (irel: Items): INTEGER;
VAR sum: INTEGER;
USING irel FOR (=);
BEGIN
sum := O;
FOR EACH item IN irel: TRUE DO sum := sum + item.price END;
RETURN ORD(sum) DIV CARD(irel)
END AveragePrice;

TRANSACTION DropItem (s: String);
USING orders[0fParts(s)] FOR (=);
parts FOR (=, :-) ;
BEGIN
IF SOME p IN parts(p.itemname=s) AND
(orders[0fPart()(s)] = Deliveries{})
THEN parts :- Items{parts[s]}
END
END Dropltem;

3.11.2 Standard procedures

Standard procedures are predefined. Some are generic procedures that cannot be explicitly
declared, i.e. they apply to classes of operand types or have several possible parameter list
forms. Standard procedures are T
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ABS(x) absolute value; result type = argument type.

CAP(ch) if ch is a lower case letter, the corresponding capital
letter; if ch is a capital letter, the same letter.

CARD(rex) rex is a relation expression of any relation type and

the result is the actual number of relation elements in

rex; the result type is CARDINAL.

CHR(x) the character with ordinal number x. CHR(x) =
VAL(CHAR.x)

FLOAT(x) x of type CARDINAL represented as a value of type
REAL.

HIGH(a) high index bound of array a.

MAX(T) the maximum value of type T.

MIN(T) the minimum value of type T.

ODD(x) x MOD 2 # 0.

ORD(x) ordinal number (of type CARDINAL) of x in the set

of values defined by type T of x. T is any enumeration
type, CHAR, INTEGER, or CARDINAL.
RESTRICTED() a value of type BOOLEAN that indicates whether
an update operation on a (selected) relation was not
executed due to a violation of a key or a selector

constraint.

SIZE(T) the number of storage units required by a variable of
type T, or the number of storage units required by the
variable T.

TRUNC(x) real number x truncated to its integral part (of type
CARDINAL).

VAL(T x) the value with ordinal number x and with type T. T

is any enumeration type, CHAR, INTEGER, or CAR-
DINAL. VAL(T,ORD(x)) = x, if x of type T.

DEC(x) xi=x 1

DEC(x,n) Xi= X1

EXCL(s,i) s:= s {i} for sets, s: {i} for relations
HALT terminate program execution

INC(x) xi= x+1

INC(x,n) Xi= Xx+n

INCL(s,i) s:= s+{i} for sets, s:4{i} for relations

The procedures INC and DEC also apply to operands x of enumeration types and of type
CHAR. In these cases they replace x by its (n-th) successor or predecessor.

The five relation handling procedures LOWEST, NEXT, THIS, HIGHEST and PRIOR select
at most one element from the (selected) relation variable rel given as the first parameter. If
the element exists it is assigned to the second parameter r which must be a variable of the

element type of the first parameter, and EOR() becomes FALSE; if the element does not exist
EOR() becomes TRUE and r remains unchanged.

The procedures provide an ordered access to the elements of the relation rel. This order is
implied by the lexicographic order on the value sets of the types of the key components.
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LOWEST(rel, r)  selects the first element in rel.
HIGHEST(rel, r) selects the last element in rel.
PRIOR(rel, r) selects the predecessor of r in rel.

NEXT(rel, 1) selects the successor of r in rel.

THIS(rel, 1) selects the element in rel, that has the same or-
dinal value as 1.

EOR returns a value of type BOOLEAN that indi-

cates whether the last application of one of the
above operations selected an element r IN rel.

3.12 Modules

A module constitutes a collection of declarations and a sequence of statements. They are
enclosed in the brackets MODULE and END. The module heading contains the module
identifier, and possibly a number of import lists and an export list. The former specify all
identifiers of objects that are declared outside but used within the module and therefore
have to be imported. The export-list specifies all identifiers of objects declared within the
module and used outside. Hence, a module constitutes a wall around its local objects whose
transparency is strictly under control of the programmer.

Objects local to a module are said to be at the same scope level as the module. They can be
considered as being local to the procedure enclosing the module but residing within a more
restricted scope.

$ ModuleDeclaration = MODULE ident [priority] “;" {import} [export] block ident.
$ priority = “[" ConstExpression “]".

$ export = EXPORT [QUALIFIED] IdentList *;".

$ import = [FROM ident] IMPORT IdentList ;.

The module identifier is repeated at the end of the declaration.

The statement sequence that constitutes the module body is executed when the procedure to
which the module is local is called. If several modules are declared, then these bodies are
executed in the sequence in which the modules occur. These bodies serve to initialize local
variables and must be considered as prefixes to the enclosing procedure’s statement part.

