Language Technology for
Post-Relational Data Systems *!

Joachim W. Schmidt Florian Matthes

University of Hamburg
Department of CS
Schliterstrafie 70

D-2000 Hamburg 13

e-mail: schmidt@rz.informatik.uni-hamburg.dbp.de

Abstract

Practice has proven that databases are the keystones for nearly all application
systems with a wider functionality, utilization and availabilty. As a consequence,
next generation database systems will have to provide their services with a degree of
interoperability that has to be substantially improved over existing solutions. In this
paper we argue that this objective can be achieved only through full exploitation
of current developments in computer language technology.

We claim that the merits of modern computer languages’ naming schemes,
typing systems and binding mechanisms are vital also for database management
systems if they want to improve the quality of their interaction with application
languages and programming environments as well as their own functionality and
extensibility.

This paper studies the technological basis of modern computer languages and
presents DBPL as a working example of a highly interoperable database program-
ming language that exploits such technology.

Requirements of future data systems are discussed by emphasizing the abstrac-
tion principles considered helpful for the adequate design and organization of data-
intensive applications and for the modularization, localization and, finally, the im-
plementation of data-based systems. We conclude by relating the potential of ad-
vanced language technology to such specific demands of the next generation of
post-relational data systems.

Key words: database programming languages, query languages, interoperability,
open systems, language design principles, naming schemes, type systems, binding

mechanisms, DBPL.

*This research was supported in part by the Furopean Commission under ESPRIT BRA contract
#3070 (FIDE).

t Appeared in: A. Blaser (Ed.), Database Systems of the 90s, Lecture Notes in Computer Science,
Vol. 466, Springer, 1990

1 Introduction

There is no doubt that current research and development in computer languages will have
a significant impact on the process of programming and program maintenance as well as
on the architecture, functionality and, finally, the overall quality of software systems.
This quality improvement results only in part from the progress made in isolating and
providing the basic building blocks for important classes of applications, e.g. the es-
sentials of systems communication, recovery and persistence and by casting them into
adequate language primitives.

More important, however, is the substantial progress made in understanding the funda-
mental abstraction principles that enable the user of a language to construct from a set
of primitives a high-quality software solution, i.e. a well-structured system with a high
degree of modularity, genericity, correctness and efficiency.

In the process of designing a computer language that aims for supporting such abstrac-
tion principles a closely related set of technical problems has to be solved that deals
with the intimately related issues of naming, typing and binding. Although such lan-
guage technology is already well developed and readily available its further extension and
improvement is one of the main subjects of research in computer languages.

The purpose of this paper is to discuss the potential of language technology and to exploit
it for the development of advanced data systems. The paper is organized as follows.

Section 2 presents some basic principles of modern computer language design and outlines
the essentials of language technology. Furthermore, it emphasizes the role of naming, typ-
ing and binding for systems with high demands of interoperability. Section 3 discusses
DBPL, a set- and predicate-oriented database programming language that exploits lan-
guage technology to support abstraction principles and interoperability.

Requirements of post-relational data systems are addressed in section 4 with particu-
lar emphasis on future needs of data-intensive applications. The paper concentrates on
demands for data modeling, interoperability and implementation modularity and ex-
tensibility. Finally, in section 5 we discuss the potential impact of advanced language
technology for the design and development of post-relational data systems.

2 Language Technology and System Interoperability

Current discussions of new database models and systems tend to concentrate on the
expressiveness of the particular query languages at hand. This view is justified in a
traditional setting where query languages are the only means for interaction between
end-users and databases systems.

Experience with existing database systems and their query languages (like Ingres, Oracle
or DB2) demonstrates that the usability of a given language is often severely impaired
by its inability to be integrated smoothly into a larger context. The classical example for
such an integration is the embedding of a query language into a host language necessary
to provide computational completeness, a prerequisite for application programming. But
there are other situations that reveal the limited support for interoperability provided by
existing database languages, such as the coupling with a customized user-interface or the

exchange of data with standard software (e.g. spreadsheets like LOTUS 1-2-3).

There is a host of ad-hoc solutions to this problem of lack of interoperability ranging
from simple data conversion utilities and query language cross-translators to sophis-
ticated fourth gemeration languages (like Ingres 4GL, SQL/Forms or ADF). However,
these solutions have to be considered as insufficient since they simply lift the interface
problem to a higher level without addressing the need for intrinsic extensibility and or-
thogonality of concepts in order to attain the ultimate goal of interoperability. A typical
example is a fourth generation language like Ingres 4GL that provides highly specialized
support for convenient form management and menu interfaces but that still has to rely on
programming language interfaces (without overall type security, without uniform naming
mechanisms) to escape its own lack of generality and universality.

In section 7?7 we will present DBPL, a prototypical member of the family of integrated
database programming languages. These languages aim to overcome the lack of interop-
erability and extensibility of todays databases by an integration of database functionality
into a general-purpose language. In the long run, database programming languages are
intended to replace the various language interfaces (query language, data definition lan-
guage, physical schema description language, report definition language, etc.) by a single
linguistic framework with consistent naming, typing and binding mechanisms that is ex-
pressive enough to unify this wide range of abstraction levels.

The following subsections review fundamental concepts of programming languages that
are indispensable to attain such a high degree of safe interoperability and extensibility
in open systems.

2.1 On the Design of Computer Languages

A computer language can be described by a set of primitive concepts (like values, vari-
ables, modules, semaphores, streams, databases, transactions . ..) and a set of abstraction
mechanisms (like nesting of expressions or statements, procedural abstraction, type ab-
straction, ...) that constrain and assist the composition of these primitives to larger
semantic units.

The set of primitive concepts found in a particular language depends heavily on its
application domain. Languages for mathematical applications might support complex
numbers, arrays, vectors with their associated operations whereas database languages
usually provide support for sets of entities and operations to access and manipulate
these data sets.

Despite the superificial disparity of the various general-purpose and dedicated languages,
there is a relatively small set of universal concepts that reappears one way or another in
all of them. This paper concentrates mainly on the universal concepts of naming, typing
and binding and on abstraction principles relevant for database programming.

The design of any computer language has to follow some guiding principles. There
have to be some criteria for evaluating the merits of particular proposals. One such
generally agreed upon criterion is the orthogonality of its concepts (e.g. see [?, 7]).
This principle states that all language concepts (e.g. typing, procedural abstraction,
assignment, ...) should be mutually independent of one another so that there is no
interference when they are used in arbitrary combination. The principle of orthogonality

thereby increases both the expressiveness of a language (more combinations are possible)
and its understandability (there a fewer rules and exceptions to be learned).

Even in the restricted scope of relational query languages there is a general awareness of
the need for orthogonality of language concepts in order to design expressive and under-
standable languages.[?] enumerates at length violations of the principle of orthogonality
in the current SQL standard. In particular, it is shown that SQL does not fulfil the fol-
lowing minimum requirement for a good language design [?]: A language should provide,
for each class of objects it supports, at least the following:

e a constructor function, i.e. a means for constructing an object of the class from
literal (constant) values and/or variables of lower classes;

a means for comparing two objects of the class;

e a means for assigning the value of one object in the class to another;

a selector function, i.e. a means for extracting component objects of lower classes
from an object of the given class;

e a general, recursively defined syntax for expressions that exploits to the full any
closure properties the object class may possess.

The relevant classes of objects of a relational database system are tables, columns, rows
und scalars. However, there are no means to construct, compare or assign individual rows
in SQL. Furthermore, it is not possible to transform arbitrary nested algebra expressions
directly into nested “table expressions” of SQL since there are limitations on the allowable
nestings.

Sections 77 and 77 will introduce additional criteria to evaluate the quality of a language
design.

2.2 Language Technology: Naming, Typing, Binding

A name is a token used to identify some entity that can be talked about by a computer
language. A name is therefore said to be bound to an entity. Traditionally, a binding
consists of a name-value pair [?] that can be augmented by a type [?] and an indication
whether the value is constant or mutable [?]. Such augmentations serve the purpose to
restrict the binding of a name to those entities that make sense in the context where the
name is used — and to formally assure such semantic statements. Binding can take place
at compile time (static binding) or during program execution (dynamic binding) [?].

A binding is always performed with reference to a particular environment. The scope of
a name determines those parts of a program where it can be used (e.g. to define other
bindings). In static scoping, the scope can be detected by a static analysis of program
texts, whereas in dynamic scoping these parts may vary from one program execution to
another.

Values that can be named include atomic values (like integers, characters, booleans etc.),
composite values (like arrays, records, relations of other values) but also variables (muta-
ble values or “containers” for values), functions, procedures or views in database systems.

A type can be associated with a binding to ensure that a name is only used in an appro-
priate context, e.g. the field selection Supplier.Name should only be admissable if the
name Supplier is bound to a value that is a record with a Name attribute. Dynamic
type checking occurs when the run time system executes code to ensure that the data is
of the correct types. This typically occurs even in so-called statically checked languages
in projections out of a union (e.g. field selection from variant records in Pascal).

Type systems are one of the most important and critical issues in language design (e.g.
see [?]). The advantage gained by the use of type information is in a sense independent of
the language it is embedded in: it adapts equally well to functional, imperative, object-
oriented, and algebraic programming [?].

