
Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 1

Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes,
Christian M. Schweda, André Wittenburg

Generating Visualizations of Enterprise
Architectures using Model
Transformations

Giving account to the importance of enterprise architecture (EA) modeling, we identify issues in visualization
handling that we came across during an extensive survey of existing tools for EA management. We then point to
the fundamental principles of software cartography, an approach for EA modeling, including a method for the
automatic creation of visualizations based on EA models. This approach is based on model transformations, which
link the data to be visualized and their graphical representation, thereby circumventing the error-prone and time-
consuming task of manual creation of the visual models. A brief overview of a prototypic implementation of this
approach illustrates the practical applicability for visual modeling and documenting EA.

1 Motivation
With the growing importance of enterprise
architecture (EA) management currently
experienced in research [LaWe04] and in practice
[Jame05], methods for documenting, evaluating,
and planning the application landscape as part of the
EA management gain increasing attention. This is
reflected by various approaches, which try to
establish and standardize languages for modelling
the EA, furthermore complemented by a number of
vendors claiming the emerging market of EA
management tools. Nevertheless, many of these
tools show common weaknesses, especially
regarding the approach used for creating
visualizations of the EA or the application landscape,
as we found out during an extensive survey [sebi05]
conducted by sebis. Such visualizations, used for
documenting, evaluating, and planning the
application landscape make up the focus of the
research project Software Cartography, which this
paper originates from.

In this project, we discovered a large number of
different visualizations for application landscapes,
which we refer to as software maps. An exemplary
software map used at one of our project partners is
given in Figure 1. The figure is made illegible due to
the fact that it contains confidential information.

Nevertheless, the figure shows the inherent
complexity an approach for generating visualizations
of enterprise architectures has to cope with. The
software map originates from an insurance company
and visualizes about 160 application systems hosted
at the headquarter, which are used worldwide. The
original map is commonly used in printout in DIN A0,
within presentations, and is available in the
corporate intranet.

In order to discuss the requirements an approach for
generating visualizations of EAs must satisfy, an
anonymized software map similar to the one of the
insurance company is shown in Figure 2. This
visualization shows organizational units of a fictitious
department store as rectangles, nesting the business
applications hosted at the specific organizational unit
represented by smaller rectangles. No established
method for the creation and maintenance of such
visualizations yet exists. Furthermore, most of the
EA management tools show only basic capabilities in
the context of automated positioning [sebi05].
Within the development of such a method the
following issues have to be considered:

• The manual creation of the visualizations of
the EA is an error prone and time
consuming task, that leads to software
maps containing aged data. Caused by the

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
2 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

Figure 1: Exemplary software map of an insurance company

missing link between the present data and
the visualization, no automated creation
process for the visualization is available to
ensure the up-to-date information of the
visualized data.

• The EA management tools commonly
provide the user with the possibility to
introduce visual elements without defined
semantics in the context of the
visualization, thereby effectively
disconnecting the visualization from the
respective data.

We subsequently detail on the topic of EA modeling,
presenting an approach, complemented by a
prototypic tool implementation, which we regard to
be suitable for addressing these issues. Thereby, the
approach is based on a technology originating from
the field of model driven development (MDD): model
transformation. This article especially focuses on the
method for creating visualizations of the EA by
model transformation and provides information, how
a tool could actually implement this method.
Thereby, the error prone and labor intensive task of
manual creation of these visualizations is eliminated.

The remainder of the article is structured as follows.
As a starting point, software cartography as a way
to support EA modeling with visual models is
presented in Section 2 as well as an approach using
model transformation to create the necessary visual
models in Section 3. The following Section 4 shows
the application of our approach by providing

information on a prototypic tool implementation.
Section 5 emphasizes on different approaches taken
in the context of EA modeling as well as on aspects
of visualization consistency. Finally, Section 6
provides some conclusions resulting from the taken
approach and sketches aspects of further research in
this field.

2 Software Cartography

Our approach to EA modeling uses concepts and
notions originating from the field of cartography.
Maps in the context of cartography can be
categorized into two different map types:
topographic maps and thematic maps [KrOr96].
Topographic maps mainly deal with geographic
information, whereas thematic maps show spatial
information on a topographic map, as e.g. the
results of a political election.