If an identifier occurs in the import (export) list, then the denoted object may be used inside
(outside) the module as if the module brackets did not exist. If, however, the symbol EXPORT
is followed by the symbol QUALIFIED, then the listed identifiers must be prefixed with the
module’s identifier when used outside the module. This case is called qualified export, and is
used when modules are designed which are to be used in coexistence with other modules not
known a priori. Qualified export serves to avoid clashes of identical identifiers exported from
different modules (and presumably denoting different objects).

A module may feature several import lists which may be prefixed with the symbol FROM and
a module identifier. The FROM clause has the effect of unqualifying the imported identifiers.
Hence they may be used within the module as if they had been exported in normal, i.e.
non-qualified mode.
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If a record type is exported, all its field identifiers are exported too. The same holds for the
constant identifiers in the case of an enumeration type.

Examples of module declarations:

The following module serves to scan a text and to copy it into an output character sequence.
Input is obtained characterwise by a procedure inchr and delivered by a procedure outchr.
The characters are given in the ASCII code; control characters are ignored, with the exception
of LF (line feed) and FS (file separator). They are both translated into a blank and cause the
Boolean variables eoln (end of line) and eof (end of file) to be set respectively. F'S is assumed
to be preceded by LF.

MODULE LineInput;
IMPORT inchr, outchr;
EXPORT read, NewLine, NewFile, eoln, eof, lno;
CONST LF = 12C; CR = 15C; FS = 34C;

VAR 1lno: CARDINAL;(* line number *)
ch: CHAR; (* last character read *)
eof, eoln: BOOLEAN;

PROCEDURE NewFile;
BEGIN
IF NOT eof THEN
REPEAT inchr(ch) UNTIL ch = FS;
END;
eof: = FALSE; eoln:= FALSE; lno:= 0
END NewFile;

PROCEDURE NewLine;
BEGIN
IF NOT eoln THEN
REPEAT inchr(ch) UNTIL ch = LF;
outchr(CR); outchr(LF)
END;
eoln: = FALSE; INC(lno)
END NewLine;

PROCEDURE read (VAR x: CHAR);
BEGIN (* assume NOT eoln AND NOT eof *)
LOOP inchr(ch); outchr(ch);
IF ch>= " " THEN
x:= ch; EXIT
ELSIF ch = LF THEN

x:= " "; eoln:= TRUE; EXIT
ELSIF ch = FS THEN
x:= " "; eoln:= TRUE; eof:= TRUE; EXIT

END
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END
END read;

BEGIN eof:= TRUE; eoln:= TRUE
END LinelInput.

The next example is a module which operates a disk track reservation table, and protects it
from unauthorized access. A function procedure NewTrack yields the number of a free track
which is becoming reserved. Tracks can be released by calling procedure ReturnTrack.

MODULE TrackReservation;
EXPORT NewTrack, ReturnTrack;
CONST ntr = 1024; (* no. of tracks %)
w = 16; (*word sizex)
ntr DIV w;

m

VAR i: CARDINAL;
free: ARRAY [0..m-1] OF BITSET;

PROCEDURE NewTrack(): INTEGER;
(* reserves a new track and yields its index as result,
if a free track is found, and -1 otherwise *)
VAR i,j: CARDINAL; found: BOOLEAN;
BEGIN found:= FALSE; i:= m;
REPEAT DEC(i); j:= w;
REPEAT DEC(j);
IF j IN free[i] THEN found:= TRUE END
UNTIL found OR (j=0)
UNTIL found OR (i=0);
IF found THEN EXCL(free[i],j); RETURN ikw+j
ELSE RETURN -1
END
END NewTrack;

PROCEDURE ReturnTrack(k: CARDINAL);

BEGIN (* assume 0<=k<ntr x*)
INCL(freel[k DIV w], k MOD w)

END ReturnTrack;

BEGIN (* mark all tracks free %)
FOR i:= 0 TO m-1 DO freel[i]:= {0..w-1} END
END TrackReservation.
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3.13 System-dependent facilities

DBPL offers certain facilities that are necessary to program low-level operations referring
directly to objects particular of a given computer and/or implementation. These include for
example facilities for accessing devices that are controlled by the computer, and facilities to
break the data type compatibility rules otherwise imposed by the language definition. Such
facilities are to be used with utmost care, and it is strongly recommended to restrict their
use to specific modules (called low-level modules). Most of them appear in the form of data
types and procedures imported from the standard module SYSTEM. A low-level module is
therefore explicitly characterized by the identifier SYSTEM appearing in its import list.