A type system serves different purposes:

e Types support the selection of suitable (i.e. space or time efficient) machine rep-
resentations for data values. This was the main purpose of type information in
the early programming languages (e.g. FORTRAN or COBOL). Especially in the

presence of bulk data this aspect must not be underestimated.

e Type information guarantees that operations are only applied to correct arguments,
i.e. they help to avoid errors like in the comparison "A" > 7. The widespread use
of type information can thus be regarded as a partial specification of a program. In
this sense, types can be seen as specifications, and typechecking as a limited form
of program verification.

Computer languages make heavy use of type information to increase programmer
efficiency and productivity in the construction of large information systems. For
example, most of the errors occurring in the (untyped) interaction between pro-
grams and databases using embedded DMLs can be detected even by the simplest
type checker [?].

e Types are descriptions. A type declaration in a DBPL serves similar purposes as
a schema description in a Data Description Language of a DBMS. A particular
database state is thus an instance (a value) of that type. An important aspect
of type systems is therefore the ability to name types (e.g. Age, Dollar, Sex) and
re-use type descriptions.

e Powerful type systems support type abstraction to hide irrelevant program infor-
mation or to protect private information from external access. Type abstraction
thereby supports the ordered evolution of large information systems [?, 7].

e Finally, modern type systems support genericity, i.e. the possibility to write oper-
ations with uniform behavior on values of more than one data type. This kind of
polymorphism is of particular interest in information systems: A formalized notion
of similarity of data and algorithms enables the employment of re-usable and ex-
changeable solutions to repeating patterns of information processing requirements.

2.3 Language Technology for Interoperability

The designer of a computer language is faced with the problem of finding appropriate
naming, typing and binding mechanisms that enable the interaction of as many computa-

tional units as possible and thus promote program genericity and system interoperability.

Traditionally, programming language designers advocate static binding, scoping and type
checking, whereas database systems and operating systems rely heavily on dynamic mech-
anisms. For example, the existence of a CREATE TABLE and DROP TABLE command in SQL
implies that it is impossible to have a static binding between relation names in queries and
the stored database relation values. If a database system furthermore allows the change
or removal of individual columns from a relation, it becomes impossible to perform static
type checking within query expressions since the correctness of a field selection from a
tuple of a relation (SELECT Supplier.Name FROM Supplier) can be invalidated at run
time by a removal of the column Name.

It should be noted that there exists a tradeoff between the flexibility that can be achieved
through dynamic binding, dynamic scoping and dynamic typing and the security and
efficiency supported by static binding, scoping and typing.

Advances in computer language technology allow one to exceed the limits of the tradi-
tional static binding and typing mechanisms (e.g. by means of higher-order or polymor-
phic types) without sacrificing safety, efficiency and understandability attainable with
static mechanisms. A presentation of some of these novel language concepts is the sub-
ject of section 77.

3 The Database Programming Language DBPL

Based on the description of the general language principles of naming, typing and binding
given in the previous section we are now in a position to illustrate these principles refering
to a specific language in a relational setting.

3.1 An Overview of DBPL

DBPL [?] is a successor to Pascal/R [?] and addresses the need for a uniform language
framework for advanced database programming by extending a well-understood system
programming language (namely Modula-2 [?]) by a small set of abstraction mechanisms
needed for database application programming [?]. DBPL extends Modula-2 into three
dimensions:

e bulk data management through a data type set (relation);
e abstraction from bulk iteration through associative access expressions;

o database modules and transactions that abstract from persistence, sharing, concur-
rency control and recovery.

An essential guideline for the design of DBPL can be characterized by the slogan “power
through orthogonality”. Instead of designing a new language (with its own naming,
binding and typing rules) from scratch, DBPL extends an existing language and puts
particular emphasis on the interoperability of the new database concepts with the given
programming language concepts. In particular, DBPL aims to overcome the traditional
competence and impedance mismatch [?] between programming languages and database
management systems by providing

e a uniform treatment of volatile and persistent data,

e a uniform treatment of large quantities of objects with a simple structure and small
quantities of objects with a complex structure, as well as

e a uniform (static) compatibility check between the declaration and the utilization
of each name.

Implementation details (e.g., storage layout of records, clustering of data, existence of
secondary index structures, query evaluation strategies, concurrency and recovery mech-
anisms) are deliberately hidden from the DBPL programmer. A key idea in the design
and implementation of DBPL is to let the runtime system choose appropriate implemen-
tation strategies based on high-level information extracted from the application program
or its environment. As it turns out, the widespread use of access expressions (i.e. first-
order logic abstractions of bulk data access) in typical DBPL programs facilitates such
an approach.

3.2 Naming, Typing and Binding in a Relational Environment

The first step towards a better integration of database concepts into a language envi-
ronment is to identify the basic database concepts and to rephrase them in terms of an
appropriate vocabulary of programming concepts.

The following paragraphs illustrate how DBPL captures the main principles of set- and
predicate-oriented database systems using the well-understood notions of naming, typing
and binding in procedural programming languages.

3.2.1 Names and Types

Names in DBPL are arbitrarily long sequences of upper and lowercase letters and digits
starting with a letter.

DBPL is a statically and strongly typed language: every name is associated with a unique
type that is determined at compile-time. The compiler uses this information to assure
that all names for values, expressions or operations are only used in an appropriate
context. The advantages of such a typing scheme are well known: programs are less
liable to errors and there are no time-consuming dynamic type checks.

The type compatibility rules for composite types in DBPL are based on name equivalence,
l.e., two composite objects have the same type if and only if they have been declared
by using the same type name. This should be seen in contrast to the rule of structural
equivalence where two objects are type compatible if their fully expanded definitions are
the same.

DBPL provides the following built-in types: INTEGER, LONGINT, CARDINAL (natural num-
bers), LONGCARD, BOOLEAN, CHAR, REAL, LONGREAL.

TYPE Dollar = REAL;

Values of these types are denoted by predefined names (e.g., TRUE) or literals (e.g., O,
3.2E-2, "A"). It is furthermore possible to introduce user-defined names for these values:

CONST DollarToDMRatio = 2.71;

DBPL supports application-specific extensions of the set of basic types. An enumeration
type is defined by a list of names:

TYPE SupplierStatusType = (unimportant, important, veryImportant);
This declaration defines an order on the values of the enumeration type:
unimportant < important < veryImportant

Subrange types are derived from either basic or enumeration types. They impose addi-
tional restrictions on the range of values described by the subrange type:

TYPE PartNumType = [0..99999];
ImportantStatusType = [important..veryImportant];

Within expressions, values of a subrange type are compatible with values of their base
type. Assignments of values of a base type to variables of a compatible subrange type
are checked at runtime.

Strings are treated as composite objects consisting of a sequence of characters. Their
type is therefore ARRAY [1..maxlength] OF CHAR, where maxlength can vary from one
string type to another.

TYPE LongString = ARRAY [0..999] OF CHAR;
String = ARRAY [0..29] OF CHAR;

Arrays are composed of a fixed number of elements. These elements are positionally des-
ignated by indices, which are values of the index type. The latter must be an enumeration
type, a subrange type or the basic type BOOLEAN or CHAR.

TYPE BonusTable = ARRAY SupplierStatusType OF Dollar;

A record type declaration defines a labeled cartesian product type. The scope of the label
names is the record definition itself. These names are also accessible as field designators
referring to components of variables of that record type (e.g. supplier.Name).

TYPE SupplierRecType = RECORD
Num : SupplierNumType;
Name : String;
Status : SupplierStatusType;
END;
MadeFromRecType = RECORD
Num : PartNumType;
Quantity: CARDINAL;
END;

A relation type specifies a structure consisting of elements of identical type, called the
relation element type. The number of elements, called the cardinality of the relation, is
not fixed. The declaration of the relation type specifies the relation element type and an
ordered list of key components:

TYPE SupplierRelType = RELATION Num OF SupplierRecType;
MadeFromRelType RELATION Num OF MadeFromRecType;
PartNumSetType RELATION OF PartNumType;
Point2DSetType = RELATION OF ARRAY [1..2] OF REAL;

The relation key defines a list of components of the relation element type such that the
relation always defines a function between its key and its element type. In other words,
each key value uniquely determines (at most) one relation element. For example, the
key constraint for a relation SupplierRel of type SupplierRelType can be expressed by
the following predicate stating that the equality of the key component Num implies the
equality of the relation elements:

ALL s1, s2 IN SupplierRel (si.Num = s2.Num) => (s1 = s2)

An empty key component list is a synonym for an enumeration of all components of the
element type; in this case a relation is just a set of relation elements.

The example above declares two relation types (with record elements), a set of natural
numbers (PartNumSetType), and a set of points that are represented by their coordinates
in the plane.

In order to create “containers” for values of these (relation) types, it is necessary to
explicitly declare named variables.

VAR SupplierRel : SupplierRelType;
0ldSupplier : SupplierRelType;
MadeFromRel : MadeFromRelType;

In this respect, DBPL is a contrast to traditional relational database systems, in which a
CREATE TABLE command subsumes the declaration of an (anonymous) relation type and
the declaration of a named relation variable.

It should be clear that the above set of naming and typing rules allows one to express
(at least) the structures of the relational data model with a fine-grained control over the
basic domains.

3.2.2 Scopes, Bindings and Lifetime

The above descriptions of the naming and typing rules have to be extended by rules
defining the scope of names and the lifetime of objects denoted by these names. In order
to do so we first have to introduce the concept of a module.