In the context of EA modeling, visualizations
resembling the buildup of thematic maps can be
considered to be important, as they can be used to
visualize different aspects of the enterprise. These
visualizations, called software maps, are subject of
research in our project software cartography.
Aspects in the context of EA modeling that can be
used to support the documentation, planning, and
evaluating of the application landscape can be found
in [MaWi04]. Thereby, metrics that point out aspects
can be visualized on software maps to address
specific concerns. In our research project, we

Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 3

Figure 2: Exemplary software map

gathered different visualizations of the EA and
categorized them into three different types [Witt07]:

• A cluster map is a type of software map
that uses positioning to show how objects
(e.g. applications) are grouped into larger
logical units (e.g. organizational units) on
the base map. Thereby, the graphical
representation of the object is clustered
into the the representation of the logical
unit. An example for a software map of type
cluster map is shown in Figure 2.

• A cartesian map is characterized by
elements that are aligned along an x- and
an y-axis on the base map. Two prominent
examples of cartesian maps exist. Firstly,
the process support map, which utilizes
positioning to show which business
processes (x-axis) are supported by which
application and used at which location (y-
axis). Secondly, the time interval map,
which is closely related to Gantt-like
diagrams, as it uses bars for representing
the life cycle on the x-axis (representing
periods of time) of objects (e.g.
applications) on the y-axis.

• A graph layout map is a map using a typical
nodes-and-edges buildup of the base map,
not exerting additional restrictions on
positioning to convey information.

Therefore, the positioning is for example
used for minimizing the numbers of lines
crossing.

These different types of software maps can be used
to visualize different aspects of the enterprise.
Thereby, considerable aspects in the context of
enterprise modeling that can be used to support the
documentation, planning, and evaluating of the
application landscape can be classified in the
following categories [MaWi04]:

• Planning aspects deal with the evolution of
the application landscape. Projects change
applications of the landscape to reach
defined goals and objectives. Different
stakeholders as e.g. project managers need
to get an overview about current and future
changes in the application landscape to
identify demands in the context of
adjustment and communication. Thereby,
application life cycles, versions and
interfaces between different applications
constitute a major field of interest.

• Functional aspects can be distinguished into
organizational and process-oriented
aspects, that influence each other. As
organizational units are responsible for the
realization of a business process and at the
same time the steps of a business process

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
4 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

Figure 3: Layering principle of a software map

are conducted by persons, which belong to
an organizational unit. An example of the
visualization of a functional aspect is
visualized in Figure 2, where application
systems are clustered according to their
relation to organizational units.

Technical aspects include attributes, like the
implementation language of an application,
the interfaces, the architecture, and the
used middle ware. In the context of
application landscapes interfaces between
applications are highly relevant, to identify
transitive dependencies to plan the
evolution of the landscape.

• Economical aspects cover different
investments as e.g. development,
operating, or maintenance costs. These
different investments can be combined with
each other and linked to the application
landscape. Therefore, software maps can be
used to support IT controlling.

• Operative aspects deal with the operating
issues of the applications and associated
events. Relevant aspects in this context are
for example the hosting location of a
specific application (physical location, host
computer, etc.), which often differs from
the usage location.

To support the visualization of different aspects on a
software map [LaMW05], the layering principle as
shown in Figure 3 can be utilized.

The exemplary software map in Figure 3 consists of
a base map including organizational units, and
multiple layers, which are used to visualize
relationships between different objects. In Figure 3,
the layers contain applications on the first layer,
interconnections representing a technical aspect on
the second layer as well as measures on the third

layer, visualizing operational or economical aspects.
Thereby, each layer has a reference layer to which
the elements relate.

Within the process of EA management, software
maps are used e.g. for the documentation of the
current, planned, and target landscapes. Thereby,
these software maps are mostly manually drawn
with modeling tools like MS Visio or MS PowerPoint.
Circumventing the error prone and manual creation
process an approach for generating software maps
reduces the expense of the creation and
maintenance process.

3 A model transformation
approach

As described above, we pursue an approach for EA
modeling based on model transformation in order to
ensure the consistency between information (e.g.
data in an EA management repository) and
visualizations of the EA. Therefore, a strict
separation of the content to be visualized - the
semantic model - and its representation - the
symbolic model - is required. Additionally, a well-
defined link between these models - the
transformation - is needed. Figure 4 shows the basic
idea of the model transformation approach.
Subsequently, the individual concepts are explained
in detail.

3.1 Semantic model and information
model – the left side

The semantic model and the information model deal
with the information describing the EA and its
structure. Thereby, the different models represent
different levels of abstraction, similar to the notion
of MOF (e.g. class and instance). The focal point of
the semantic model lies on the actual information

Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 5

Figure 4: Basic principles of the software cartography method

objects, which describe the EA irrespective of its
representation. These information objects are
instances - in terms of object orientation - of the
classes of the information model, thus the
information model is the metamodel on which the
semantic model is based.