Note: Because the objects imported from SYSTEM obey special rules; this module must be known to
the compiler. It is therefore called a pseudo-module and need not be supplied as a separate definition

module (see Ch. 77).

The facilities exported from the module SYSTEM are specified by individual implementations.
Normally, the types WORD and ADDRESS, and the procedures ADR, TSIZE, NEWPRO-
CESS, TRANSFER are among them (see also Ch. 7?).

The type WORD represents an individually accessible storage unit. No operation except
assignment is defined on this type. However, if a formal parameter of a procedure is of type
WORD, the corresponding actual parameter may be of any type that uses one storage word
in the given implementation. If a formal parameter has the type ARRAY OF WORD, its
corresponding actual parameter may be of any type; in particular it may be a record type to
be interpreted as an array of words.

The type ADDRESS is defined as
ADDRESS = POINTER TO WORD

It is compatible with all pointer types, and also with the type CARDINAL. Therefore, all
operators for integer arithmetic apply to operands of this type. Hence, the type ADDRESS
can be used to perform address computations and to export the results as pointers. The
following example of a primitive storage allocator demonstrates a typical usage of the type

ADDRESS.

MODULE Storage;
FROM SYSTEM IMPORT ADDRESS;
EXPORT Allocate;

VAR lastused: ADDRESS;
PROCEDURE Allocate(VAR a: ADDRESS; n: CARDINAL);
BEGIN a:= lastused; lastused:= lastused + n

END Allocate;

BEGIN lastused:= 0
END Storage
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The function ADR(x) denotes the storage address of the variable x and is of type ADDRESS.
TSIZE(T) is the number of storage units assigned to any variable of type T. TSIZE is of an
arithmetic type depending on the implementation.

Examples:
ADR(lastused) TSIZE(Node)

Besides those exported from the pseudo-module SYSTEM, there are two other facilities whose
characteristics are system-dependent. The first is the possibility to use a type identifier T
as a name denoting the type transfer function from the type of the operand to the type T.
Evidently, such functions are data representation dependent, and they involve no explicit
conversion instructions.

The second non-standard facility is used in variable declarations. It allows to specify the
absolute address of a variable and to override the allocation scheme of a compiler. This facility
is intended for access to storage locations with specific purpose and fixed address, such as
e.g. device registers on computers with “memory-mapped I/O”. This address is specified as
a constant integer expression enclosed in brackets immediately following the identifier in the
variable declaration. The choice of an appropriate data type is left to the programmer.

3.14 Processes

Being a Modula-2 extension, DBPL is designed primarily for implementation on a conventional
single-processor computer. For multiprogramming it offers only some basic facilities which
allow the specification of quasi-concurrent processes and of genuine concurrency for peripheral
devices. The word processis here used with the meaning of coroutine. Coroutines are processes
that are executed by a (single) processor one at a time.

3.14.1 Creating a process and transfer of control

A new process is created by a call to

PROCEDURE NEWPROCESS(P: PROC; A: ADDRESS; n: CARDINAL;
VAR pil: ADDRESS)

denotes the procedure which constitutes the process,
is the base address of the process’ workspace,

is the size of this workspace,

pl is the result parameter.

s

A new process with P as program and A as workspace of size n is assigned to pl. This process
is allocated, but not activated. P must be a parameterless procedure declared at level 0.

A transfer of control between two processes is specified by a call to

PROCEDURE TRANSFER(VAR pl, p2: ADDRESS)
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This call suspends the current process, assigns it to pl, and resumes the process designated
by p2. Evidently, p2 must have been assigned a process by an earlier call to either NEW-
PROCESS or TRANSFER. Both procedures must be imported. A program terminates, when
control reaches the end of a procedure which is the body of a process.

Note: assignment to pl occurs after identification of the new process p2; hence, the actual parameters

may be identical.

3.14.2 Device processes and interrupts

If a process contains an operation of a peripheral device, then the processor may be transferred
to another process after the operation of the device has been initiated, thereby leading to a
concurrent execution of that other process with the device process. Usually, termination of
the device’s operation is signalled by an interrupt of the main processor. In terms of DBPL,
an interrupt is a transfer operation. This interrupt transfer is (in Modula-2 implemented on
the PDP-11) preprogrammed by and combined with the transfer after device initiation. This
combination is expressed by a call to

PROCEDURE IOTRANSFER(VAR pi1, p2: ADDRESS; va: CARDINAL)

In analogy to TRANSFER, this call suspends the calling device process, assigns it to pl,
resumes (transfers to) the suspended process p2, and in addition causes the interrupt transfer
occurring upon device completion to assign the interrupted process to p2 and to resume the
device process pl. va is the interrupt vector address assigned to the device. The procedure
IOTRANSFER must be imported from the module SYSTEM, and should be considered as
PDP-11 implementation-specific.