A module constitutes a sequence of name definitions and statements (to be discussed
later in 77). A typical DBPL application consists of a multiplicity of modules. DBPL
supports separate compilation, i.e. modules can be developed independently. A module
can import names that are exported from other modules that include definitions for these
names or that simply import these names from a third module. The compiler enforces
the consistent use of names across module boundaries following the typing rules above.

The scope of a name n declared in a module M extends over the whole body of M and over
all Module M; importing n. Names have to be unique within a scope. Modules are in
turn identified by names. In DBPL there is a single global scope for module names.

DATABASE DEFINITION MODULE SupplierPartDB;

TYPE
PartNumType = [0..99999];
SupplierNumType = [1000..9999];

SupplierStatusType = (unimportant, important, veryImportant);

String = ARRAY [0..29] OF CHAR;
Dollar = REAL;
Kilo = REAL;
PartStateType = (base, comp);
SupplierRecType = RECORD
Num : SupplierNumType;
Name : String;
Status : SupplierStatusType;
END;
MadeFromSubRecType = RECORD
Num : PartNumType;
Quantity: CARDINAL;
END;

MadeFromSubRelType = RELATION Num OF MadeFromSubRecType;
PartRecType = RECORD
Num : PartNumType;
Name : String;
CASE State : PartStateType OF
base :
Cost : Dollar;
Mass : Kilo;
SuppliedBy : SupplierNumType;

| comp :
MadeFrom : MadeFromSubRelType;
AssemblyCost: Dollar;

END;

END;
SupplierRelType = RELATION Num OF SupplierRecType;
PartRelType = RELATION Num OF PartRecType;
VAR
SupplierRel: SupplierRelType;
PartRel : PartRelType;
END SupplierPartDB;

Figure 1: A typed relational database schema in DBPL

10

Using these rules it is straightforward to model the scoping rules of conventional relational
database systems. A database schemais simply a module that declares and exports names
for types of appropriate basic domains and declares and exports variables of relation
types consisting of records with fields from the basic types (see Fig. 7?7). Similarly, an
application program is a module that explicitly imports names from a database schema.
Since the import relationships between modules have to be declared statically, there is
no possibility for name conflicts and ambiguities at runtime.

Modules can be defined as DATABASE modules. All variables declared within such a
module are persistent, 1.e. in contrast to other program variables their lifetime exceeds a
single program execution [?]. To be precise, the lifetime of a persistent variable is longer
than that of any program importing it. Ordinary and persistent modules therefore allow
the modelling of both, transient and persistent data objects.

Persistent variables are shared objects and can thus be accessed by several programs
simultaneously. An access to a persistent variable must be part of the execution of a
transaction (see section 77).

3.2.3 Expressions and Operations

For each type constructor of DBPL (record, array, relation), there is a value constructor
to create objects of the composite type by enumerating its components:

vl:= SupplierRecType{11, "John'", important};
v2:= MadeFromSubRecType{11, 100};
v3:= PartRecType{3, "nut", base, 300.0, 20.3, 11};

v4:= PartNumSet{1, 3, 77%};
vb:= Point2DSetType{ {1.0,2.0}, {2.0,1.0} };
v6:= PartRelType{ {4, "bolt", base, 30.2, 11.4, 11} };

The right-hand sides of these assignments make use of value constructors for record types
(v1, v2, v3) and relation types (v4, v5, v6). Note that the curly brackets {} are over-
loaded: depending on the type identifier preceding them they construct records, arrays, or
relations. The assignments to variables v5 and v6 contain nested value constructors, e.g.
v6 is assigned a relation that contains a single record (of its element type PartRecType).
Type identifiers for nested value constructors can be omitted.

In DBPL there are three kinds of value selectors for the selection of components of a
structured value:

e Elements of an array are selected by an index value of their index type, enclosed
in square brackets (e.g., vector[7]);

e Fields of a record are selected by their field name (e.g., supplier.Name);

e Elements of a relation are selected by their key value, enclosed in square brackets
(e.g., SupplierRel[7]).

Variable designators of DBPL therefore consist of a name followed by a path of value
selectors:

11

SupplierRel[7] .Name:= "Peter";
PartRel[3] .Mass := 13;

In addition to these element-wise operations, DBPL provides specialized set-oriented
query expressions for relation types. There are three kinds of query expressions, namely
boolean expressions, selective and constructive expressions.
Quantified Expressions yield a boolean result (i.e. TRUE or FALSE) and may be nested:

SOME Supplier IN SupplierRel (Supplier.Name = "John'")

ALL Supplier IN SupplierRel (Supplier.Status = important)

ALL Part IN PartRel (Part.State <> base) OR

SOME Supplier IN SupplierRel
(Part.SuppliedBy = Supplier.Num)
The comparison operators (=, <>, >=, <=, <) for relations are abbreviations for

key-based quantified expressions, e.g. SupplerReli>=SupplierRel2 is equivalent
to

ALL s1 IN SupplierRell SOME s2 IN SupplierRel2 (si.key = s2.key)
The test for membership (thisSupplier IN SupplierRel) is equivalent to
SOME s IN SupplierRel (thisSupplier.key = s.key)

Selective Access Expressions are rules that select subrelations.
EACH Supplier IN SupplierRel: Supplier.Status = important

selects all elements Supplier of the relation variable SupplierRel that fulfil the
selection predicate Supplier.Status = important.

A selective access expression within a relation constructor denotes a relation of all
selected tuples:

SupplierRelType{EACH Supplier IN SupplierRel:
Supplier.Status = important}

Constructive Access Expressions are rules for the construction of relations based
on the values of other relations:

NameRecType{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)

where NameRecType is a record of two strings defined as

12

TYPE NameRecType = RECORD Part, Supplier: String END

The construction rule above defines how to derive the names of all base parts with
their suppliers from the two stored relations PartRel and SupplierRel.

The application of a relation constructor to a constructive access expression creates
a relation that contains the values of the target expression (preceding the keyword
OF), evaluated for all combinations of the element variables (p, s) that fulfil the
selection expression (p.State = comp) AND (p.SuppliedBy =s.Num):

NameRelTypeq{
NameRecType{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)}

where the result relation type has to be defined as

TYPE NameRelType = RELATION OF NameRecType;

Note, access expressions do not denote relations; only in the context of a relation con-
structor RelType{...} do they evaluate to a relation. Other contexts in which access
expressions can be used are given below.

In addition to these (side-effect free) expressions, DBPL provides specialized set operators
(:=, :+, :—, :&) for relation updates which assign, insert, delete, and update sets of
relation elements:

PartRel:= PartRelType{};
SupplierRel:- SupplierRelType{EACH s IN SupplierRel: s.Status=important}

The types of the expression and the variable on the left-hand side have to be compatible
according to the rules of section ?7?7. As illustrated by the examples above, the nesting
of DBPL expressions captures the essence of relational query languages, namely to pro-
vide wteration abstraction by means of high-level set-oriented selection, construction and
update mechanisms.

3.3 Interoperability for Database Programming

The above presentation of structures, expressions and statements of DBPL departs from
the main stream of “standardized” query languages in order to achieve interoperability
with strongly typed programming languages by means of uniform naming, typing and
binding mechanisms.

The following sections illustrate the advantage, in terms of increased data manipulation,
data description and data abstraction power, that is obtained by investing language
technology into the relational data model

13

3.3.1 Computational Completeness

The main reason to couple a DBMS with an algorithmically complete programming
language is to utilize the expressive power of the language environment for arbitrary
complex operations on the data stored in the database.

DBPL incorporates all data types, operations and control structures of the system pro-
gramming language Modula-2 [?], including recursive functions and procedures, higher-
order functions and elaborately structured statements (IF THEN ELSIF ELSE, CASE, WHILE,
REPEAT, FOR, LOOP EXIT etc.). DBPL is therefore an ideal environment for the imple-
mentation of complex database application programs.

It should be noted that database and programming language features of a database
programming language should not simply reside side-by-side. On the contrary, one needs
many interfaces to create synergy between these features. DBPL therefore allows the
orthogonal combination of the concepts inherited from both worlds, for example:

e Relation types are allowed to appear in arbitrary contexts, i.e. not only as types
for database variables, but also as types of local variables within procedures, or as
types of value- or variable-parameters;

e Quantified expressions (see ?7) can appear not only within query expressions but
also in conditionals or as termination conditions of loops;

e Relation constructors can be used freely within expressions of arbitrary types. A
relation constructor can contain function calls, arithmetic operations etc.

As it turns out, the use of a (generalized) relational calculus instead of a relational
algebra facilitates such an approach, since predicates as boolean-valued expressions can
be utilized in a broader range of contexts than pure relation-valued algebra expressions.

Relation constructors provide an expressive mechanism to build relations from their
elements. To support the inverse operation (“de-setting”), there is a strong need for
ilerators. The essence of an iterator is a selective access expression (see 77) denoting a
subset of a relation variable to be iterated over. The body of an iteration is an arbitrary
statement sequence that can read and update the value of the loop variable:

FOR EACH s IN SupplierRel: s.Status = important DO
InOut.WriteString(s.Name);
InOut.Writeln;

END;

3.3.2 Type Completeness

In addition to the concept of computational completeness, DBPL adheres to the language
design principle of type completeness [?], i.e. all type constructors of DBPL (relation,
record, variant, array) have equal status within the language. It is therefore possible to
apply these type constructors to arbitrary other types (e.g. to declare arrays of relations
or relations of variant records containing relations of integers). Furthermore, values of
these types can be used in expressions, assignments or as parameters in a uniform way.

