Data Construction with Recursive Set Expressions *

J. Edert A. Rudlofft F. Matthest J. W. Schmidt}

Institute for Statistics and Comp. Science! Department of Computer Sciencet
University of Vienna University of Hamburg
Liebiggasse 4 Schliiterstr. 70
A - 1010 Vienna, Austria D - 2000 Hamburg 13, FRG
Abstract

In this paper we present a conceptually rather conservative approach to data
deduction. Instead of introducing new language constructs we stay within the con-
ventional relational framework while exploiting it further by making better use of
current language technology. Applying naming, typing and binding to queries and
relations leads to a language that gains expressiveness from its orthogonality rather
than from extensiveness.

As a framework for our presentation we use DBPL, a strongly typed database
programming language based on the relational calculus and on Modula-2. In DBPL,
data construction is expressed declaratively through set-oriented expressions which
can be abstracted by parameterization and by naming, thus allowing powerful recur-
sive constructor definitions. In the paper, a model-theoretic constructor semantics
is defined in two steps: parameter substitution in constructor definitions leads to
constructor instances which are then evaluated in a second step. The first step can
be regarded as logic program generation, the second step as program evaluation.

We show that for the general case no procedure exists that evaluates an arbi-
trary set of parameterized constructors and is guaranteed to terminate. However,
we are able to classify constructors and give an evaluation algorithm which termi-
nates for interesting subclasses. Finally, we solve an example from the literature
showing that NP-complete problems can be solved by constructors from a subclass
which is decidable. This implies that decidable DBPL constructors are strictly more
expressive than stratified Datalog.

1 Introduction

In the setting of a database programming language, queries are considered as a specific
class of expressions that compute set-valued results from their contributing operands.
In this sense, relational queries are mappings from a database state, represented by a
collection of relation variables, into relation values. Compared with, e.g. arithmetic ex-
pressions, such query expressions are quite restricted since query languages do not allow

*This work was supported by the Deutscher Akademischer Austauschdienst, DAAD, by the Aus-
trian Fonds zur Fdrderung der wissenschaftlichen Forschung (contract P6772P) and by the European
Commission under ESPRIT Basic Research Action FIDE (contract 3070).



the use of arbitrary computable functions. The main motivation behind such restrictions
is the use of queries for abstract and yet efficient access to large and shared data spaces
[CodT70]. Therefore, query languages restrict themselves for the most part to operations
for constructing (by Cartesian product), compressing (by predicative selection), and slic-
ing (by projection) relational data spaces. However, even for relationally complete query
languages as obtained by orthogonal combinations of the above operations, there exist
desirable results that cannot be reached by expressions of finite size [AUTY].

Thus, many proposals have been offered to extend the expressiveness of query languages,
most of which can be discussed in the framework of Datalog [CGT89]. Datalog is a
language based on function-free Horn clauses and draws additional expressive power
primarily from recursion.

There are, nevertheless, several restrictions to the Datalog family that triggered an ongo-
ing activity regarding “Stratified Datalog” extensions [BNR&T7], [LNP et al. 88], [Dah87],
[KPSS).

One severe restriction of Datalog is the lack of polymorphism. In Datalog one cannot
define, for example, a generic set of rules for the transitive closure of arbitrary binary
relations. Instead, one has to define such rules separately for each relation, leading to
programs that are redundant with respect to bijective renaming of predicates. From a
software engineering point of view such program redundancy is a major drawback often
referred to as “text editor polymorphism”.

From a modelling point of view, Datalog is restricted by being based on a “flat data
model”. Some extensions proposed make use of functions and sets to handle more com-
plex objects. These sets, however, are not typed and have to be equipped by user-provided
operations (instead of generic ones).

A third restriction is the limited expressiveness of Datalog, which, although exceeding
that of relational complete languages, is still below that of first-order languages.

In this paper we present a conceptually rather conservative approach to data deduction.
Instead of experimenting with a variety of language extensions and new computational
models, we stay within the conventional relational framework and exploit it further by
making full use of current language technology. Here the term language technology
refers to mechanisms for naming, typing and binding of queries and relations, together
with the design principle of achieving expressiveness by combinability rather than by
extensiveness.

One major motivation behind our project is to exploit fully the benefits of DBPL’s
characteristics such as strong and static typing, type-completeness and orthogonality.
Furthermore, we strove to keep under tight control the consequences of advanced data
construction on our database system implementation and its operational support (e.g.
query optimization, transaction management and overall system architecture).

The paper is organized as follows. In section two we give a short introduction of the
relevant part of the database programming language DBPL [SEM88] [MRS8Y], specifi-
cally, the concept of a relation constructor [JLS85]. We de-emphasize the procedural part
of the language and concentrate on types and expressions, in particular on expression
naming, typing and binding.

In sections three and four we describe formal semantics to the resulting typed and pa-
rameterized query calculus. We have to deal with two kinds of recursion: first, the class



of statically defined, non-parameterized, mutually recursive constructors with their stan-
dard fixpoint semantics. Second, there are the dynamically created constructor instances
based on actual parameters that are supplied at constructor invocation time. In partic-
ular, the invocation of a constructor may be parameterized by a term that, recursively,
depends on the constructor at hand.

Section five demonstrates by an extended example the increase in expressiveness gained
by applying current language technology to the conventional relational data model. The
concluding section comments further on this first experience with our approach and on
current research.