It is necessary that interrupts can be postponed (disabled) at certain times, e.g. when vari-
ables common to the cooperating processes are accessed, or when other, possibly time-critical
operations have priority. Therefore, every module is given a certain priority level, and every
device capable of interrupting is given a priority level. Execution of a program can be inter-
rupted, if and only if the interrupting device has a priority that is greater than the priority
level of the module containing the statement currently being executed. Whereas the device
priority is defined by the hardware, the priority level of each module is specified by its head-
ing. If an explicit specification is absent, the level in any procedure is that of the calling
program. IOTRANSFER must be used within modules with a specified priority only.

3.15 Compilation units

A text which is accepted by the compiler as a unit is called a compilation unit. There are three
kinds of compilation units: main modules, definition modules, and implementation modules.
A main module constitutes a main program and consists of a so-called program module. In
particular, it has no export list. Imported objects are defined in other (separately compiled)
program parts which themselves are subdivided into two units, called definition module and
implementation module.
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The definition module specifies the names and properties of objects that are relevant to
clients, i.e. other modules which import from it. The implementation module contains local
objects and statements that need not be known to a client. In particular the definition
module contains the export list, constant, type, and variable declarations, and specifications
of procedure, selector and constructor headings. The corresponding implementation module
contains the complete procedure declarations, and possibly further declarations of objects not
exported. Definition and implementation modules exist in pairs. Both may contain import
lists, and all objects declared in the definition module are available in the corresponding
implementation module without explicit import.

Compilation units prefixed with the symbol DATABASE are called database modules. Vari-
ables declared within a database module which reside at the same scope level as the modules
are called persistent variables. Their lifetime is longer than that of any program importing
the database module. The set of all persistent variables of a database module constitutes
a database. Persistent variables are shared objects, i.e. they can be accessed by several
programs simultaneously. An access to a persistent variable must be part of a transaction
execution. During the transaction execution the calling program is guaranteed to be the only
one accessing the respective persistent variables; the values of these variables upon entry to
the transaction however cannot be deduced from the program.

$ CompilationUnit = [DATABASE] (DefinitionModule | ImplementationModule |

$ ProgramModule). $ DefinitionModule = DEFINITION MODULE ident *;"
$ {import} {definition} END ident “.".

$ definition = CONST {ConstantDeclaration “;"} |

$ TYPE {ident ["=" type] " } |

$ VAR {VariableDeclaration “;" } |

$ SelectorHeading ;" | ConstructorHeading “;" |

$ ProcedureHeading ;.

$ ImplementationModule = IMPLEMENATION MODULE ident [priority] ;"

$ {import} declaration

$ [DATABASE DEFINITON StatementSequence]

$ [DATABASE IMPLEMENTATION StatementSequence]

$ [BEGIN StatementSequence] END ident ".".

$ ProgramModule = MODULE ident [priority] ;" {import} declaration

$ [DATABASE StatementSequence] [BEGIN StatementSequence] END ident “.".

The definition module evidently represents the interface between the implementation module
on one side and its clients on the other side. The definition module contains those declarations
which are relevant to the client modules, and presumably no other ones. Hence, the definition
module acts as the implementation module’s (extended) export list, and all its declared objects
are exported.

Definition modules imply the use of qualified export. Type definitions may consist of the
full specification of the type (in this case its export is said to be transparent), or they may
consist of the type identifier only. In this case the full specification must appear in the
corresponding implementation module, and its export is said to be opaque. The type is
known in the importing client modules by its name only, and all its properties are hidden.
Therefore, procedures operating on operands of this type, and in particular operating on
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its components, must be defined in the same implementation module which hides the type’s
properties. Opaque export is restricted to pointers. Assignment and test for equality are
applicable to all opaque types.

As in local modules, the body of an implementation module acts as an initialisation facility
for its local objects. Before its execution, the imported modules are initialized in the order in
which they are listed. If circular references occur among modules, their order of initialization
is not defined.

The body of a database module may contain initialization statements for each kind of com-
pilation unit. This initialization is executed only once during database lifetime, namly before
any access to the persistent variables has been made.
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DBPL Installation Guide

The DBPL distribution tape contains the DBPL system (a compiler and a runtime system) as
well as a Modula-2 compiler, both running under VAX/VMS and developed at the University
of Hamburg. Both compilers are based on the Modula-2 compiler M2RT11 developed at the
“Institut fir Informatik, Fidgenossische Technische Hochschule Ziirich”.