14

Finally, DBPL provides orthogonal persistence [?] for values of the base types and values
constructed by means of the above type constructors. The persistent variables declared
within a database module (see ?7) are not limited to relation types. This makes it
possible to declare, for example, a persistent boolean variable within a database module.

As illustrated in the database schema of Fig.??, the concept of type completeness there-
fore naturally leads to a data model that supports the declaration of complex objects [?]
and non-first-normal-form relations [?] thereby breaking the restrictions of the classical
relational data model that is limited to relations of records with attributes from the basic
domains.

3.3.3 Completeness of Abstraction Mechanisms

Up-to-date programming languages provide two important abstraction mechanisms to
achieve localization of information in large software systems [?, ?]. Process abstraction
allows programmers to abstract from the implementation of a subroutine and to perform
complex operations simply through reference to its name with an appropriate list of actual
parameters. Type abstraction allows programmers to abstract from the implementation of
a data structure and to operate on it only via a well-defined interface, i.e. a set of
operations defined for an abstract data type.

DBPL embodies both abstraction mechanisms by means of procedures that abstract over
statements, functions that abstract over expressions and opaque types that abstract over
type expressions [?]. In addition, DBPL provides selectors that abstract over selective
access expressions and constructors that abstract over constructive access expressions (see
?7). These two abstractions capture the essence of updateable and non-updateable views
in relational databases since selector applications can appear wherever a relation variable
is expected and constructor applications can appear wherever a relation expression is
expected.

The following selector named ImportantSuppliers defines an updateable view on the
supplier relation, selecting those suppliers having important as their status (see also p.
77).

SELECTOR ImportantSuppliers: SupplierRelType;
BEGIN

EACH S IN SupplierRel: S.Status = important
END ImportantSuppliers;

The constructor SuppliersForParts (see also p. ?7) names a non-updateable view that
is derived from the base relations PartRel and SupplierRel and that contains pairs of
parts and supplier names for all base parts with their respective suppliers.

CONSTRUCTOR SuppliersForParts: NameRelType;
BEGIN
NameRecType{p.Name, s.Name} OF
EACH p IN PartRel, EACH s IN SupplierRel:
(p.State = comp) AND (p.SuppliedBy = s.Num)
END SuppliersForParts;

15

Without going into details it should be noted that naming (of statements, expressions
etc.) naturally leads to the concept of recursion. The semantics of a recursive query
expression in DBPL is not defined operationally (as it is common practice for procedures)
but as a least fixed point of recursive set equation [?, ?]. Thereby constructors are at
least as expressive as recursive DATALOG programs with stratification semantics [?, ?].
Another important abstraction mechanism of DBPL is the transaction [?] that allows
database programmers to abstract from concurrency and recovery issues when accessing
persistent and shared database variables. Transactions can be regarded as atomic with
respect to their effects on the database. In particular, the implementation of DBPL
guarantees that concurrent transactions will be executed in a serializable schedule.

TRANSACTION DeleteSuppliers(Suppliers: SupplierRelType): BOOLEAN;
(* returns TRUE on success *)
BEGIN
IF SOME bp IN PartRel (bp.State = base) AND
SOME s IN Suppliers (bp.SuppliedBy = s.Num) THEN
RETURN FALSE; (* referential integrity violated *)
ELSE
SupplierRel:- Suppliers;
RETURN TRUE
END;
END DeleteSuppliers;

In section 7?7 we will relate the above abstraction mechanisms by embedding them into
a larger context and discuss their relevance for database programming.

3.3.4 External Interfaces

Even in a sound, computationally-complete and self-contained language like DBPL, there
are situations that demand communication with external components like user interface
management systems (such as Motif or Open Look), network services, or simply with ex-
isting software components coded in other standard programming languages like Pascal,
C or COBOL.

The challenge to integrate database programming languages into an open system archi-
tecture is mainly a technological problem and not a language design task. The current
implementation of DBPL [?, ?] (running under VAX/VMS) takes the following approach
to interoperability in a heterogeneous multi-language environment:

e There is a special class of modules (called FOREIGN DEFINITION MODULES) that
contain signatures of procedures coded outside the scope of the DBPL compiler.
The use of these procedures is analogous (w.r.t. naming, type checking and binding)
to ordinary DBPL procedure declarations.

e The DBPL compiler generates for every DBPL module an object code file in the
standard VAX-VMS linker format. The linker is therefore capable of linking DBPL
modules with object code generated by virtually all VAX/VMS compilers.

16

e Procedures and variables declared within individual DBPL modules can be used
from other languages, as long as they do not contain relation, selector or constructor

types.

e The DBPL compiler generates debugger tables that can be interpreted by the stan-
dard VAX/VMS multi-language debugger. This makes it possible to set breakpoints
as well as display and modify individual variables during the execution of compiled
DBPL programs.

The need for an ad-hoc query interface is addressed in DBPL by means of a language-
sensitive editor [?] that was constructed using a powerful system for the generation
of language-sensitive tools [?, ?]. The main idea is to simplify the task of an end-
user that wants to query a database not by an ad-hoc restriction of the language to a
subset of DBPL, but by providing immediate feedback (e.g. on undeclared names or type
mismatches) during textual or form-oriented query input following the paradigm of direct
manipulation.

4 Requirements of Post-Relational Data Systems

The relational data model definitely is an important milestone in the process of under-
standing the needs of data-intensive applications and of developing a sound technological
basis for database management systems. However, in the light of the above discussion,
we see several severe limitations of the relational model, of which only a few are addressed
by currently developed relational extensions [?, 7, 7, ?].

Shortcomings that are more difficult to repair (if at all) result from the exclusively
value-oriented approach advocated by relational data modelers: “all information in the
database is represented as values in tables” (see foreword by Codd of [?]). Realizing the
limitations of such a semantically poor basis this served as a starting point for a more
generalized view on data modeling [?, 7] and resulted in a far better understanding of
the principles of data abstraction [?, 7, ?].

An important structural goal for many data-intensive applications is to extract a maxi-
mum of relevant information from individual application programs, localize it in a sepa-
rate environment, and then make it available to a wider user community. However, by
restricting itself to the localization of data, the relational model does not fully exploit
the potential of localization abstraction.

Database management systems themselves turned out to be data-intensive applications in
a similar sense that compilers of algorithmic languages are complex algorithmic programs.
However, the interaction between two computational entities in an algorithmic program,
say, entering an abstract representation of a conference deadline into a priority queue,
differs substantially from passing a user-defined persistent date value to an optimizing
join algorithm. Therefore, database applications are expected to have particular demands
for implementation abstraction.

To draw a first conclusion, we argue for the development of DBPLs that support the
increasing demands of data-intensive applications on the basis of a small set of built-in
functional primitives that are well-supported by a body of abstraction principles which
can be freely combined to ease and encourage the construction of functionally extensible

17

data environments. We see this approach in contrast to the more or less “random”
addition of packaged functionality to relational database systems (like subtables, triggers,
graphical interfaces, ...).

In this section we want to motivate our approach by characterizing the essential subtasks
that arise in the implementation, extension and maintenance of advanced data-intensive
application systems. We will concentrate on the principles of

e data abstraction,
e localization abstraction,

e implementation abstraction,

that capture the essence of data modelling, software engineering and system coding.
They are intended to provide a sufficiently general and well-understood basis for the
database languages of the 90ies.

4.1 Data Abstraction

The data modeling task of database applications can be characterized by the need to de-
scribe large collections of entities by heavily constrained data with rather simple manip-
ulation operations (create object, remove objects, update object attribute). Constraints
can be classified into static constraints (like attribute constraints, object constraints, set
constraints or dependency constraints) that have to hold in each database state and dy-
namic constrainits as, for example, expressed by pre- and postconditions in transaction
specifications [?, 7, ?].

Research and development in the area of conceptual modeling [?, ?] has isolated three
basic data abstraction principles ! that are sufficient to capture an important subclass of
static constraints, namely the structural invariants of data objects [?, ?]:

Classification / Instantiation is a form of data abstraction in which a collection of
objects is considered as a higher level object class. An object class is a precise
characterization of all properties shared by each object within the collection. Clas-
sification represents an instance-of relationship between an object in the database
and its object class that allows to identify, classify, and describe objects.

Aggregation / Decomposition is a form of data abstraction in which a relationship
between component objects is considered as a higher level aggregate object. This
is the part-of relationship.

Generalization / Specialization is a form of abstraction in which a relationship be-
tween object classes is considered as a higher level generic object. This is the s-a
relationship.

Much of the power of these three abstraction principles comes from their orthogonality,
i.e. the possibility to apply classification, aggregation and generalization to objects that

IThe term data abstraction is sometimes used in the programming language literature to denote
encapsulation (see section ?7), a mechanism to attain localization abstraction.

18

already have been abstracted over, e.g. to define metaclasses (classes of classes [?]), nested
aggregates (complex objects [?]) or generalized generic objects (multi-level inheritance
hierarchies [?]).

Following [?] and [?] these data abstractions can furthermore guide the top-down design
of database transactions by mapping operations on composite objects into composite
operations (sequencing, case analysis, iteration) on component objects.

Such a hierachical decomposition should be supported by appropriate language mecha-
nisms like set-oriented operations (selection, construction), tuple operations (field selec-
tion, record construction) and mechanisms to view specialized objects as generic objects
or to project generic objects into specialized objects.