To exemplify the two tiered structure of the left side,
we refer to the cluster map in Figure 2, i.e. the
respective information about the EA contained
therein. This information can be summarized as
”which location hosts which business application”.
”Munich”, for example, which is an instance of
Location, hosts among others ”Online Shop (100)”,
an instance of BusinessApplication. Figure 5 shows
on the left side some of the information objects,
which are instances of the classes from the
corresponding information model on the right side.

The respective information model thus contains the
classes BusinessApplication and Location, related by
the association hostedAt. The attributes of the
classes in the information model are not described in
detail here, as only three of them are shown
exemplarily. A more detailed description of
information models and their related visualizations
for EA management can be found in [BEL+07].

3.2 Symbolic model and visualization
model - the right side

In order to provide means for describing
visualizations, as the cluster map shown in Figure 2,
we introduce a visualization model containing
elements representing graphical concepts. These
graphical concepts may on the one hand be map
symbols, as e.g. the rectangle and on the other
hand be visualization rules. These rules exert certain
demands on the positioning, size, or overall
appearance of the map symbol instances. E.g. the
nesting rule, used in the exemplary visualization,
demands that a symbol representing a business
application is fully contained in the outer symbol.
Utilizing these concepts, the visualization can be
described by a symbolic model (see Figure 6 left
side), that consists of instances from the exemplary
visualization model (see Figure 6 right side).
Nevertheless, it must be noted, that there exist
more visualization rules, even in this simple
example. An example is the rule demanding the
different symbols representing business applications
not to intersect each other. A complete model, able
to describe visualizations as introduced above, is
contained in [ELSW06].

The object-oriented visualization model, alluded to
above, greatly leverages the model transformation
approach, but nevertheless is not capable of giving a

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
6 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

Figure 5: The semantic model and the corresponding information model

Figure 6: The symbolic model and the corresponding visualization model

strict definition for the visualization specific
semantics of the map symbols and visualization
rules. Therefore, we complement each class of the
model with an expression in predicate calculus,
describing the graphical implications in an
unambiguous way. These definitions, further detailed
in [ELSW06], can be used for computing the actual
visualization from a symbolic model. Such a system
might pursue different approaches for the
computation. An exemplary one is outlined in
Section 4.

3.3 Model transformation and
metamodel - the middle

To allow an automated creation of visual models of
the application landscape and to ensure the
consistency between these models and the
underlying data, a link between the left side,
representing the information and the right side, the
representation, is required. This link is created by a
transformation, which translates the information
objects of the semantic model into visualization
objects of the symbolic model. Selecting a
transformation language specification, the concepts
used in information models for EA management and
the bidirectionality of the transformation, to allow
changes in the semantic model by interacting
withthe visualization, should be considered. Figure 7
gives a short example of a transformation,

resembling a notation as proposed by MOF Query,
View, Transformation (QVT) [OMG05a].

ue to the fact that a common metamodel for the
information model and the visualization model
greatly simplifies the transformation specification,
such a model is subsequently introduced. We
extensively analyzed different EA management

 Figure 7: Exemplary transformation rule set

Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 7

information models developed by industry partners
in [Buck05], which pointed to the OMG’s Meta Object
Facility (MOF) [OMG06a] as a suitable metamodel.
The MOF model contains two core packages,
Essential MOF (EMOF) and Complete MOF (CMOF),
the former providing the core capabilities usually
associated with object orientation, the latter
extending them with advanced constructs, as e.g.
constraints. However, EA management information
models at our industry partners did not turn out to
heavily rely on CMOF concepts, but more showed
that these advanced concepts where used
inconsistently. A common sense of usage only exists
concerning the core concepts as contained in EMOF.

Based on the results of the analysis alluded to
above, we regard EMOF to be sufficient for
information modeling in the field of EA, as well as a
good choice in terms of an easy mapping of models
to implementation. Verifying this choice, the
following section details aspects of our prototypic
tool realizing the approach outlined above.

4 SoCaTool: a tool for enterprise
architecture modeling

Subsequently, we show the applicability of the
model transformation approach for generating visual
models of the enterprise architecture. Therefore, we
provide information on a prototypic tool, which has
been developed by sebis - giving an implementation
of the approach. Prior to describing the core
components of the tool and their interaction in
generating visualizations, we provide a summary of
our basic assumptions, which greatly influenced the
software architecture of the tool.