The DBPL compiler is able to utilize the symbolfiles produced by the Modula-2 compiler.
Using Foreign-Definition modules (see the Modula-2 User’s Guide on tape), it is furthermore
possible to develop arbitrary mixed language systems with the DBPL compiler.

The current implementation of the DBPL system is still incomplete, please consult section
??) for details.

4.1 First Installation of DBPL

Before proceeding with the installation process, please make sure that you have enough disk
space available. Approximately 8000 disc blocks are needed to install both compilers and
their libraries.

1. Mount the tapedrive by
$ mount/foreign tape_drive
where tape_drive is the name of the used tape drive, e.g. mua0O:.

2. Define the directory on which the top-directory of the DBPL system should reside, as
the default directory.

3. Copy the system from tape or TK-50 by
$ backup/log tape_drive [...J%.%.%

4. Go to [.dbpl] and load the file install_dbpl.com with an editor. The first line of this
file is
$ define $dbpll "’ ’f$trnlnm("$your_disk")’[path_to.dbpl.]"/trans=(conc,term)

On the first line of this file, change $your_disk to the (logical) name of your actual disc
and path_to to the actual path of the installation directory.

55
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5.

6.

4.2

4.3

Execute @install_dbpl.com.

Dismount the tape:

$ dismount tape_drive

User Access to DBPL

Every user of DBPL has to execute install_dbpl.com in the directory [.dbpl](e.g.
in his login.com file).

Make sure, that the file protection of the DBPL system files and system directories
allows read-access (respectively execute-access for *.exe files) for the designated users.

. Every DBPL user needs an open file quota of at least 100. This is necessary for the

DBPL runtime system to handle persistent and temporary relations. The standard
settings for the open file quota will lead to problems even for small DBPL applications!

Using DBPL

A step-by step example is given in the next section.

1.

2.

4.

Create the DBPL source files.

Compile them with xdb/command_qualifier file_name. Look at the file $DBPL:xdb.cld
for allowed command qualifiers. DATABASE MODULE’ s have to be compiled with the
qualifier /create to create an (uninitialized) database. The other command qualifiers
are described in the VAX-11 Modula-2 User’s Guide. The first application program
accessing that database will execute the user-definable database initialization code for
that database.

. Link your objectfiles with 1ink file;.obj, ..., file,.obj. File; should be the main program

module. It is not necessary to name the object libraries of the Modula-2 and DBPL
system explicitely.

Start your application with run file;.exe.

For Modula-2 programs you can use the Modula-2 compiler in the same way by compiling
this files with mod command_qualifier file_name. Look at the file $dbpl:mod.c1d for allowed
command qualifiers. They are explained in the VAX-11 Modula-2 User’s Guide.
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4.4 An Example Application

Go to the directory $DOC:

$ set def $doc

The example application consists of the following files

1. gtypes.def and gtypes.dbp
2. gdisplay.def and gdisplay.dbp both importing from gtypes.def.

3. gdemo.dbp, the main program module and the only database module, importing from
gtypes.def and gdisplay.def.

Compile these modules with

xdb/log/debug gtypes.def
xdb/log/debug gdisplay.def
xdb/log/debug gtypes.dbp
xdb/log/debug gdisplay.dbp
xdb/log/debug/create gdemo.dbp

“h A BH L P

Please note, that the order of these operations is significant, since the compiler has to read the
symbol files of all imported modules. By using the qualifier /create the persistent database
variables will be created. You will therefore find some new files with extensions .dat, .i00,
.dic in the current default directory. These files are needed during subsequent executions of
the DBPL application. Now link your application with

$ link/debug gdemo.obj,gtypes.obj,gdisplay.obj

Note, that the main module gdemo is at the first position. If you use this link command, the
VAX-Debugger will be automatically activated when you start your application. If you do
not need this feature, omit the /debug qualifier in the link-command. Now you can start the
application with

$ run gdemo

If you have used the “debug version” you should type go after the debugger prompt or start
your application simply with

$ run/nodebug gdemo
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This avoids the activation of the debugger, too.