The classical relational data model only provides support for classification by means of
relations and aggregation of atomic values within individual relation elements. Gen-
eralization, repeated aggregation, or repeated classification is beyond the scope of a
relational DBMS. A first step to overcome these limitations was the inclusion of the con-
cept of generalization into the set of abstraction mechanisms applicable to data values
[?]. The conceptual modeling language TAXIS [?] extends this framework further by
allowing one to aggregate, classify and generalize not only data values but also transac-
tions, constraints and exceptions. Finally, object oriented languages rely heavily on the
aggregation of data and operations (procedural attachment) as well as the possibility of
specializing and generalizing these aggregates (inheritance) [7, 7, 7.

4.2 Localization Abstraction

Due to the evolutionary nature of database applications (arising from changes in the
application domain itself or from add-on extensions to existing application programs),
the initial implementation of a database program already has to take future incremental
modifications and extensions into account.

The main quality criteria to be met by data-intensive applications are therefore:

Controlability of data access. Sharing and persistence in a database environment have
to be controlled by appropriate authorization and protection mechanisms. They
should provide a fine-grained control over the set of data objects and operations
available to individual users and application programs.

Database systems traditionally make heavy use of dynamic views and dynamic
sets of access rights (capabilities) whereas programming languages usually attain
controlability by means of static scoping and encapsulation mechanisms [?].

Extensibility of data structures and application programs: Extensions range from sim-
ple additions of attributes, classes, relationships or inclusion of new queries and
update transactions to the weakening or strengthening of database-wide integrity
constraints. It should be possible to perform extensions in a way that does not
disrupt the overall structure of existing applications and data structures and that
minimizes the need for reverification of existing applications.

Reusability of data and operations. One of the main motivations for the use of (central-
ized or distributed) database systems is the desire to re-use and share information

19

among larger user communities. By now it has become obvious that a mere shar-
ing of “raw data” (like employee records) in some cases contradicts the goals of
controlability and correctness as explained above. A first solution to this dilemma
is the encapsulation of data objects where methods are the only means to interact
with an object [?, 2, 7,7, 7].

Correctness with respect to the (informal) specifications, especially in the presence
of incremental changes. For example, integrity constraints on data objects (even
those “coded into” application transactions) have to be respected by all update
transactions, especially those implemented at a later point in time.

The typical approach to support these quality criteria during the evolution of applications
in a language framwork is based on the principle of localization abstraction. The principle
1s based on the idea to localize definitions, i.e. to “factor out” repetitive information from
applications and to replace them by a reference to a single, named declaration and to
group related information in a local scope.

Classical examples of this principle are the declarations of named constants, types and
operations in Pascal-like programming languages. But databases adhere to this principle
also by factoring out objects and integrity constraints from multiple application programs
and localizing them in a uniform, centralized database schema. By forcing application
programs to access data objects only through controlled database system services, DBMS
can guarantee a certain degree of correctness, controlability, extensibility and reusability.
It is clear that the traditional model of a database (essentially a single, global, un-
structured store with a pool of integrity constraints) is an insufficient model to support
incremental modifications for large database applications.

A first step towards a more uniform treatment of localization abstraction in a relational
environment was presented in section ??7 by an extension of the module concept of
Modula-2. Section ?? presents a more detailed discussion of new binding and typ-
ing mechanisms that allow more flexible interfaces between database systems and their
clients.

4.3 Implementation Abstraction

The previous two subsections were mainly concerned with modeling and software engi-
neering aspects of database applications. Because of the size, value and longevity of the
data to be dealt with, database applications also have a strong demand for non-functional
support to be provided by a database system.

The implementation of a lookup table may illustrate this aspect. In a programming
language setting, it is sufficient to implement a lookup table by means of a hash table
or a search tree. The implementation of a lookup table is therefore adequately described
by its operations (insert, remove, lookup) and its time and space requirements. In a
database environment implementors of a persistent and shared lookup table have to take
care of the storage management on disk, avoid interference between concurrent update
operations and guarantee the integrity of the data structure in cases of program failures
or system crashes.

These additional non-functional (or operational) requirements of database applications
can be summarized as follows:

20

Persistence Management allows application programmers to abstract from low-level
aspects of data representation, e.g. whether objects are held in main memory or on
secondary store, how objects are identified (virtual addresses or tuple identifiers),

when objects need to be transferred between multiple nodes in a network, etc.
[?,7,7,7].

Bulk Data Management allows one to abstract from details of the underlying data
structures and access support structures, e.g. how objects are clustered on disc or in
main memory, which index structures have to be maintained during update opera-
tions, which access paths can be utilized to speed up set-oriented query evaluation,
ete. [7, 7].

Support for Atomicity is needed to define higher-level operations that abstract from
the possibility of failure of the lower-level operations that are used by their imple-
mentation [?7, ?].

Support for Concurrency Control is needed to abstract from possible interferences
arising from concurrent access to shared data objects by multiple threads of control

[7].

It should be noted that, for example, in a relational database management system these
requirements are met by a small set of highly interrelated and generic concepts, namely
set data structures, set-oriented query languages and the traditional (and highly over-
loaded) transaction model. The extreme complexity in the implementation of efficient,
recoverable and concurrent access to persistent, shared data structures thereby remains
completely hidden from database application programmers. The necessity of hiding in
particular the heavy non-functional requirements from the clients of an operation de-
mands language support for tmplementation abstraction.

Traditionally, implementation abstraction is achieved in a DBMS by using generic mecha-
nisms that perform persistence management, bulk data management, query optimization,
concurrency control and recovery for all possible data structures and user transactions.
This genericity can only be attained based on a priori semantic knowledge of algebraic
properties about sets, set operations and transactions.

However, as soon as advanced database languages permit substantial extensions or vari-
ations to be performed at the application level, there arises the need to open and extend
the up to now fixed and pre-canned functionality of a DBMS at lower levels. Based on ad-
ditional semantic knowledge of the application domain, a DBMS has to allow application-
specific extensions to the persistence management, the bulk data management, the query
optimizer etc.

Examples of such extensions are new base types, abstract data types, user-defined collec-
tion types, user-defined operations on complex objects, queries or functions as first-class
language objects etc. Extensible database systems [?, 7, 7, 7 7 7 7] usually provide
well-defined specialized interfaces to lower levels (e.g. to the index manager or to the
query evaluator) of the database system to “plug in” user-defined code. This DBMS
kernel code written in a standard programming language like C or a specialized database
implementation language like E [?, 7] can be called by DBMS extensions that implement,
for example, application specific query languages.

21

5 The Potential of Advanced Language Technology

The descriptions of the abstraction mechanisms for database programming in the previous
section remained deliberately abstract and general in order to be able to specialize these
concepts to the wide range of languages proposed for the task of database programming.
These proposals range from standard query languages, functional query languages, logic-
based languages, relational database programming languages, persistent programming
languages to object-oriented languages.

Without bias towards any of these solutions, one can predict that the current development
of language technology will have a significant impact on the quality of the language
interfaces for next-generation database systems. The following subsections give references
to relevant literature and highlight the most promising achievements of todays language
technology.

5.1 The Ubiquitous Data Abstraction

The three data abstractions (aggregation, classification and generalization as described
in ?77), rooted in the realms of knowledge representation, heavily influenced the design of
new data models [?, 7, 7, 7 7 ?] and are currently being “discovered” by type systems
of database programming languages [?, ?].

The intuitive interpretation of a type describing a set of values [?] captures an essential
aspect of the concept of classification [?, ?]. This static classification based on structural
properties of data values and functions is furthermore theoretically well-defined [?, 7,7, 7]
and effectively enforceable by means of static or dynamic type checkers [7) ?].

Imperative and procedural programming languages have a long tradition in representing
the concept of aggregation by means of records [?], structures or tuples as found for ex-
ample in COBOL, Pascal, Ada, Modula-2 or C. On the other hand, functional languages
and the theory of programming languages “neglected” labeled cartesian product types
and expressed aggregation simply by means of pairs, triples, ... [?, 7, 7, ?].

However, motivated by the strong interest in object-oriented concepts, record types are
currently receiving renewed interest not only from programming language implementors
[?, 7, 7] but also from type theoreticians [?, ?, 7, ?]. These languages introduce a
subtyping relationship between record types that allows one to utilize the powerful data
abstraction principle generalization in a strongly typed framework.

To summarize, striking parallels exist between the data abstraction principles of con-
ceptual modeling and fundamental concepts of modern type systems. A further analogy
is the fact that type systems also obey the principle of orthogonality. A second-order
A-calculus [?], for example, allows one to name types, to pass types as parameters, to
abstract over type expressions (yielding type operators) etc. Recent development in
programming language design [?, ?] and type theory [?] even introduces a three level
structure consisting not only of values described by means of types (the traditional two-
level structure) but also of a third layer of kinds that classify types into simple types,
type operators, etc.

Finally, there is now a solid understanding of the mechanism of type inference [?, 7, 7],
that allows one to omit the (sometimes cumbersome) type annotations from expressions,

22

statements, and functions and to write generic queries and transactions. The compiler is
not only able to derive the missing type information from the operations performed on
the data values, but it also detects the most general polymorphic type of every variable
and parameter. Such a typing scheme is therefore also a big step towards the goal of
language support for localization abstraction.

5.2 Advances in System Architecture and Implementation

Todays programming languages (like Ada [?], Modula-2 [?], Modula-3 [?], Eiffel [?] or
Standard-ML [?, ?]) provide sophisticated naming, typing and parameterization mech-
anisms to define fine-grained and generic modules that are robust with respect to local
changes and that can be bound to different (type-)parameters to be re-used in different
contexts.