2 An Introduction to DBPL

We base our informal introduction into the DBPL language on an example from com-
binatorial circuits. The current section introduces DBPL types by providing the repre-
sentation of an electronic circuit (see Fig. 1) and it discusses DBPL query expressions
by evaluating some circuit data. Section five concentrates on a more elaborate problem
introduced by [BI90] and solves it by recursive set expressions.

2.1 Types

DBPL’s contributions to typing and persistence can be characterized by the principles
of type completeness and orthogonal persistence.

DBPL is type complete in the sense that a user of the language can exploit the entire type
space defined by base types (with the exception of data of type reference, see [MS89])
and by arbitrary nestings of type constructors including relations. In our example (see
Fig. 2) this leads to a definition of CircuitType as a relation type based on GateType
records that have relation-valued attributes for outgoing connections. Orthogonal persis-
tence refers to DBPL’s ability to make variables of any type long-lived. In our example
we exploited this property by including into the persistent Database Definition Module,
Topology, not only the relation variable, circuit, but also the base type variable, high-
estGateldUsed. DBPL, being based on the systems programming language Modula-2,
supports the engineering of large software systems. The module concepts, for example,
not only allow programs to be partitioned and their interfaces to be controlled but also
separates and hides implementations from definitions. In our circuit example we may
want to separate the definition of circuit topology from applications that use topology
data to derive state-oriented properties of a circuit (Fig. 3).

2.2 Expressions

Relations can be evaluated by two classes of declarative expressions: by Boolean expres-
sions using logical quantifiers and variables bound to relations, and by access expressions
that denote those relation elements which verify some Boolean expression.

Boolean expressions are highly desirable for bulk data evaluation since, on the one hand,
they provide the conceptual basis for associative data selection and integrity control while,



gatenumber

from1 [3_2 o

v

from2

- clll

=V

Figure 1: Gates and Circuits

DEFINITION MODULE Topology;
TYPE GidType = (g1, g2, g3, g4, gb, ..., open);
Gatelds = RELATION OF GidType;
GateType = RECORD id: GidType; fromi, from2: GidType;
to: Gatelds; END;
CircuitType = RELATION id OF GateType; VAR circuit: CircuitType;
highestGateIdUsed: GidType;
END Topology.

Figure 2: Type Definitions for Circuit Topology

on the other hand, they constitute an abstract interface to the more procedural parts
of problem solution in terms of conditionals and iterators of the database programming
language. Examples in our topology database are the following expressions that test
whether there exists (at least one) gate with an open input

SOME ¢ IN circuit ({c.froml, c.from2} = {open, open})
or whether gate identifiers are used consistently
ALL ¢ IN circuit (c.id < highestGateIdUsed).

Access expressions abstract from the details of bulk data access and presentation. The
following example of a (selective) access expression,

EACH ¢ In circuit: {c.froml, c.from2} = {open, open},

denotes those elements of our circuit relation that have open inputs.

The elements denoted by an access expression can be presented to its environment in
two different ways. First, we can use access expressions as parameters for relation con-
structors:



DEFINITION MODULE States; IMPORT Topology;

TYPE GateIn = RECORD id: Topology.GidType; inl, in2: BOOLEAN; END;
GateOut= RECORD id: Topology. GidType; out: BOOLEAN; END;
InState = RELATION id OF Gateln;

OutState = RELATION id OF GateOut;
InSpace = RELATION OF InState;
END States;

Figure 3: Type Definitions for Circuit States

CircuitType{EACH c In circuit: {c.fromi, c.from2} = {open, open}}.

In this way a relation value is returned n-elements-at-a-time. Secondly, access expressions
can be used also as iterators in a loop definition, e.g.

FOR EACH ¢ In circuit: {c.froml, c.from2} = {open, open} DO ...

thus providing a one-element-at-a-time interface to relational data.

In full generality, DBPL makes use of the expressiveness of a relationally complete,
calculus-based query language: the (constructive) access expression

cons(rl, ..., rn) OF EACH r1 IN R1, ... EACH rn IN RN: pred(ril, ..., rm),

returns a result constructed by some element-constructor, cons, over those elements rl,
.., rnof R1, ..., Rn that verify the selection predicate. Notice that access expressions
can form lists provided the contributing expressions construct union-compatible results.

A final example makes use of relation nesting and returns pairs of gate identifiers that
are connected by the circuit:

{g.id, g’.id} OF EACH g IN circuit, EACH g’ IN g.to: TRUE

2.3 Constructors

Applying language technology [IBM90] to our relational extensions essentially results
in providing appropriate means for the naming, typing and binding of relational types,
variables, expressions, etc. In the following we will concentrate on naming and param-
eterization of access expressions. Similar to functions a Constructor associates a name
with some body (which is an access expression list) and introduces typed by-value pa-
rameters together with a result type. For the subsequent formalization of constructor
semantics we restrict ourselves to a single relational parameter and to records as rela-
tion elements (ruling out arrays and variants); furthermore, we disallow subrange and
enumeration types.

When specifying their semantics it helps to recognize that constructors are used on three
different levels.



1. By a constructor definition we introduce a mapping from a name to a (possibly
parameterized) access expression.

CONSTRUCTOR InitIn:InState;
BEGIN {c.id, FALSE, FALSE} OF
EACH ¢ IN circuit:{c.froml,c.from2}={open,open} END InitIn;

CONSTRUCTOR Higher ON (parmH: InState): InState;
BEGIN EACH g IN parmH: SOME g’ IN parmH (g.id > g’.id) END Higher;

The first definition associates a name, Initln, with an access expression that con-
structs for all gates in the circuit with open input a triple composed of their gate
identifier and two times the value FALSE. The second definition introduces a name,
Higher, together with a parameterized access expression that selects from an ar-
bitrary relation of type InState those elements that have an identifier higher than
that of the minimal element.