With an approach strongly centered on the usage of
object-oriented models and representations thereof,
a main factor is the metamodel, all these models are
based on. Considerations as in Section 3.2 advocate
the usage of EMOF as a common metamodel for the
information model and the visualization model. An
implementation of the metamodel has therefore to
be incorporated in the tool. With different
implementations at hand, we decided to rely on the
implementation provided in the Eclipse Modeling
Framework (EMF) [MDG+04]. This framework was
chosen, as its metamodel, the ECore-metamodel,
can be considered to be very similar to the EMOF-
metamodel1. Additionally, the EMF provides
serialization and editing related functionalities at ”no
cost”, as well as an active user and developer
community. From this community various extensions

1 Only minor differences concerning naming and the usage
of references exist.

to the core EMF have arisen, as e.g. a support for
queries using the Object Constraint Language (OCL)
as specified by the OMG [OMG06b]. Especially, the
OCL plugin [Ec07a] is used in the tool primarily for
realizing derived attributes and relationships
especially in the information model. Thereby,
metrics basing on the model concepts can be
established in these attributes and relationships, i.e.
by providing a rule for deriving a metric value.
Additionally, OCL is used for augmenting the
information model with invariants. They can be used
to avoid conceptual inconsistent information to be
modeled.

Notwithstanding, the Eclipse Rich Client Platform is
not only a suitable basis for the modeling related
aspects of the prototypic tool, but also leverages the
visualization aspect to be realized in the tool. Here,
the Graphical Editor Framework (GEF) [MDG+04]
provides an easy to use system for managing and
interacting with visualizations. Especially, the second
point can be seen as valuable for our approach, as
the visualization model can be used for validating
semantic preserving changes to the symbolic model
objects.

Based on the eclipse rich client platform, a
component architecture containing four core
components has been realized - complementing the
approach outlined in Section 3 with an
implementation. An important cornerstone of this
architecture is the concept of the model service,
which makes up the base for the transformer and
layouter component. These components are
considered to be model services, as they take self-
describing2 object-oriented models as input and
create self-describing object-oriented output models.

Subsequently, the core components of the prototypic
tool are detailed.

4.1.1 Repository

The repository component is used for storing and
managing object-oriented models, as e.g. the
semantic model. This component also maintains the
relation between a model 1Only minor differences
concerning naming and the usage of references
exist. and its corresponding metamodel, as e.g. the
information model. Concerning the set of
functionalities offered by a repository, different
types of repositories can be considered. Whereas the
simplest type only enables reading access to the
models as well as creating a completely new model

2 Self-describing in this context means, that the model
retains an explicit connection to the corresponding
metamodel. Additionally, the metamodel can be accessed
programmatically.

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
8 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

from a set of objects, a more sophisticated
repository would e.g. support editing operations on
the objects contained. The support for multiple users
acting on object-oriented models raises additional
demands on a repository, especially concerning
transaction related issues as well as issues
concerning notification about model changes. More
detailed considerations on the functionalities
supported by a repository can be found in [OMG04].

As the prototypic implementation neither needs
transaction support nor notification capabilities, a
simple file-based repository has been chosen,
thereby, every object-oriented model is serialized as
a single xml-file. Nevertheless, this repository is
used via the eclipse emf Resource-interface, which is
also supported by repository projects providing more
functionalities, as e.g. the elver persistency project
[Ec07b].

4.1.2 Transformer

The transformer component is capable of
interpreting visualization definitions as rules
describing the transformation from an object-
oriented model to another. When analyzing the
transformation rules between the semantic and the
symbolic model, as outlined in Section 3.3, we
identified basic functional requirements, as e.g. a
support for queries on the semantic model data as
well as a support for parametrizing rules.
Additionally, a framework for bidirectional
transformations would greatly leverage the approach
from Section 3, as it would provide means for editing
semantic model data via changes to the symbolic
model. These requirements mainly focus on the
expressiveness of the transformation language.
Nevertheless, further requirements regarding the
usage context have to be considered. This is
especially important, as the transformation rules
should be easily definable for users without ”full-
scale” programming knowledge, allowing users, as
far as possible, to define auto generated custom
visualizations. We deem it best, to have a graphical
notation for defining these rules.

Taking into consideration languages for defining
model-to-model (M2M) transformations, especially
prominent in the field of MDA, the Atlas
Transformation Language (ATL), as described in
[ATLA06], is at first sight an interesting candidate.
Pursuing a strongly declarative approach in notating
the rules, and not providing a graphical notation for
defining the transformation, some of the functional
requirements stated above are met by ATL.
Nevertheless, ATL has only a limited support for

querying concepts and, as with version 0.7, did not
provide support for parametrized rules3.