Localization abstraction therefore requires database as well as language support (see also

[7]):

e data centralization as found in database systems including sharing, concurrent
access and integrity maintenance;

e functional abstraction and parameterization [?, 7, ?] including higher-order func-
tions and explicit or implicit type parameters [?, 7, ?];

e modularization and encapsulation including separate compilation [?], type abstrac-
tion [?, 7], and appropriate incremental binding mechanisms [?].

As explained in section ?7, extensions of extensible database management systems are
usually coded in a standard programming language like C or a specialized database
implementation language.

We argue that the coding of such application-specific extensions should be understood
also as part of the global database programming task. Furthermore, it should be clear
that for this particular subtask there is a strong demand for the abstraction mechanisms
presented in section 77 and 7?7, like encapsulation, procedural abstraction, strong and
polymorphic typing, inheritance etc.

If one adopts this holistic point of view, DBMSs can be viewed essentially as collections of
highly generic and extremely reusable functions and abstractions available in a database
programming environment. These functions can not only be utilized by building applica-
tion programs calling them, but they also provide “hooks” for user-specified extensions
written in the same language yet at a lower abstraction level.

As soon as one attempts to describe the functionality of a fully-fledged database system
in such a mono-linguistic framework one recognizes that there are several places where
a DBMS needs to perform magic. The most striking example is the process of query
optimization. Apparently, a DBMS must have the ability to “reason” about a given query
expression prior to its execution, and, as a result of that reasoning, transform a query into
a semantically equivalent one that can be executed more efficiently. Clustering of data
objects and recovery are two other magic mechanisms that are part of the implementation
abstraction provided by the DBMS.

23

We claim that the essence of DBMS implementation abstraction can be captured by
three distinct language mechanisms:

Core Language Definition: There has to be a small set of basic language primitives
(e.g. exception handling, persistence of simply structured data values, lock primi-
tives, atomic operations). These primitives need to be built-in, since their imple-
mentation is beyond the scope of a high-level (typed) programming language.

Declaration Correspondence: This principle introduced by Landin [?] heavily in-
fluenced the design of several languages [?, 7, ?]. Its initial technical definition
states that a programming language obeys the declaration correspondence prin-
ciple if anything that can be declared inline can also be passed as a parameter.
All subsequent additions to this principle try to capture the idea that a language
should provide means to abstract from implementations in such a way that a client
using this functionality is unable to distinguish it from built-in language constructs.
Loosely speaking, this means that all language constructs and values have the same
“civil rights”.

Reflection is the ability of a system to support its own evolution. This may entail
changes to the programs that describe the system and the types used by the system.
Reynolds [?] showed (in terms of the A-calculus) that it is impossible for a system to
support itself in the same language it is written in. This means that systems have to
resort to a lower level technology to express some part of the reflection. Examples
for reflection are the eval() function in Lisp (untyped, dynamically bound), the
callable compiler in the persistent store of PS-algol [?] and Napier [?] (statically
typed, dynamically bound) and generic forms in ADAPTBL [?] (statically typed
and statically bound).

Reflection seems to be a key mechanism in achieving the “magic” involved in the process
of query optimization: a query optimizer could use reflection to access the code of a
query expression submitted for evaluation, to obtain information about existing access
paths within the system and to construct a new code for an equivalent query expression
using these access paths.

6 Summary and Conclusion

Looking back on two decades of relational database history one observes contributions
on three different levels.

The relational database model is, of course, a very important contribution and provides
a solid basis for a number of advanced data modeling capabilities:

e reasonable data structures for a variety of commercial applications,
e concepts for very powerful queries and integrity constraints,

e an adequate approach to database updates.

24

As a second contribution, relational database technology has isolated and solved a variety
of hard problems. It produced, however, only tailor-made implementations in which
solutions of conceptually independent issues were bundled:

e only sets of records over limited domains can be defined and made persistent;
e optimized associative access is provided only for flat relational structures;

e the notion of transaction has highly specialized and overloaded semantics.

The development of relational database languages was a third contribution. However, it 1s
now widely agreed that hardly any of them reached the then state-of-the-art in language
design. Some of them even hindered the full exploitation of the relational model and led
to various mismatches in database application programming [?].

Currently, much effort is invested in the development of new data systems which support
typical database functionality and aim for going substantially beyond the relational ap-
proach. Examples are the object-oriented systems and the various forms of programming
languages with bulk data structures and persistence.

What do we expect from such post-relational data systems? To put it succinctly, we
expect three contributions: generalization of the model, unbundling of the technology
and, in particular, improvement of the languages.

To draw the comparison with the relational contributions as outlined above, we anticipate
post-relational data models to be liberated from essential relational restrictions in that:

e new typing schemes will be exploited and data models will become type-complete
and orthogonal;

e bulk operators and assertions will be generalized;

e algorithmically complete constructs for data evaluation and manipulation will be
provided.

From post-relational data technology we require the unbundling of its essential contribu-
tions and provision of its capabilities independent of one another:

e persistence will be given to an enlarged or even open set of data types and type
constructors;

e efficient implementations of adequate abstraction mechanisms for bulk data access,
modularization, interface definition and control etc. are expected;

e support is needed for an appropriate set of base mechanisms for non-functional
requirements such as concurrency control, recovery and communication.

Finally, we expect that post-relational data languages will utilize modern language tech-
nology to bundle (or bind) the above capabilities according to the specific needs of the
problem at hand:

e to allow for appropriate naming schemes for object identification and reference;

25

e to offer binding mechanisms that allow users to choose from a wide range of naming

schemes, types, values and mutability restrictions which abstract and protect best

an objects relevant properties;

e to capture additional object properties through extra capabilities for flexible scop-

ing, sharing and lifetime definition or an appropriate recovery and migration status.

In conclusion, we are convinced that for the development of next-generation database
technology there is a need for a linguistic guideline, and we see already a number of
projects that are heavily influenced by language design principles (e.g. [?, 7, 7, ?]). On
the other hand, next generation database language design (e.g. see [?, 7, ?]) will be
driven and controlled by a “systems vision” with high but realistic expectations of the
potential of database technology.

References

[A*89]

[ABST]

[ABSS]

[ABC+83)

[ABMSS]

[ACCS1]

[ADG+89)

[AFSS9]

[AHST]

M. Atkinson et al. The Object-Oriented Database System Manifesto. Tech-
nical Report 30-89, GIP Altair, Domaine de Voluceau Rocquencourt 78153
Le Chesnay Cedex - France, September 1989.

M.P. Atkinson and P. Bunemann. Types and Persistence in Database Pro-
gramming Languages. ACM Computing Surveys, 19(2), June 1987.

S. Abiteboul and C. Beeri. On the Power of Languages for the Manipulation
of Complex Objects. Rapports de Recherche 846, INRIA, Domaine de
Voluceau Rocquencourt 78153 Le Chesnay Cedex - France, May 1988.

M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Mor-
rison. An approach to persistent programming. Computer Journal, 26(4),
November 1983.

M.P. Atkinson, P. Buneman, and R. Morrison, editors. Data Types and
Persistence. Topics in Information Systems. Springer-Verlag, 1988.

M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-Algol: An Algol
with a Persistent Heap. ACM SIGPLAN Notices, 17(7), July 1981.

A. Albano, A. Dearle, G. Ghelli, C. Martin, R. Morrison, R. Orsini, and
D. Stemple. A Framework for Comparing Type Systems for Database Pro-
gramming Languages. In Proc. of the 2nd Workshop on Database Program-
ming Languages, Portland, Oregon, pages 203-212, June 1989.

S. Abiteboul, P.C. Fischer, and H.J. Schek. Nested Relations and Complez
Objects in Databases, volume 361 of Lecture Notes in Computer Science.

Springer-Verlag, 1989.

S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM
Transactions on Database Systems, 12(4), 1987.

26

[AKS9)]

[Alb83]

[AMS5]

[AMSS]

[Ban88]

[Bat86]

[BB84]

[BBST]

[BCDSY)

[Bee8S]

[BHGST]

[BHR82]

[BL84]

[BL87]

S. Abiteboul and P.C. Kanellakis. Object Identity as a Query Language
Primitive. In ACM-SIGMOD International Conference on Management of
Data, pages 159-173, Portland, Oregon, 1989.

A. Albano. Type Hierarchies and Semantic Data Models. In ACM SIG-
PLAN °83: Symposium on Programming Langauge Issues in Software Sys-
tems, pages 178-186, San Francisco, 1983.

M.P. Atkinson and R. Morrison. First class persistent procedures. ACM
Transactions on Programming Languages and Systems, 7(4), October 1985.

M.P. Atkinson and R. Morrison. Types, Bindings and Parameters in a
Persistent Environment. In M.P. Atkinson, P. Buneman, and R. Morri-
son, editors, Data Types and Persistence, Topics in Information Systems.

Springer-Verlag, 1988.

F. Bancilhon. Object-Oriented Database Systems. In Proc. of the ACM
PODS Conf.,; Austin, March 1988.

D.S. Batory. GENESIS: A Project to Develop an Extensible Database
Management System. In Proc. 1986 Int. Workshop on Object-Oriented
Database Systems, pages 207-208, September 1986.