2. By a constructor instance we mean the result of substituting the formal param-
eter of a constructor definition by an actual one.

Higher({{gl, FALSE, FALSE}, {g2, FALSE, FALSE}})
for example, identifies the following constructor instance

EACH g IN {{gl, FALSE, FALSE}, {g2, FALSE, FALSE}}:
SOME g’ IN {{gl, FALSE, FALSE}, {g2, FALSE, FALSE}} (g.id > g’.id).

3. Finally, by a constructed relation we mean the extensional relation value gained

by mapping a constructor instance to the corresponding relation from the result
type value set. In our example, relation construction, i.e.,

InState{EACH g IN {{gl, FALSE, FALSE}, {g2, FALSE, FALSE}}:
SOME g’ IN {{g1, FALSE, FALSE}, {g2, FALSE, FALSE}} (g.id > g’.id)}
results in the constructed relation {{g1, FALSE, FALSE}}.

A DBPL constructor has, just like a function, also a type. A constructor type is defined
by the type of its parameter and by its result type.

TYPE HigherType = CONSTRUCTOR ON (InState): InState;

For the purpose of this paper the use of constructor types is restricted to ON-parameters.



2.4 Deductive DBPL and Datalog

The rest of this paper will concentrate on the semantics of constructors which we con-
sider to be the deductive subset of DBPL. After enumerating some of the major differ-
ences between our approach and Datalog [CG'T90], we will define a declarative semantics

and develop an evaluation algorithm for deductive DBPL. Some comparative features of

DBPL and Datalog to keep in mind:

3

DBPL is based on the relational tuple calculus while Datalog is an extension of the
domain calculus.

DBPL is a strongly typed language while original Datalog is untyped. Typed
Datalog versions are a recent development [LNP et al. 88], [YS87], [Fru90].

Being typed puts DBPL constructors into the framework of many-sorted logic. This
strong typing, however, also restricts the universe of DBPL.

Deductive DBPL is based on two specific functors: the tuple construction and the
set constructor. Both are restricted through strong typing, and, therefore, cannot
be compared in terms of expressiveness with functions in Horn Languages.

Through the orthogonal combination of tuple and set functors, DBPL supports
relations with relation-valued components (N F? relations) nested to any depth.
In a DBPL program, all relations can be treated uniformly, be it a base relation
or a component relation. In some Datalog extensions complex objects can be
represented through functor terms and sets. However, since these sets are not
typed, they cannot be dealt with like relations.

A single DBPL constructor corresponds to the set of all Datalog rules having the
same predicate in the head.

DBPL constructors can be parameterized.

DBPL constructors use explicit quantification, existential and universal. The order
of quantifiers matters. In Datalog there is no explicit quantification and implicit
quantification prefixes rules by default.

Finally, since constructors in DBPL are deeply integrated into a complete database
programming language with persistence, transactions and query optimization, they
are fully supported by up-to-date database technology.

Model-Theoretic Semantics

We define the semantics of DBPL’s deductive part declaratively in the form of a mapping
from a program to a result relation. A program consists of type definitions, base relations,
constructors, and a relation expression based on a constructor instance.

A constructor is considered as a template for constructor instances. If a constructor is not
parameterized it is equal to its constructor instance. For parameterized constructors we
derive constructor instances by substituting the formal parameter through a base relation,



a constructor instance, or an extensionally defined relation (to represent component
relations). A constructor instance can be regarded as a rule (better a set of rules) in
terms of logic programming.

The very idea for formulating a model-theoretic semantics is that we have to consider
the constructor instances in our universe and not only the ground terms. This means
that we have to give two interpretations:

e the set of constructor instances which is determined by the program:;

e the set of tuples, which constitutes the result of a relation expression.

To attribute meaning to DBPL programs three steps are required. First, we define
the set of constructor instances which are implied by the program. Second, we define
the extensions of all constructor instances. Finally, we define the result of the given
relation expression. Note, the DBPL program without a relation expression has already
an associated meaning, as it stands for a (possibly infinite) set of extensional relations,
which are intensionally defined by the DBPL program. A relation expression can be
considered as a goal in terms of logic programming or as a query against a base or
derived relation in terms of database languages.

In this first definition we make the restriction that no negation and no universal quan-
tification may appear in the constructor definition. These cases will be dealt with in one
of the following sections. (They are solved through stratification.)

3.1 DBPL Types

For the purpose of this paper we restrict the DBPL types [MS89] as follows:

1. Basetypes

2. Recordtypes
If a1, ..., a, are names and {1,... 1, are types, then t = [ay : t1,...,a, : {,] is a
record-type with the name t.
With each record type t we associate a functor f;.

3. Relationtypes
Let t be a type. r = relation of t defines the relation-type r. With each relation type
r we associate a constant L, and a binary functor con, with the following properties:
Let A be a functor-term with con, as principal functor. For all proper terms tq,t5:
con, (t1, con,(t2, A)) = con,(t2, con,(t1, A)), and con,(t1, con,(t1, A)) = con,(t1, A).