The Bidirectional Object Transformation Language
(BOTL) [BrMa03], pursuing a strongly declarative
approach, provides an UML-based graphical notation
for defining transformation rules. Furthermore, it
leverages bidirectionality regarding the rules, as far
as the operations performed during transformation
do support this. Nevertheless, BOTL uses an
independent metamodel, faintly ”inspired” by the
EMOF metamodel, leaving out concepts that are of
importance in information modeling, as e.g.
inheritance. Furthermore, querying and external
parametrization are not directly supported.

Having thus ruled out two promising transformation
languages from the field of MDA, we decided to use
ECore reflection and java code to realize a first
prototypic implementation of the transformer based
on ”hard coded” transformation implementations.
While this approach comprises obvious drawbacks
concerning the simplicity of visualization definition
by the user, it greatly leverages the definition of
closely related visualization variants by inheritance
and the utilization of object-oriented design
patterns. Additionally, the maximum expressiveness
of java helped us to gain further insights, which
language concepts are necessary in constructing
model transformation rules for defining EA
management visualizations.

4.1.3 Layouter

The layouter component, providing the capability to
actually layout visualizations described as symbolic
models, can be considered the core component of
the prototypic tool. This component leverages the
utilization of object-oriented visualization
specifications and thus enables the realization of
visual modeling facilities without burdening the
model creator with the implementation of layouting
algorithms. When relying on the concepts provided
by the visualization model as outlined in Section 3,
the layouter is capable of calculating the positions,
dimensions, and other visual parameters of symbol
instances in accordance to the visualization rule
instances in the symbolic model. In performing this
calculation many different approaches can be
pursued. Two of them have been explored in-depth
in the prototypic tool implementation, which are
subsequently detailed.

The first approach relies on the fact, that for every
symbolic model a representation as an optimization
problem can be found. This optimization problem

3 The current version of ATL does support external
parametrization.

Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 9

uses the positions, dimensions, and other visual
parameters of the symbol instances as variables,
while constraints and target functions are derived
from the visualization rule instances [ELSW06].
Solving the corresponding optimization problem is
therefore equivalent to finding a valid layout for the
visualization. Nevertheless, as these optimization
problems are often high-dimensional as well as non-
convex, specialized algorithms for solving do not
commonly exist. For this reason, the first approach
employed a genetic algorithm for searching an
optimal solution. Due to the high genericity of such
an algorithm, this approach is of limited
performance.

The second approach takes advantage of the fact,
that there exist recurring elements in the object-
oriented symbolic models, called patterns. One of
these patterns could e.g. be a clustering pattern, in
which a variable number of symbol instances is
demanded to be nested into a surrounding symbol
instance, with the nested instances demanded to be
separated from each other. This pattern is
prominently used in the visualization in Figure 2. For
such patterns specialized layouting algorithms can be
found, which incorporate the specifics of the pattern
to provide superior layouting performance. A layouter
pursuing this approach has been implemented as
component in the tool (see [Laus07]), performing
significantly better as the genetic algorithm.
Nevertheless, the layouter is limited concerning the
variety of symbolic models, which can be addressed,

although the most prominent types of visualizations
as outlined in Section 2 can be layouted.

Figure 8: The GUI of the prototypic tool implementation

4.1.4 Renderer

The renderer component is used to present a
layouted symbolic model in a specific output format.
Concerning the format especially the PDF and the
scalable vector graphics (SVG) format are of interest
due to the inherent or potential support for layering
and their vector graphic nature. Supplementary, a
renderer for direct screen output in the tool can be
implemented, with additional functionalities of
interest, as the option to support interactions with
the rendered visualizations, e.g. via moving
symbols.

In the prototypic implementation a renderer for
static visualizations on screen has been implemented
using the eclipse Graphical Editor Framework (GEF).
The output of this renderer in the graphical user
interfaces of the tool is shown in Figure 8, displaying
an exemplary software map of type cartesian map
as outlined in Section 2.

5 Related Work
With an approach for visual modeling presented
above, the following section links to related work
from the area of software engineering and EA
modeling as well as issues regarding consistency of
visual models.