D. Batory and A. Buchmann. Molecular Objects, Abstract Data Types, and
Data Models: A Framework. In Proc. of the 10h International Conference
on Very Large Data Bases, 1984.

F. Bancilhon and P. Buneman, editors. Proceedings of the 1st Workshop on
Database Programming Languages. Altair, 1987.

F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the O,
Object-Oriented Database System. In Proc. of the 2nd Workshop on
Database Programming Languages, Salishan Lodge, Oregon, June 1989.

C. Beeri. Data Models and Languages for Databases. "Lechnical report,
Dept. of Comp. Science, The Hebrew Univeristy, Jerusalem, Israel, 1988.

P.A. Bernstein, V. Hadzilacos, and N. Goodman, editors. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

P. Bunemann, J. Hirschberg, and D. Root. A Codasyl Interface to Pascal
and Ada. In Proc. 2nd British National Conference on Databases (BNCOD
2). Cambridge University Press, 1982.

R. Burstall and B. Lampson. A kernel language for abstract data types
and modules. In Semantics of Data Types, volume 173 of Lecture Notes in
Computer Science. Springer-Verlag, 1984.

P.A. Bernstein and D.B. Lomet. CASE Requirements for Extensible
Database Systems. Database Engineering, Special Issue on FExtensible
Database Systems, 10(2), June 1987.

27

[BMSS4]

[BMW84]

[BR84]

[Bro84]

[BTBO8Y]

[C+86]

[Car84]

[Car88]

[Car89]

[CD87]

[CDGH88]

[CDMBY0]

[CL.90]

M.L. Brodie, J. Myopoulos, and J.W. Schmidt, editors. On Conceptual
Modelling, Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages. Springer-Verlag, 1984.

A. Borgida, J. Mylopoulos, and H.K.T. Wong. Generalization / Specializa-
tion as a Basis for Software Specification. In M.L. Brodie, J. Mylopoulos,
and J.W. Schmidt, editors, On Conceptual Modelling, Topics in Information
Systems, pages 87-117. Springer-Verlag, 1984.

M.L. Brodie and D. Ridjanovic. On the Design and Specification of
Database Transactions. In M.L. Brodie, J. Mylopoulos, and J.W. Schmidt,
editors, On Conceptual Modelling, Topics in Information Systems. Springer-
Verlag, 1984.

M.L. Brodie. On the Development of Data Models. In M.L. Brodie, J. My-
lopoulos, and J.W. Schmidt, editors, On Conceptual Modelling, Topics in
Information Systems. Springer-Verlag, 1984.

V. Breazu-Tannen, P. Buneman, and A. Ohori. Can Object-Oriented
Databases be Statically Typed? In Proc. of the 2nd Workshop on Database
Programmang Languages, Salishan Lodge, Oregon, June 1989.

M. Carey et al. The Architecture of the EXODUS Extensible DBMS. In
Proc. International Workshop on Object-Oriented Database Systems, pages
52-65, Pacific Grove, Ca., September 1986.

L. Cardelli. A Semantics of Multiple Inheritance. In G. Kahn, D.B. Mac-
Queen, and G. Plotkin, editors, Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 51-67. Springer-Verlag, 1984.

L. Cardelli. Types for Data-Oriented Languages. In Advances in Database
Technology, EDBT °88, volume 303 of Lecture Notes in Computer Science,
pages 1-15. Springer-Verlag, 1988.

L. Cardelli. Typeful Programming. Digital Systems Research Center Re-
ports 45, DEC SRC Palo Alto, May 1989.

M.J. Carey and D.J. DeWitt. An Overview of the EXODUS Project.
Database Engineering, Special Issue on Extensible Database Systems, 10(2),
June 1987.

L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.
Modula-3 Report. Technical Report ORC-1, Olivetti Research Center, 2882
Sand Hill Road, Memlo Park, California, 1988.

R. Connor, A. Dearle, R. Morrison, and F. Brown. Existentially Quanti-
fied Types as a Database Viewing Mechanism. In Advances in Database
Technology, EDBT °90, volume 416 of Lecture Notes in Computer Science,
pages 301-315. Springer-Verlag, 1990.

L. Cardelli and G. Longo. A semantic basis for Quest. Digital Systems
Research Center Reports 55, DEC SRC Palo Alto, March 1990.

28

[CM84]

[CM8S]

[CodT9]

[CRZNMSS]

[CW85]

[Dat84]

[Dat89]

[DCBMSY]

[DD79)]

[Dea9]

[Dij76]

[DKA*86]

[DM82]

[DV8S]

G. Copeland and D. Maier. Making Smalltalk a database system. In ACM-
SIGMOD International Conference on Management of Data, pages 316—
325, Boston, Ma., June 1984.

L. Cardelli and D. MacQueen. Persistence and Type Abstraction. In Data
Types and Persistence, Topics in Information Systems. Springer-Verlag,

1988.

E.F. Codd. Extending the Relational Database Model to Capture More
Meaning. ACM Transactions on Database Systems, 4(4), December 1979.

L.K. Chung, D. Rios-Zertuche, B. Nixon, and J. Mylopoulos. Process Man-
agement and Assertion Enforcement for a Semantic Data Model. In Ad-
vances i Database Technology, EDBT 88, volume 303 of Lecture Notes in
Computer Science, pages 469-487. Springer-Verlag, 1988.

L. Cardelli and P. Wegner. On Understanding T'ypes, Data Abstraction,
and Polymorphism. ACM Computing Surveys, 17(4):471-522, December
1985.

C.J. Date. Some Principles of Good Language Design with Special Reference
to the Design of Database Languages. ACM SIGMOD Record, 14(3):1-7,
November 1984.

C.J. Date. A Guide to the SQL Standard. Addison-Wesley, second edition,
1989.

A. Dearle, R. Connor, F. Brown, and R. Morrison. Napier88 — A Database
Programming Language? In Proc. of the 2nd Workshop on Database Pro-
gramming Languages, Salishan Lodge, Oregon, June 1989.

A. Demers and J. Donahue. Revised Report on Russel. TR 79-389, Com-
puter Science Department, Cornell University, 1979.

A. Dearle. Environments: a flexible binding mechanism to support system
evolution. In Proc. HICSS-22, Hawaiz, volume 11, pages 46-55, January
1989.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, NJ, 1976.

P. Dadam, K. Kuespert, Andersen, et al. A DBMS Prototype to Support
Extended NF2 Relations: An Integrated View on Flat Tables and Hier-
archies. In ACM-SIGMOD International Conference on Management of
Data, pages 356-367, Washington, DC, 1986.

L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proc. 9th ACM Symposium on Principles of Programmaing Languages,
pages 207-212, 1982.

S. Danforth and P. Valduriez. The Data Model of FAD, a Database Pro-
gramming Language, Rev. 1. Technical Report ACA-ST-059-88, MCC,
June 1988.

29

[FHSS)

[GOST]

[Gra81]

[Har84]

[HEFLP8Y]

[HI87]

[HKS87]

[HMTSS]

[Hoa68]

[HSM8Y)

[Hud89]

[1+83]

[I1.585]

[KL8Y]

[KV87]

A.J. Field and P.G. Harrison. Functional Programming. Addison-Wesley,
Workingham, England, 1988.

D. Goldhirsch and J.A. Orenstein. Extensibility in the PROBE Database
System. Database Engineering, Special Issue on Eztensible Database Sys-
tems, 10(2), June 1987.

J.N. Gray. The Transaction Concept: Virtues and Limitations. In Proc.
10th VLDB Conference, pages 144-154, Cannes, France, September 1981.

D.M. Harland. Polymorphic Programming Languages, Design and Imple-
mentation. Ellis Horwood Limited, a division of John Wiley & Sons, 1984.

L.M. Haas, J.C. Freytag, G.M. Lohmann, and H. Pirahesh. Extensible
Query Processing in Starburst. In ACM-SIGMOD International Conference
on Management of Data, pages 377-388, Portland, Oregon, 1989.

Schek H.-J. DASDB: A Kernel DBMS and Application Specific Layers.
Database Engineering, Special Issue on Extensible Database Systems, 10(2),
June 1987.

R. Hull and R. King. Semantic Database Modeling: Survey, Applications
and Research Issues. ACM Computing Surveys, 19(3):351-260, September
1987.

R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML (Ver-
sion 2). LFCS Report Series ECS-LFCS-88-62, Department of Computer
Science, University of Edinburgh, August 1988.

C.A.R. Hoare. Record Handling. In F. Genuys, editor, Programmaing Lan-
guages, pages 291-347. Academic Press, London, 1968.

R. Hull, D. Stemple, and R. Morrison, editors. Proc. of the 2nd Workshop
on Database Programming Languages. Morgan Kaufmann publishers, 1989.

P. Hudak. Conception, Evolution, and Application of Functional Pro-
gramming Languages. ACM Computing Surveys, 21(3):359-411, September
1989.

Ichbiah et al. The Programming Language Ada: Reference Manual. Tech-
nical Report MIL-STD-1815A-1983, ANSI, 1983.

M. Jarke, V. Linnemann, and J.W. Schmidt. Data Constructors: On the
Integration of Rules and Relations. In 11th Intern. Conference on Very
Large Data Bases, Stockholm, August 1985.

W. Kim and F.H. Lochowsky. Object-Oriented Concepts, Databases and
Applications. ACM Press Books, 1989.

S. Khoshafian and P. Valduriez. Sharing, Persistence, and Object Orien-
tation: A Database Perspective. In Proc. of the Workshop on Database
Programmang Languages, Roscoff, France, pages 181-195, September 1987.