3.2 DBPL Extents

In the DBPL-Universe we define all possible extents of types. If T is a type of a DBPL
program, then there is a corresponding set S in the DBPL-Universe such that:

e if T is a base type, then Sp consists of all instances of this base type;



o if T'=1[a : Th,...,a, : T,] is a record type, then Vi1 € Sp1,...,Vt, € St :
fT(tla-~-;tn) is in ST;

e for all record types R there is a constant Lg (the empty relation) in Skg;

e if Tis a type and R is of type relation of T, and r € Sg, and ¢ € St, then 3¢’ € Sg
with 1/ = cong(t,7);

e St Is minimal.

The minimality requirement demands that for each relation only one representative of
equal con-terms is contained in Sp.

The Constructor-Instance-Base CI consists of all constructor instances which can be
derived from the constructors of the program, the base relations, and the relations in the
DBPL-Universe.

1. For each constructor C of type T without parameters there is a constructor instance

Cin CIL

2. If C(X) is a constructor of type T with the formal parameter X of type 77, and D is
the name of a constructor instance of type 1" or the name of a base relation of type
T’ , then C(D) is a constructor instance of type T, and C(D) € CI. C(D) stands
for a constructor instance which is derived by substituting the formal parameter X
of the constructor C with the actual parameter D.

3. If C(X) is a constructor of type T" with the formal parameter X of type 7", and D
is a ground term in Sy of the DBPL-Universe, then C(D) € C1.

C(D) stands for a constructor instance which is derived by substituting the formal
parameter X by the actual parameter D, where D is an extensionally defined rela-

tion. If D = D’ (equality of conr - terms is different from syntactic equality) then
C(D) = C(D).

Note that point 2 is similar to predicate substitution [BI90]. Point 3 is a new approach
which can be considered as extensional substitution. Note that the name of a constructor
instance contains the name of its actual parameter. Through our definition of St for
relation types T we can use the elements of S as names for relations and in particular
as names for actual parameters.

The DBPL-Base consists of a set Bgr for each identifyable relation R of the DBPL
program. This set describes all possible tuples of which the extension of the relation can
consist.

1. If R is a base relation of type relation of T and ¢ € R, then t € Bg.

2. If C 1s the name of a constructor instance of type relation of 7', and ¢ € S, then
t € Be.

3. If R is the name of a type (R = relation of T), then for all » € Sg: for all
ter—te Bpg.
This third type of relation is extensionally defined. Note the name of such a relation
is a function term (i.e. a con,-term). This kind of relation is required for handling
relation valued attributes and for substituting formal parameters with component
relations of tuples from other relations.



3.3 DBPL Models

We now consider two different kinds of substitutions: substitution of parameters in con-
structors yielding constructor instances, and the substitution of (range-restricted) vari-
ables in constructor instances with values (tuples).

A set 1 is a subbase of the DBPL-Base of a program P, iff for all sets Bg of the DBPL-
Base there is a set Bl{z which is a subset of Bg. So all subbases have the same number
of sets (with the same subscripts) as the DBPL-Base.

An interpretation 1 is a subbase of the DBPL-Base.

A model has to be consistent with base relations and extensionally defined relations (i.e.
relations whose names are relation constants, i.e. con - terms). An interpretation I is
consistent for extensional relations, iff for all tuples t in the name of the relation r, ¢ € B!.
It is consistent for base relations, iff for all base relations R: B = R.

A DBPL program is satisfied by an interpretation, if all constructor-instances C in CI,
i.e. all access expressions in C are satisfied. An access expression, A, is satisfied if for all
valid substitutions of variables in A (range-restricted and existentially quantified ones)
with values of the associated interpretation sets the result, as defined by the element-
constructor, is in the set Bé of the interpretation.

A substitution is defined valid, iff

1. for all variables t ranging over relation R, the substituting value is in the set Bg
of the interpretation;

2. the predicate (without range restrictions) evaluates to true.

Note, that by substituting variables with values, we also substitute all component rela-
tions which depend on that variable. Through our definition of DBPL-Base, we can be
sure that these relations have their corresponding extension sets in the interpretation.

A consistent interpretation which satisfies a DBPL program is called a DBPL-Model.

The intersection of two models 1s the set which contains the intersections of all sets of
the two models. Since the intersection of two models is a model, there exists a unique
least model for a positive DBPL program. This least model is the meaning of a DBPL
program.

Further, we are now in a position to define the value of a relation expression, RelType{ C},
as the set of all t in B¢ of the least model of P.

3.4 Relevant Constructor Instances

For defining the extensions of a relation expression (goal) we need only a subset of CI,
1.e. the set of relevant constructor instances RCI for a goal G, defined by:

1. G € RCI
2. If H € RCI and H’ appears in H (as range relation) then H” € RCL.
3. RCI is the minimal set of constructor instances for which 1. and 2. holds.

On this set of relevant constructor instances we define the dependency graph of construc-
tor instances in the usual way [CGT90].



3.5 Negation and Universal Quantification

Negation in front of evaluable predicates (after a quantified range expression) causes no
problems with our semantics. Such a use of negation is of kind IX notp(X) while negated
predicates in Datalog are of kind not3Xp(X). We can view a notp(X) in the evaluable
predicates as just another evaluable predicate. Since all variables are bound in preceeding
range expression, the safety of such expressions is guaranteed.

For defining a semantics for programs with negation or universal quantification in the
range expressions, we use a stratification approach. First we make the observation that
negated existence quantifiers and universal quantifiers do not change the set of relevant
constructor instances for a given goal. In the definition of the set of relevant constructor
instances we look at the range relations only and not at the quantification. Therefore, we
don’t have to extend the definition of semantics for the inference of constructor instances.