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
10 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

In the field of software engineering, the unified
modeling language (UML) [OMG05c, OMG05b]
provides the common sense for modeling single
software systems, which is lacking in the field of
enterprise architecture modeling. Therefore, the
attempt of transferring the concepts and notations of
UML to EA modeling could be undertaken.
Nevertheless, the specific concerns of this area of
modeling are not well supported by UML, as e.g.
concepts like business applications or business
processes are not known. While these concepts
could be introduced via UML profiles, specific
diagramming semantics are not easily realizable
using the concepts of UML, effectively ruling out the
unified modeling language as a language for EA
modeling. This fact is also reflected by the variety of
different approaches for enterprise architecture
modeling regarding languages, methods, and tools,
which can be found in the academic community.

One approach is outlined in [TLD+04, Lank07] and
specially focuses on a formal way of defining
visualizations of the application landscape. This
approach relies on the concept of signatures to
establish a well-defined relation between the
visualization and the underlying model of the
enterprise architecture. While this approach also
considers aspects of interest in the context of
visualizations, e.g. relative positioning, no simple to
use notation for a model describing the
visualizations is provided. Further the approach does
not provide an executable way for creating
visualizations from the information.

Regarding the absence of a state of the art, [Fran02]
suggests another approach to enterprise architecture
modeling, emphasizing the necessity to support
different views on the enterprise. These views use
different special purpose modeling languages to
meet the concerns of the different stakeholders.
These languages are defined in metamodels, which
correspond to a common meta-metamodel to
support integration. Nevertheless, as the approach is
more focused on the provision of an integrated
meta-metamodel for the different languages, it does
not provide a method for generating the required
views of the EA. The approach presented in
Section 3 can been seen as supportive in this
context, for realizing tool support for the special
purpose modeling languages and their visual
models, as outlined above.

An approach centered around an EA metamodel
(information model in our terms) can be found in
[BrWi05]. The model contains over 50 classes and
thus spanns various aspects of interest in EA
modeling. Additionally, this information model is
complemented by means for structuring, which can
be considered very helpful in reducing the inherent

complexity of the modeling subject. Nevertheless,
with the emphasis of the approach on the
information model, aspects of visual models and
their creation are not addressed in the article. Again,
we see the approach presented in Section 3 as a
valuable contribution in the context, actually
providing a way for supporting visual modeling
based on the EA metamodel provided in [BrWi05].

Enhancing the approach presented in [BrWi05]
Kurpjuweit and Winter introduce an approach based
on the integration of information model fragments
[KuWi07]. Thereby, the information model
fragments are selected according to the concerns of
different stakeholders and integrated to a
metamodel. While the approach focuses on the
different concerns of the various stakeholders, the
issue of utilizing the information kept within the
information model is left out. The approach
presented in Section 3 can be seen as supportive in
this context, as it can be leveraged to generate
visualizations of the EA which can be used to
address the concerns presented by the various
stakeholders.

Regarding the inconsistency issue between
visualizations and the underlying data, an approach
to ensure visualization consistency is pursued in
[DoVa02] and especially focuses on aspects of
executability. In order to provide an ”open
visualization framework applicable to metamodel
based modeling languages” the issue is approached
from the direction of visual languages (visualization
models). Pointing out, that many domain specific
visualization environments exist, the approach
quickly calls to XML as a lingua franca for
representing the concepts of these languages.
Furthermore, information to be visualized is also
serialized as XML, such that concepts of
transforming between XML document, as e.g. XSLT
can be used for visualizing the information.
Nevertheless, the article does not encompass a
visual language suitable for expressing the aspects
of relative positioning, as the application presented
in therein concerns petri-nets and their
representation as nodes-and-edges.

Targeting EA modeling, an approach using object-
oriented models for describing the EA and the
visualizations is given in [SADL04]. These models
are, similar to the approach presented in Section 3
connected via transformations. Nevertheless, these
transformations are limited to object-to-object
transformations, while the links (instances of
associations) are not taken into consideration -
again leaving out an aspect crucial for modeling the
EA. Furthermore, a language for describing the
visualizations as outlined in Section 3.2, especially
concerning relative positioning, is not provided.

Enterprise Modelling and Information Systems Architectures
Vol. X, No. X, Month 200X
Generating Visualizations of Enterprise Architectures using Model Transformations 11

6 Outlook
In this article, we emphasized on the importance of
EA models. As we outlined, various approaches and
information models for this modeling task exist, with
no model or approach being prominent and all-
embracing. Complementarily, we outlined the
importance of visual models of the enterprise
architecture to make the information about the EA
perceivable. With the absence of the one information
model for the EA and the need for visual models
obviously existing, the approach presented in
Section 3 targets to bridge this gap. Utilizing model
transformation concepts and providing a flexible
model for describing visualizations, our approach can
be seen as an extension to the information modeling
approaches as presented in Section 5.