You can use the module-management facilites (MMS) of the VAX operating system to keep
track of your module dependencies and simplify the generation of an executable image (see
MMS user’s guide for further informations). There is a description file gdemo.mms for the
module dependencies of the demo application and the default rules for the generation of
DBPL code and DBPL symbol files. Using MMS it is sufficient to type

$ mms/description=gdemo.mms

4.5 I0-Facilities

Many DBPL applications need heavy user-interactions. Therefore you will find some prede-
fined modules with simple facilities for menu-driven selection and window-oriented in-/output
in the installation directory $10. These facilities are offered by the following modules:

e Form
e Selector

e Window

For their functionality look at the corresponding definition module’s in the directory $IOSOURCES.

4.6 Directory Structure

The top level directory is $DBPL. It contains the DBPL-compiler (dvcpublic.exe), the
Modula-2 compiler (modula.exe), the Modula-2 object library (modula.olb), the DBPL run
time system object library (dbplrts.olb) and files necessary for the installation of DBPL.
It contains three subdirectories:

$DOC contains the DVI-files and the latex-files of the IATRX-Versions of the DBPL-Report
(dbplreport.latex/dvi)and this installation guide (dbpl_installation.latex/dvi).
Furthermore, it contains the example application (see section ?7?).

$SYM contains the symbolfile of the interface to the DBPL run time system (dbplrts.sym)
(only for internal use by the DBPL compiler) and some Modula-2 symbol files. Fur-
thermore, it contains the subdirectory $MODSOURCES with the definition modules
for the standard modules.

$I0 contains the symbolfiles and the object library for the I0-Facilities (see section ??). and
a subdirectory $IOSOURCES with the definition modules of the symbolfiles and the
implementation modules of the objectfiles in the IO object library.
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4.7 System Restrictions

Restrictions of the current release of the DBPL-compiler:

e Access expressions must not contain function calls (detected during body analysis).
e Aggregates must not contain relations or predicates (detected during code generation).

e The USING list within transactions is not implemented (detected during code generation,
HALT statement during compilation).

e The assembler listing (selected with the command qualifier /LIST/MACHINE) contains
minor syntactic errors, if DBPL specific language constructs are used.

e The internal codetable during code generation may overflow if there are many construc-
tor or selector declarations within a single module (detected during code generation).
This problem can be avoided by introducing additional local modules and distributing
the selectors and constructors among them.

e The Modula-2 standard functions ABS, CAP, CHR, etc. must not be used within
constant expressions. Their evaluation has to take place at runtime.

Restrictions of the current release of the DBPL run time system:

e Updates on selected relation variables are not implemented, i.e. the following program
would abort at run time:

SELECTOR sp ON ... WITH ...

BEGIN
Rel[sp] := ...
END;

e All files representing database variables are created (during compilation) and looked up
(during execution) in the default directory. Name conflicts between multiple databases
are therefore not avoided and can lead to strange error messages. This problem can
be avoided by giving unique variable names within all database modules. A counter
example would be

DATABASE MODULE A;
VAR

x: RELATION OF INTEGER;
END A;

DATABASE MODULE B;
VAR

x: RELATION OF CHAR;
END B;
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A Complete DBPL Example

The following small application is taken from [?] and [?] where it serves as an example for the
DAIDA methodology of database programming by formal refinement of conceptual designs.

The task is to model research companies that are engaged in research projects and that are
supported by grants from third parties. Furthermore they can hire employees to work on
some of their own projects.

The following DBPL program addresses all aspects of such a prototypical data-intensive
application:

e Representation of the data objects of the application domain (projects, employees, com-
panies) with their relationships (gets grant from, works on, belongs to).

e Maintenance of the application-specific integrity constraints during database updates
(a company is not allowed to hire employees that work on projects the company is not
engaged in).

e Interaction with the user to display the database contents, to initiate database trans-
actions and to accept transaction parameters.

This database application is broken down into several manageable and reusable modules.
Each module consists of a specification called DEFINITION MODULE and an implementation
part called IMPLEMENTATION MODULE:

RCDemo is the main module. It controls the global program execution according to the
users requests using a simple menu and from interface. It calls (predefined) transactions
that are imported from other modules.

RCOps exports a single transaction to hire an employee for a set of projects. Furthermore
it contains the definition of the database schema.

RCTypes exports type declarations needed for the database schema definition. All appli-
cation programs accessing the research company database will import these types to
declare local variables or parameters of procedures and transactions.

60
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other
RCDemo programs
RCOps
RCTypes

Identifer | String, Form, Selector

Figure 5.1: Modules and Import Relationships of the Application Example

Identifer encapsulates a mechanism to generate database-wide unique identifiers. This par-
ticular implementation simply demonstrates the use of scalar database variables and
does not scale up for real database applications.