For the derived set of relevant constructor instances we can derive the dependency graph
and extend it with labels for edges <C, C’> if C’ is used in C as range relation with
universal quantification or negated existence quantification. We define stratification thas
found in [CGTI0] [Naq89]. Only stratified programs will have a result, others will be
regarded as inadmissable programs.

4 Operational Semantics

The evaluation of constructors consists of two parts: deriving the set of relevant con-
structor instances resulting in a first-order program and evaluating this program, (i.e.
deriving the extensions of constructor instances). However, these two parts cannot be
accomplished generally in two successive phases, since the set of relevant constructor in-
stances may be infinite (recursive nesting of constructors) or depend on actual parameters
being subrelations of extensions of constructor instances.

4.1 Constructor Dependencies

The dependency graph of constructor instances may be infinite due to nesting of con-
structors. We will show, however, that we can distinguish some patterns which cause this
infinity. By analyzing these patterns we are also able to discuss whether we can identify
a finite set of constructor instances which yields the same result as the set of relevant
constructor instances.

We start by analyzing the relationships between constructors and the structure of infinite
sets of constructor instances.

Definition 4.1 A constructor C is called parameter consuming if it uses the parameter
as range relation.

Definition 4.2 (Adorned Constructor Dependency Graph (ACDG))
The nodes of the Adorned Constructor Dependency Graph (ACDG) are names of the
constructors of the DBPL program (we will only distinguish between the names of the



* C3C4* C3*

Figure 4: Adorned Constructor Dependency Graph

constructors and the constructors themselves where it is necessary and not obvious from
the context). Let C and C’ be constructors. The arc <C, C’> is in the graph, if C’
is the principal constructor of a range relation in C. If C has a parameter, say X, and
this parameter is used in the range relation which has C’ as principal constructor then
this arc is labeled with an *’ preceeded with all names of constructors which appear in
the range relation inside C’. (Note, between C and C’ there may be several arcs with
different labels.) Furthermore; we mark the parameter consuming nodes.

Since all the nodes of the graph are constructors, and the number of outgoing arcs of a
node is less or equal to the number of range relations in that constructor, a finite DBPL
program has a finite ACDG.

Definition 4.3 (*-path and label of a *-path) A *-pathis a path in the adorned de-
pendency graph which consists only of arcs marked with *. The label of such a path is
derived the following way: Let <C, C’> be a path with label L* and <C’,C”> be a path
with label K*, then there is a path <C, C”> with label K L* (concalenation of labels).

Example:

CONSTRUCTOR C1 ON (X): ...; BEGIN EACH t IN {C2(C3(C4(X)))}:... END C1;
CONSTRUCTOR C2 ON (X): ...; BEGIN EACH t IN {C4(C3(X))}: ... END C2;
CONSTRUCTOR C3 ON (X): ...; BEGIN EACH t IN {Cl(X)}: ... END C3;
CONSTRUCTOR C4(X): ...; BEGIN EACH t IN X: ... END C4;

The graph in Fig. 4 shows clearly where the infinity of the set of relevant constructor
instances comes from.

A parameter may be used in three different ways:
1. as a range relation;

2. as a parameter for a constructor (i.e. instantiating a constructor with the param-
eter);



3. as a parameter for a constructor which is used as parameter (i.e. instantiating
a constructor with a constructor instance which is derived by instantiation of a
constructor with the parameter), or further nesting.

It is easy to see that an infinite set of relevant constructor instances is due to the third use
of a parameter. Such an appearance of a parameter causes an increase in the level of con-
structor nesting. Now we can decide whether a program may lead to an infinite number
of constructor instances by solely looking at the dependency graph for constructors.

Definition 4.4 A constructor C is parameter dependent, if it is parameter consuming or
there is a *-path to a parameter C’ which is parameter consuming and all constructors
of the label of the *-path <C, C’> are parameter dependent.

This definition is motivated by the observation that there may exist constructors with
parameters which do not actually make use of the extensions of an actual parameter but
use it solely for the purpose of constructor instance naming.

Theorem 4.1 If a constructor C is not parameter dependent, then for all relations R

and Q: C(R) = C(Q).
The proof of this theorem is obvious. a

Definition 4.5 A constructor C is parametric dependent on a constructor C’ (C :—C”)

with label L, iff

1. there is a *-path from C to C’ with label L, or

2. there exists a parameter consuming constructor C”, and there exists a *-path from
C to C” with label L;C’Ly ,and all constructors in L; are parameter dependent
and L = Lo, or

3. there exist constructors C’, C”, C”’ being parameter consuming,and there is a *-

path from C to C” with label L;C”’Lsy, and all constructors in L, are parameter
dependent, and C”’ is parametric dependent on C’ L3, and L equals the concate-
nation of L3 and Ls.

Definition 4.6 A constructor C’ is nesting-dependent on a constructor C (C+ —C’), iff

it is parametric dependent with a label different from *.

Nesting-dependent is stricter than parametric dependent. Nesting-dependent implies
that the level of nesting of constructor instances for parameters is increased. A conse-
quence of this is theorem 4.2. If a constructor C is parametric dependent on C’; it means
that for each instance of C (with actual parameter P) there has to be an instance of C’
with P as innermost parameter.

In our example above, C1 is nesting-dependent on C1 with label C3* on C2 with label
C3C4*.



Theorem 4.2 The set of relevant constructor instances is infinite, iff there is a construc-
tor C which is nesting-dependent on itself.