30

[L+77]

[Lan66]

[LCIS87]

[LGS6]

[LRV8S]

[MADS7]

[Mat87]

[MB8Y]

[MBWS0]

[MDS6]

[Mey88]

[Mil78]

[Min88]

[MJAPS6]

B. Liskov et al. Abstraction Mechanisms in CLU. Communications of the

ACM, 20(8), August 1977.

P.J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157-166, 1966.

B. Liskov, D. Curtis, P. Johnson, and R. Scheifler. Implementation of
Argus. In Proc. of the 11th ACM Symp. on Operation System Principles,
ACM SIGOPS, pages 111-122, November 1987.

B. Liskov and J. Guttag. Abstraction and Specification in Program Develop-
ment. The MIT Electrical Engineering and Computer Science Series. MIT
Press, 1986.

C. Lécluse, P. Richard, and F. Velez. O, an Object-Oriented Data Model.
In ACM-SIGMOD International Conference on Management of Data, pages
424-433, June 1988.

R. Morrison, M.P. Atkinson, and A. Dearle. Flexible Incremental Bindings
in a Persistent Object Store. Persistent Programming Research Report 38,
Univ. of St. Andrews, Dept. of Comp. Science, June 1987.

D. Matthews. Static and Dynamic Type Checking. In Proc. of the Work-
shop on Database Programming Languages, Roscoff, France, pages 43-52,
September 1987.

J. Mylopoulos and M.L. Brodie, editors. Readings in artificial intelligence
and databases. Morgan Kaufmann publishers; 1989.

P.A. Mylopoulos, A. Bernstein, and H.K.T. Wong. A Language Facil-
ity for Designing Database-Intensive Applications. ACM Transactions on
Database Systems, 5(2):185-207, June 1980.

F. Manola and U. Dayal. PDM: An Object-oriented Data Model. In Proc.
Int. Workshop on Object-oriented Database Systems, pages 18-25, Septem-
ber 1986.

B. Meyer. Object-oriented Software Construction. International Series in
Computer Science. Prentice Hall, 1988.

R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

J. Minker. Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann publishers, 1988.

D. Maier, Stein J., Otis A., and A. Purdy. Development of an Object-
Oriented DBMS. In Proc. Int. Conf. on OOPSLA, Portland, Oregon, Oc-
tober 1986.

31

[Mos89]

[MRS89]

[Naq89]

[Nik8§]

[NS87]

[OB8S]

[OB8Y]

[PAS6]

[RCS87]

[Rey72]

[Rey74]

[Ric89]

J.E.B. Moss. Addressing Large Distributed Collections of Persistent Ob-
jects: The Mneme Project’s Approach. In Proc. of the 2nd Workshop on

Database Programming Languages, Portland, Oregon, pages 358-374, June
1989.

F. Matthes, A. Rudloff, and J.W. Schmidt. Data- and Rule-Based Database
Programming in DBPL. Esprit Project 892 WP/IMP 3.b, Fachbereich In-
formatik, Johann Wolfgang Goethe-Universitat, Frankfurt, West Germany,
March 1989.

S.A. Naqvi. Stratification as a Design Principle in Logical Query Languages.
In Proc. of the 2nd Workshop on Database Programmang Languages, Salis-
han Lodge, Oregon, June 1989.

R.S. Nikhil. Functional Databases, Functional Languages. In M.P. Atkin-
son, P. Buneman, and R. Morrison, editors, Data Types and Persistence,
Topics in Information Systems. Springer-Verlag, 1988.

P. Niebergall and J.W. Schmidt. Integrated DAIDA Environment, Part
2: DBPL-Use: A Tool for Language-Sensitive Programming. DAIDA De-
liverable WP /IMP-2.c, Fachbereich Informatik, Johann Wolfgang Goethe-
Universitat, Frankfurt, West Germany, 1987.

A. Ohori and P. Buneman. Type Inference in a Database Programming
Language. In ACM Conference on Lisp and Functional Programmang, pages
174-183, Snowbird, Utah, 1988.

A. Ohori and P. Buneman. Static Type Inference for Parametric Classes.
In Proc. of ACM OOPSLA Conference, pages 445456, New Orleans, L.A.,
1989.

P. Pistor and F. Andersen. Designing a Generalized NF2 Model with a
SQL-Type Language Interface. In Proc. 12 Int. Conf. on Very Large Data
Bases, Kyoto, pages 278-288, August 1986.

J. Richardson and M. Carey. Programming Constructs for Database System
Implementation in EXODUS. In ACM-SIGMOD International Conference
on Management of Data, San Francisco, CA, May 1987.

J.C. Reynolds. Definitional interpreters for higher order programming lan-
guages. In Proc. ACM 25th National Conference, volume 2, pages T17-740,
Boston, 1972.

J.C. Reynolds. Towards a theory of type structure. In Colloguium sur la
programmation, volume 19 of Lecture Notes in Computer Science, pages

408-423. Springer-Verlag, 1974.

J.E. Richardson. E: A Persistent Systems Implementation Language. Tech-
nical Report 868, Computer Sciences Department, University of Wisconsin-

Madison, August 1989.

32

[RT88a]

[RT88b]

[SAHST]

[SB83]

[SBK*8S]

[SCB+86]

[Sch77]

[Seb89]

[SEMSS]

[SM90]

[$S77]

[SSBS6]

[SSS90]

T.W. Reps and T. Teitelbaum. The Synthesizer Generator: A System For
Constructing Language-Based Editors. Texts and Monographs in Computer
Science. Springer-Verlag, 1988.

T.W. Reps and T. Teitelbaum. The Synthesizer Generator Reference Man-
ual. Texts and Monographs in Computer Science. Springer-Verlag, third
edition, 1988.

M. Stonebraker, J. Anton, and M Hirohama. Extendability in POSTGRES.
Database Engineering, Special Issue on Extensible Database Systems, 10(2)
June 1987.

J.W. Schmidt and M.L. Brodie, editors. Relational Database Systems.
Springer-Verlag, 1983.

J.W. Schmidt, M. Bittner, H. Klein, H. Eckhardt, and F. Matthes. DBPL
System: The Prototype and its Architecture. DBPL Memo 111-88, Fach-
bereich Informatik, Johann Wolfgang Goethe-Universitat, Frankfurt, West
Germany, November 1988.

C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An Intro-
duction to Trellis/Owl. In Proc. of 1st Int. Conf. on OOPSLA, pages 9-16,
Portland, Oregon, October 1986.

J.W. Schmidt. Some High Level Language Constructs for Data of Type
Relation. ACM Transactions on Database Systems, 2(3), September 1977.

R.W. Sebesta. Concepls of Programming Languages. Benjamin/Cummings
Series in Computer Science. Benjamin/Cummings Publishing Company,

Inc., 1989.

J.W. Schmidt, H. Eckhardt, and F. Matthes. DBPL Report. DBPL-Memo
111-88, Fachbereich Informatik, Johann Wolfgang Goethe-Universitat,
Frankfurt, West Germany, 1988.

J.W. Schmidt and F Matthes. DBPL Language and System Manual. Esprit
Project 892 MAP 2.3, Fachbereich Informatik, Universitat Hamburg, West
Germany, April 1990.

J.M. Smith and D.C.P. Smith. Database Abstractions: Aggregation and
Generalization. ACM Transactions on Database Systems, 2(2):105-133,
June 1977.

D. Stemple, T. Sheard, and B. Bunker. Abstract Data Types in Databases:
Specification, Manipulation and Access. In Proc. of the IEEE 2nd Interna-
tional Conference on Data Engineering, pages 590-597, Los Angeles, Cali-
fornia, February 1986.

L. Stemple, D. Fegaras, T'. Sheard, and A. Socorro. Exceeding the Limits
of Polymorphism in Database Programming Languages. In Advances in
Database Technology, EDBT ’90, volume 416 of Lecture Notes in Computer
Science, pages 269-285. Springer-Verlag, 1990.

33

[Sta88]

[Str67]

[SWBMS9]

[Tur85]

[Wan87]

[Wiks7]

[Wir83)
[WL81]

R. Stansifer. Type Inference with Subtypes. In Proc. 15th ACM Symposium
on Principles of Programmang Languages, pages 88-97, 1988.

C. Strachey, editor. Fundamental concepts in programming languages. Ox-
ford University Press, Oxford, 1967.

J.W. Schmidt, I. Wetzel, A. Borgida, and J. Mylopoulos. Database Pro-
gramming by Formal Refinement of Conceptual Designs. IEEE — Data
Engineering, September 1989.

D.A. Turner. Miranda: A non-strict functional language with polymorphic
types. In J.P. Jouannaud, editor, Functional Programming Languages and
Computer Architecture, volume 201 of Lecture Notes in Computer Science,

pages 1-16, 1985.

M. Wand. Complete Type Inference for Simple Objects. In Proceedings of
the Second Annual Symposium on Logic in Compuler Science, pages 37-44,
Ithaca, New York, June 1987.

A. Wikstrom. Functional Programming using Standard ML. Prentice Hall,
1987.

N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

B. Weihl and B. Liskov. Specification and Implementation of Resilient
Atomic Data Types. Proc. ACM SIGPLAN Symp. on Prog. Lang. Issues
in Softw. Syst. ACM SIGPLAN Not., 16(5), May 1981.

34