String, Form and Selector are modules from a standard library that comes with the
DBPL system. They provide string handling procedures and a simple user interface
based on (overlapping) text-windows.

Figure 77 shows the module relationships of this particular example. An arrow from a box
A to a box B indicates that the definition or the implementation of module A uses types,
variables or operations exported by the definition module of B.

In the following listings, compilation units are separated by a horizontal bar.

DEFINITION MODULE Identifier;
(* Generates database-wide unique identifiers
*)
TYPE
Type = CARDINAL;

PROCEDURE New () : Type;
(* Returns a unique identifier *)

PROCEDURE Nil () : Type;
(* Returns NIL-identifier *)

END Identifier.
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DATABASE IMPLEMENTATION MODULE Identifier;

(* Implementation uses a database variable

*)

for every New operation.

VAR

count: Type;

PROCEDURE New () : Type;
BEGIN

INC(count);
RETURN count;

END New;

PROCEDURE Nil () : Type;
BEGIN

RETURN O;

END Nil;

DATABASE IMPLEMENTATION

count:= Nil ();

END Identifier.

’count’

that is incremented

DEFINITION MODULE RCTypes;
IMPORT Identifier, String;

(* global type declarations needed for the database schema and all

transactions running against that schema *)

TYPE

(* basic types *)

EmpIds = Identifier.Type;
Agencies = (ESPRIT, DFG, NSF);
CompNames = String.Type;
PersNames = String.Type;
ProjNames = String.Type;

(* One project and a set of projects *)
ProjIdRecType = RECORD
ProjlName : ProjNames;
GetsGrantFrom : Agencies;
END;
ProjIdRelType = RELATION OF ProjIdRecType;

ProjRecType = RECORD
ProjId : ProjIdRecType;
Consortium : RELATION OF CompNames;
END;
ProjRelType = RELATION ProjId OF ProjRecType;

(* One employee and a set of employees *)

(* multivalued *)
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EmpRecType = RECORD
EmpId : Identifier.Type; (* unique identifier *)
PersName : PersNames;
BelongsTo: CompNames;
WorksOn : ProjIdRelType; (* multivalued *)
END;
RELATION EmpId OF EmpRecType;

EmpRelType

(* One company and a set of companies *)
CompRecType = RECORD
CompName : CompNames; (* unique identifier *)
EngagedIn : ProjIdRelType; (* multivalued *)
END;
CompRelType = RELATION CompName OF CompRecType;

END RCTypes.

63

IMPLEMENTATION MODULE RCTypes;

(* Since the definition module RCTypes already contains all delcarations,
the implementation part is empty

*)

END RCTypes.

DATABASE DEFINITION MODULE RCOps;

(* The keyword DATABASE indicates that all variables declared within
this module are persistent.

*)

FROM RCTypes IMPORT
CompRelType, EmpRelType, ProjRelType, ProjIdRelType, EmpIds, PersNames,
CompNames;

VAR (* persistent database relations *)
compRel : CompRelType;
empRel : EmpRelType;
projRel : ProjRelType;

TRANSACTION hireForProject (name : PersNames;
belongs : CompNames;
works : ProjIdRelType) : EmpIds;

(* Hires the employee described by ’name’ for the set of projects ’works’ in
which the company with name ’belongs’ is engaged in. In case of success a new
unique identifier for the hired employee will be returned, (otherwise
’Identifier.Nil’).

*)

END RCOps.
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IMPLEMENTATION MODULE RCOps;

IMPORT Identifier;

FROM RCTypes IMPORT
PersNames, CompNames, ProjIdRelType, EmpIds, ProjRecType, CompRecType,
EmpRecType, ProjIdRecType, Agencies;

TRANSACTION hireForProject (name : PersNames;
belongs : CompNames;
works : ProjIdRelType) : Emplds;

VAR emp : EmpRecType;
BEGIN
IF SOME v1 IN compRel (vi.CompName = belongs) THEN
IF ALL v2 IN works
SOME v3 IN compRel[belongs].EngagedIn
((v2.ProjName = v3.ProjName) AND
(v2.GetsGrantFrom = v3.GetsGrantFrom)) THEN
(* referential integrity assured; employee can be hired *)

WITH emp DO
EmpId := Identifier.New ();
PersName := name;

BelongsTo := belongs;
WorksOn := works;
END;
INCL (empRel, emp);
RETURN emp.EmpId
ELSE
RETURN Identifier.Nil ()
END
ELSE
RETURN Identifier.Nil ()
END
END hireForProject;

END RCOps.