The fan-out of a constructor C is the set of all constructors which are needed for evalu-
ating a instance of C independent of its parameter. It is the set of constructors instances
which appear in the set of relevant constructor instances of any goal with C as principal
constructor.

4.2 Case Analysis

We classify DBPL programs in two dimensions: the nesting of constructors (unnested,
layered nested, nested) and the use of subrelations as parameters (no, layered, free). Of
all combinations we discuss the following;:

1. Unnested Constructors, No Subrelations

If no constructor is nesting-dependent on itself and no component relation is used as
a parameter, the set of all relevant constructor instances is finite and can be deter-
mined before any tuple of the extensions of these constructor instances is evaluated.
Starting from the goal we can construct a complete and finite dependency graph
before evaluating a single value (extension) of any constructor instance. In a sec-
ond phase these constructor instances can then be evaluated (i.e. the extensions of
the constructor instances are computed). Compared with logic programming, both
phases can be characterized as first-order deductions. In the first phase the result
of the deduction process is a first-order program which is evaluated in the second
phase.

All Datalog programs can be mapped into this class of DBPL programs. Fur-
thermore, this class offers in principle enough expressiveness for polymorphism as
demanded in the introduction.

2. Unnested Constructors, Layered Subrelations
The constructors are not recursively nested and the constructor instances can be
layered in a way, that if a constructor instance X uses a component of a constructor
instance Y, then Y is in a lower layer than X (i.e. Y does not depend on X).

Example:
CONSTRUCTOR UpperLevel ON (X : ...): ...;
BEGIN ..., ... OF

EACH 11 IN {LowerLevel}, EACH 1 IN {UpperLevel(ll.subrel)} :...
(¥ 11.subrel is a relation valued attribute *)
END UpperLevel;

CONSTRUCTOR LowerLevel : ...;
BEGIN ..., EACH 1 IN {LowerLevel(X)}: p(1l) END LowerLevel;

For such programs we perform the two phases of the first case in each of the layers.
However, to deduct the constructor instances of a layer 1, it is necessary to know
not only the constructor instances of the previous layers but also their extensions.



3. Unnested Constructors, Free Subrelations

The constructors are not recursively nested, but subrelations are used freely as
actual parameters. (There are at least constructor instances X and Y, X has a
subrelation of Y as actual parameter, and Y depends on X.) The number of con-
structor instances is finite, given the number of tuples of each constructor instance
is finite.

In this case the evaluation procedure has to keep track of values and constructor
instances in parallel. An exhaustive analysis of such programs is the subject of
ongoing research.

4. Layered Constructors
The set of relevant constructor instances is infinite due to recursive nesting of
constructors through parameters. Therefore, there exists at least one constructor
C which is nesting-dependent on itself with label L¢.

For case 4 it is required that the constructor-instances can be layered in a way that
all instances of such self-dependent constructors C are in a higher layer than all
instances of the constructors in the respective label L. Here it is be possible that
the infinite set of relevant constructor instances can partioned into a finite set of
equivalence classes of extensionally equal constructor instances.

An evaluation algorithm for this kind of program will be discussed in the following
section.

5. Nested Constructors

Constructors are nesting dependent on themselves and cannot be layered as in case
4. We cannot give an evaluation algorithm which terminates in general for this
class of programs. However, the evaluation may terminate if access expressions
which contain nested constructors as range relations need not be further expanded
because a different (finitely evaluable) range relation of this access expression is
empty.

Example:

CONSTRUCTOR C ON (X):...;
BEGIN ..., EACH t IN {Rest(X)}, EACH x IN {C(C(Rest(X)))}, END C;

CONSTRUCTOR Rest ON (X):...;
BEGIN ..., EACH t IN X : SOME s IN X: t > s.END Rest;

Since Rest i1s defined in a way that it can be evaluated independently of C, and
since the cardinality of Rest(X) is strictly less than the cardinality of X, there
exists i € N with Rest!(X) = 0. All constructor instances with Rest/(X),i < j as
range relation in an acess expression can be simplified. However, it seems that a
finite evaluation of programs of this class can only be detected through semantical
constructor analysis.

4.3 Layered Constructors

In case 4 we consider programs with an infinite set of relevant constructor instances
which can be partitioned in a finite set of equivalence classes. This infinity stems from



recursive nesting of constructor instances through parameters. Nevertheless, it may be
possible to evaluate such a program. In principle (if no component relations are used as
parameters) we could first derive the constructor instances and then their extensions as
in case 1. However, since the set of relevant constructor instances is infinite, this is not an
adequate evaluation procedure. For case 4 a different evaluation strategy can be applied.
1t avoids infinity by deriving constructor instances and their extensions in parallel.
Example:

CONSTRUCTOR C ON (X: R): R;
BEGIN ..., EACH t IN {C(C1(X))}: ... END C;

CONSTRUCTOR C1 ON (X:R) : R;
BEGIN ... END C1i;

This example shows that the number of relevant constructor instances for a goal {C(A)}
is the set of all C'1{(A), and C(C1(A)), i € N. This set is infinite. However, if it is
possible to evaluate C'1° independent of C17,i < j (i.e. in the dependency graph there
is no path from C1% to any C1/,i < j), and for some i < j : C1° = C1/ (extensional
equality, i.e. C1° and C'1Y have the same set of tuples), we can then define equivalence
classes on these constructor instances and replace each constructor instance by the one
that has the smallest exponent (representative of the equivalence class). This way the
DBPL program can be evaluated in finite time. Note further that, if the number of
possible values of type R in the example above is finite, it is always possible to find a
partition into a finite set of equivalence classes.