The applicability of the model transformation
approach is shown in Section 4 by providing details
of a prototypic tool implementation, which is able to
ensure consistency between the data modeled
according to an arbitrary information model and the
visualization representing this data. Nevertheless,
the prototypic implementation can be seen as a first
step towards a visual modeling tool supporting a
variety of information models. Concerning the
modeling capabilities further extension for e.g.
semantic-preserving editing of the visualizations as
well as for propagating semantic changes in the
visualization to the underlying semantic model have
to be explored and are currently subject of research
at sebis.

Besides the issues of generating visualizations of the
EA, we regard the utilization of software maps within
the EA management process as an interesting field
of research. In our Enterprise Architecture
Management Viewpoint Survey, we are consolidating
viewpoints for EA management existing in research
and in practice in order to find the most prominent
ones, which will then be consolidated into an EA
management pattern catalogue. As viewpoints are
not sufficient to address the concerns arising in EA
management, we build this pattern catalogue
constituting of viewpoints, methodologies, and
information models.

Extending the scope of the approach presented, an
even broader field for application can be thought of.
As the information model is freely configurable,
models originating from other fields, especially from
a less informatics related background, could be
employed in the tool. Here, information models from
traffic flow modeling or enterprise modeling can be
thought of. In these fields capabilities to interact
with the visualizations could be even more
interesting and beneficial, especially, when graphical
methods for defining filters on the information are of

interest. In this area, we see potential relations to
the field of interactive visual analysis, which both
areas could benefit from.

References
[ATLA06] ATLAS group at LINA & INRIA. ATL: Atlas

Transformation Language, 2006.

[BEL+07] S. Buckl, A.M. Ernst, J. Lankes, K. Schneider, and
C.M. Schweda. A Pattern based Approach for
constructing Enterprise Architecture Management
Information Models. In A. Oberweis, C. Weinhardt, H.
Gimpel, A. Koschmider, V. Pankratius, and Schnizler,
editors, Wirtschaftsinformatik 2007, pages 145–162,
Karlsruhe, Germany, 2007. Universitätsverlag
Karlsruhe.

[BrMa03] P. Braun and F. Marschall. BOTL - The
Bidirectional Object Oriented Transformation Language.
http://wwwbib.informatik.tu-
muenchen.de/infberichte/2003/TUMI0307.pdf (cited
2007-01-26), 2003.

[BrWi05] C. Braun and R. Winter. MA Comprehensive
Enterprise Architecture Metamodel and Its
Implementation Using a Metamodeling Platform. In
Enterprise Modelling and Information System
Architectures (EMISA), pages 64–79, 2005.

[Buck05] S. Buckl. Modell-basierte Transformationen von
Informationsmodellen zum Management von
Anwendungslandschaften. Diploma thesis, Fakultät für
Informatik, Technische Universität München, 2005.

 [DoVa02] P. Domokos and D. Varro. An Open Visualization
Framework for Metamodel-Based Modeling Languages.
Electronic Notes in Theoretical Computer Science,
72(2), 2002.

[Ec07a] Eclipse Foundation: Modeling Development Tools
(MDT) – OCL. http://www.eclipse.org/modeling/mdt/?
project=ocl. (cited 2007-11-09)

[Ec07b] Eclipse Foundataion: Eclipse Modeling Framework
Technology (EMFT) – Teneo. http://www.eclipse.org/
modeling/emft/?project=teneo. (cited 2007-11-09)

[ELSW06] A. Ernst, J. Lankes, C.M. Schweda, and A.
Wittenburg. Using Model Transformation for Generating
Visualizations from Repository Contents - An
Application to Software Cartography. Technical report,
Technische Universität München, Chair for Informatics
19 (sebis), Munich, 2006.

[Fran02] U. Frank. Multi-Perspective Enterprise Modeling
(MEMO) - Conceptual Framework and Modeling
Languages. In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences 35,
pages 1258–1267, 2002.

[Jame05] G. James. Magic Quadrant for Enterprise
Architecture Tools, 4Q04, 2005.

[KrOr96] M. J. Kraak and F. Ormeling. Cartography:
Visualization of Spatial Data. Addison Wesley Longman,
1996.

[KuWi07] S. Kurpjuweit, R. Winter. Viewpoint-based Meta
Model Engingeering. In M. Reichert, S. Strecker, K.