MODULE RCDemo;
(* Main program, interaction with the user, global program control

*)

IMPORT Conversions, Form, Selector, Identifier;

FROM RCTypes IMPORT
EmpRecType, PersNames, Agencies, CompRecType, ProjIdRecType,
ProjRecType, ProjIdRelType, CompNames, EmpIds;

FROM RCOps IMPORT
empRel, compRel, projRel, hireForProject;

TRANSACTION ShowEmployees; (* displays the contents of empRel *)

END ShowEmployees;
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TRANSACTION ShowProjects; (* displays the contents of projRel *)
ﬁﬁb ShowProjects;
TRANSACTION ShowCompanies; (* displays the contents of compRel *)
ﬁﬁb ShowCompanies;

PROCEDURE TryToHireEmployee;
(* accepts parameters from the user and calls transaction hireForProject *)

PROCEDURE BuildLeftSide (VAR form : Form.T);

BEGIN
form:= Form.Create("Hire Employee");
Form.ConstField(0, 1, "Employee Name");
Form.ConstField(1, 1, "Company");
Form.ConstField(2, 1, "Works On");
Form.ConstField(3, 1, "Grant From");
Form.ConstField(4, 1, "Another Project");

END BuildLeftSide;

T

CONST (* valid strings for user inputs: *)

YesNoStr = "|yln";

AgenciesStr = "|ESPRIT|DFG|NSF";
TYPE

YesNoType = (y, n);
VAR

form : Form.T;

emp : PersNames;

comp : CompNames;

projid : ProjIdRecType;
localproj : ProjIdRelType;
yesno : YesNoType;

edit : BOOLEAN;

BEGIN
Form.Message ("Trying to a hire an Employee for some Projects', FALSE);
(* get user inputs for attributes of an employee: *)
BuildLeftSide (form);

emp := ""; Form.TextField( 0, 19, emp);
comp := ""; Form.TextField( 1, 19, comp);
projid.ProjName := ""; Form.TextField( 2, 19, projid.ProjName);

Form.EnumField (3, 19, AgenciesStr, projid.GetsGrantFrom);
Form.EnumField (4, 19, YesNoStr, yesno);
Form.Display (form, 1, 1);
IF Form.Edit (form) THEN
INCL (localproj, projid);
Form.Erase (form); edit := TRUE;
(* get values for the other projects the employee is engaged in: *)
WHILE (yesno = y) AND edit DO
BuildLeftSide (form);
Form.ConstField (0, 19, emp);
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Form.ConstField (1, 19, comp);
projid.ProjName := ""; Form.TextField( 2, 19, projid.ProjName);
Form.EnumField (3, 19, AgenciesStr, projid.GetsGrantFrom);
Form.EnumField (4, 19, YesNoStr, yesmno);
Form.Display (form, 1, 1);
edit := Form.Edit (form);
IF edit THEN
INCL (localproj, projid)

ELSE
Form.Message ("The last form was ignored.", TRUE)
END;
Form.Erase (form);
END;
(* call transaction: *)
Form.Message ("Cheking integrity constraints...", FALSE);

IF hireForProject (emp, comp, localproj) # Identifier.Nil() THEN
IF CARD (localproj) = 1 THEN
Form.Message ("The Employee has been hired for the Project.', FALSE)
ELSE (* >= 2 *)
Form.Message ("The Employee has been hired for the Projects.", FALSE);
END;
Employees.ShowEmployees;
ELSE
Form.Message ("Integrity constraints violated - no Employee hired!", TRUE)
END
ELSE (* first form has not been edited *)
Form.Erase (form);
Form.Message ("You just abandoned hiring another Employee'", TRUE);
END;
END TryToHireEmployee;

PROCEDURE MainMenu;
CONST MenuStr = "Your Choice ?|Hire an Employee|ShowEmployees"
"|ShowCompanies | ShowProjects|ShowAll|QuitProgram";
VAR quit : BOOLEAN; choice : CARDINAL;
BEGIN
quit := FALSE;
REPEAT
choice := Selector.Select (1, 2, MenuStr);
CASE choice OF
1 : TryToHireEmployee;
: Employees.ShowEmployees;
: Companies.ShowCompanies;
: Projects.ShowProjects;
: Employees.ShowEmployees;
Companies.ShowCompanies;
Projects.ShowProjects;
| 6 : quit := TRUE
END
UNTIL quit
END MainMenu;

o W N

BEGIN (* this is the main program: *)
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Employees.ShowEmployees;
Companies.ShowCompanies;
Projects.ShowProjects;
MainMenu;

END RCDemo.
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