In a more formal way we can define a DBPL program to be of class layered constructors,
iff for all constructors C the following holds: C is not nesting dependent on C with a
label which includes a constructor that has C in its fan-out. This definition means that if
there is a cycle which causes an infinite set of constructor instances, then the constructors
accumulated in that cycle do not take part in the cycle. Therefore, it is possible to define
a layering that evaluates the parameters first and then the instances of the constructors
in the cycle.

For evaluating such programs we avoid the creation of an infinite set of constructor
instances by deriving an equivalent finite set of constructor instances. This is always
possible because of the following theorem 4.3, which based on the notion of extensional
equality.

Definition 4.7 Two constructor instances C and D of type T are extensionally equal,
if {C} = {D}, i.e. if they evaluate to the same set of tuples.

This definition implies:

Theorem 4.3 For all types T, all constructors C with parameter of type T, all base
relations R and Q of type T:if R = Q holds, then also C(R) = C(Q).

The proof i1s based on the following arguments:

e if C does not depend on its parameter then the exchange of the actual parameter
is merely a renaming of constructor instances;



e if C does depend on its parameter, in each dependent constructor instance where
this parameter is used as range relation, exactly the same substitutions are valid,
if R and Q are extensionally equal.

O

Theorem 4.3 holds more generally since in a layered evaluation, each relation of layer 1
can be treated as base relation in layers greater than i.

Theorem 4.4 Consider two constructor instances C and D of type T. If the body of C
can be derived by replacing range relations in D by (extensionally) equal relations from
lower layers than those of C and D, then {C} = {D} i.e.,, C and D are extensionally
equal.

It is easy to see that by replacing a range relation by another relation which has exactly
the same tuples, the valid substitutions remain the same and, therefore, the tuples of the
constructor instance. a

To avoid inifinite production of constructor instances we need to close the dependency
graph by introducing a new cycle. The following constructors exemplify this technique:

CONSTRUCTOR C ON (X: R): R;
BEGIN ..., EACH t IN {C(C1(X))}: ... END C;

CONSTRUCTOR C1 ON (X:R) : R;
BEGIN ... END Ci;

We will evaluate the goal C(Q). Further we assume that C1(Q) = C1(C1(Q)). Since all
instances of Cl are in a lower layer than instances of C, we can treat them like base
relations and we will name C1(Q) as A and C1(C1(Q)) as B. Now we will show that
replacing the constructor instance C(A) through the constructor instance C’(A) yields
the same result.

CONSTRUCTOR-INSTANCE C’(A):R;
BEGIN ..., EACH t IN {C’(A)}: ... END C’;

Since A = B we know that {C(A)} = {C(B)}. It is clear to see that all models for
C(A) are also models for C’(A), and vice versa, since all valid substitutions of C(A) and
C(B) are equal. This means that we can replace the infinite set of constructor instances
induced by C(Q) by a finite one, the dependency graph of which has a cycle.

By straight forward extension this method can also be applied to the more general
“power-i-case” where cycles consist of more than one node.

4.3.1 Evaluation Principles

In the following we present and discuss an algorithm which is able to evaluate a goal given
by a (possibly recursive) constructor instance (up to now only cases 1 and 4 of section



4.1 are allowed). Our intent in showing this algorithm is to demonstrate the existence of
such an evaluation method. We do not claim it efficient.

We begin by considering case 1. Here, the constructor instance dependency graph (CDGQG)
could be built before any evaluation is done. Thus a goal could be evaluated by perform-
ing the following steps:

1. Constructing the CDG by expanding the goal.

2. Determining the strong components of the CDG (using some standard algorithm
[Baa88]).

3. Checking the admissibility according to the use of negation and universal quantifi-
cation. Therefore, we have to confirm as certain, if all constructor instances of a
strong component use the constructor instances of the same strong component not
under negation or universal quantification. (Remember that the partition of the
CDG corresponds to a stratification.) If the CDG is not admissible we can stop
here because the underlying program has no semantics.

4. Topological sorting of the strong components (using some standard algorithm).

5. Parallel evaluation of the constructor instances of the single strong components
[Tar55] (in the topological order of the strong components). For this every known
algorithm for evaluating recursive queries could be used, e.g. the differential fix-
point iteration [GKB8T].

We now consider case 4. The problem is that in general the CDG is infinite and can only
be made finite by recognizing the equivalence classes. To do this, however, we have to
evaluate the corresponding constructor instances. That means that we cannot divide the
evaluation process in the two succeeding steps which construct the CDG and evaluate
all constructor instances.

These two steps have to be merged in order to obtain a terminating evaluation. Here
the main problem is the recognition of equivalent nodes in the constructor dependency
graph. Equivalence is defined as follows:

Constructor Equivalence:

After each evaluation of a constructor instance C7Cs compare its value and
type with that of already evaluated instances Cy (note, that Cs is a postfix
of C1C3). If there is one that is equal then C1C3 and Cs are considered
equivalent. Building equivalence classes has the following three consequences

on the CDG:

1. All edges pointing to C1Cy (the C; are identifiers of constructor in-
stances) can be replaced by edges pointing to C (meaning that no fur-
ther expansion of C}Cy is necessary).

2. If constructor instances of the form C5C1C5 and C3C% exist, all edges
pointing to C3C1C'y can be replaced by edges pointing to CsCl.