 Enterprise Modelling and Information Systems Architectures

 Vol. X, No. X, Month 200X
12 Sabine Buckl, Alexander M. Ernst, Josef Lankes, Florian Matthes, Christian M. Schweda, André

Wittenburg

Turowski (Eds.). Enterprise Modelling and Information
Systems Architectures Concepts and Applications ,
Proceedings of the 2nd International Workshop on
Enterprise Modelling and Information Systems
Architectures (EMISA'07), St. Goar, Germany, 2007.

[LaMW05] J. Lankes, M. Matthes, and A. Wittenburg.
Softwarekartographie: Systematische Darstellung von
Anwendungslandschaften. In Wirtschaftsinformatik
2005, Bamberg, Germany, 2005.

[Lank07] M. Lankhorst: Enterprise Architecture at Work:
Modelling, Communication, and Analysis. Springer
Verlag, Berlin, Heidelbert, 2005.

[Laus07] S. Lauschke. Automatische Generierung von
Softwarekarten: Entwicklung eines Ansatzes zum
Layout deklarativ beschriebener Visualisierungen.
Master’s thesis, Fakultät für Informatik, Technische
Universität München, 2007.

[LaWe04] K. Langenberg and A. Wegmann. Enterprise
Architecture: What Aspects is Current Research
Targeting? Technical report, Ecole Polytechnique
Fédérale de Lausanne, Laboratory of Systemic
Modeling, 2004.

[MaWi04] F. Matthes and A. Wittenburg. Softwarekarten zur
Visualisierung von Anwendungslandschaften und ihrer
Aspekte. Technical report, Technische Universität
München, Chair for Informatics 19 (sebis), Munich,
2004.

[MDG+04] B. Moore, D. Dean, A. Gerber, G. Wagenknecht,
and P. Vanderheyden. Eclipse Development using the
Graphical Editing Framework and the Eclipse Modeling
Framework. http://www.redbooks.ibm.com/redbooks/
pdfs/sg246302.pdf (cited 2007-07-04), 2004.

[OMG04] OMG. MOF 2.0 Facility and Object Lifecycle
Specification, ad/2004-04-02, 2004.

[OMG05a] OMG. Revised Submission for MOF 2.0
Query/View/Transformation (ptc/05-11-01), 2005.

[OMG05b] OMG. UML 2.0 Infrastructure Specification
(formal/05-07-05), 2005.

[OMG05c] OMG. Unified Modeling Language:
Superstructure, version 2.0 (formal/05-07-04), 2005.

[OMG06a] OMG. Meta Object Facility (MOF) Core
Specification, version 2.0 (formal/06-01-01), 2006.

[OMG06b] OMG, Object Constraint Language (OCL)
Specification, version 2.0 (formal/06-05-01), 2006.

[SADL04] M.W.A. Steen, D.H. Akehurst, H. ter Doest, and
M.M. Lankhorst. Supporting Viewpoint-Oriented
Enterprise Architecture. Technical report, Information
Centre of Telematica Instituut AND University of Kent,
Enschede, Netherlands & Canterbury, United Kingdom,
2004.

[sebi05] sebis. Enterprise Architecture Management Tool
Survey 2005, Fakultät für Informatik, Technische
Universität München, 2005.

[TLD+04] L. van der Torre, M.M. Lankhorst, H. ter Doest, J.
Campschroer, and F. Arbab. Landscape Maps for
Enterprise Architectures. Technical report, Information

Centre of Telematica Instituut, Enschede, Netherlands,
2004.

[Witt07] A. Wittenburg. Softwarekartographie: Modelle und
Methoden zur systematischen Visualisierung von
Anwendungslandschaften. Phd thesis, Fakultät für
Informatik, Technische Universität München, 2007.

Sabine Buckl, Alexander M. Ernst, Josef Lankes,
Florian Matthes, Christian M. Schweda, André
Wittenburg

Software engineering for business information systems
(sebis)
Technische Universität München
Boltzmannstr. 3
85748 Garching
Germany
{buckls | ernst | lankes | matthes | schweda |
wittenbu}@in.tum.de

	1 Motivation
	2 Software Cartography
	3 A model transformation approach
	3.1 Semantic model and information model – the left side
	3.2 Symbolic model and visualization model - the right side
	3.3 Model transformation and metamodel - the middle

	4 SoCaTool: a tool for enterprise architecture modeling
	4.1.1 Repository
	4.1.2 Transformer
	4.1.3 Layouter
	4.1.4 Renderer

	5 Related Work
	6 Outlook
	References