3. For every newly identified constructor instance C';C it must be checked
whether there exists already a postfix C, of C's with the same value for
its constructed relation. If this is the case and if C',C), exists, no new
constructor instance C1C5 will be created and all references to C1C5 are
redirected to point at C;C),. This also means that no further expansion

of C1C5 is allowed.

Building equivalence classes guarantees termination only if every strong component is
detected and evaluated in finite time. Otherwise we may follow an infinite path in the
CDG without recognition of postfixes. Under these circumstances it is not possible to
use a depth first search algorithm, instead the search has to be breadth first. Before any
expansion of constructor instances for the next level the full CDG has to be searched
for completed subgraphs. (A subgraph is completed if for every constructor instance
in the subgraph the used constructor instances are also contained in the subgraph.)
The completed subgraphs can be evaluated following alternative 1 of our case analysis
followed by an equivalence class test for the newly evaluated constructor instances. The
implementation of consequence 3 of equivalence class formation can be supported by
maintaining a set of pairs < a,b > of constructor instances, so that b is a postfix of a
and both constructed relations are equal.

5 Example: Solving a NP-Complete Problem with
DBPL Constructors

Bonner and Imielinski [BI90] demonstrate the expressive power of predicate substitution
by solving a NP-complete problem that cannot be solved by function-free Horn logic.
They sketch a Datalog program with substitution that determines for a given combina-
tional circuit whether its output can possibly have the value true. In the example now
presented we essentially follow their presentation and discuss a detailed solution of that
problem based on DBPL constructors.

Referring back to the DBPL examples of section 2 we provide a relational representation
of an arbitrary circuit topology (see Fig. 1) and its relevant states by the two modules,
Topology and States (Figs. 2, 3). Based on this representation we solve the problem in
three steps:

1. Construction of the input space:

Based on the circuit representation captured by the actual state of the module
Topology (i.e., by the value of its relation circuit, see Fig. 2) we start by giving a
circuit input vector, Initln, that initializes all open gates by setting their inputs to
FALSE. The recursive constructor, Inc, then systematically derives all possible in-
puts vectors by increasing and carrying over the values of its individual components
(with the help of the two constructors, Low and Higher).

CONSTRUCTOR InitIn: InState;
BEGIN {c.id, FALSE, FALSE} OF EACH c IN circuit:
{c.froml, c.from2} = {openIn, openIn} END InitIn;



CONSTRUCTOR Low ON (parmL: InState): InState;
BEGIN EACH g IN parmL: ALL g’ IN parmlL (g.id <= g’.id) END Low;

CONSTRUCTOR Higher ON (parmH: InState): InState;
BEGIN EACH g IN parmH: SOME g’ IN parmH (g.id > g’.id) END Higher;

CONSTRUCTOR Inc ON (parmI: InState): InState;
BEGIN {g.id, NOT g.inl, g.in2} OF EACH g 1IN {Low(parmI)}: NOT g.ini,
{g.id, NOT g.inl, NOT g.in2} OF EACH g 1IN {Low(parmI)}: g.ini,
EACH g IN {Higher(parmI)}:
SOME g’ IN {Low(parmI)} (NOT(g’.inl AND g’.in2)),
EACH g IN {Inc({Higher(parmI)}:
SOME g’ IN {Low(parmI)} (g’.inl AND g’.in2) END Inc ;

The types required by the above constructors are given in the module States (see
Fig. 3, section 2). An instance of type InState, for example, can represent an
arbitrary input vector to the open gates. (Note, that the arity of that vector is
variable and depends on the circuit at hand.)

Finally, the recursive constructor Alllns covers the entire input space represented
by type InSpace which is a set of InState vectors.

CONSTRUCTOR AllIns: InSpace;
BEGIN {InitIn}, {Inc(a)} OF EACH a IN {AllIns}: TRUE END Alllns;

. Construction of the output states:

In a second step, circuit output is deduced for a given input state. The recursive
constructor, Deduce, steps through the circuit topology and derives level by level
the output states of the individual gates. Note, in our example we restricted the
circuit to consist of NOR-gates only.

CONSTRUCTOR Deduce ON (parmD: InState) : OutState;
BEGIN {g.id, NOT (g.inl OR g.in2)} OF EACH g IN parmD: TRUE,
{g.id, NOT (g’.out OR g’’.out)} OF
EACH g IN circuit, EACH g’, g’’ IN {Deduce(parmD)}:
({g.froml, g.from2} = {g’.id, g’’.id}) END Deduce;

The constructor, Deduce, uses (Boolean) expressions for result construction. This
goes beyond the DBPL subset formalized above, however, our version of the ex-
ample can be shown to be just a shorthand that conceptually does not leave the
framework of this paper.

. Evaluation of the output space:

Finally, we solve the problem by evaluating the circuit input space and the gate
output spaces. The following quantified query expression tests for the existence of
a positive circuit output. The query evaluates to TRUE if and only if for some
vector, a, from the circuit’s input space some output, o, can be deduced which has
the value TRUE and refers to a gate with an open output line:



SOME a IN {A11Ins} (SOME o IN {Deduce(a)}
(o.out AND (circuitl[o.id]l.to = {open}))

Note the close interplay between the various language levels of DBPL. Instead of forcing
the entire solution into, say, a single set expression and a test for emptiness (which we
could have done in DBPL), we make use of DBPL’s conceptual richness and exploit
quantification, set construction and selection, parameterization, etc.

6 Conclusion

Our approach to data deduction differs substantially from that followed by other projects
which either extend Horn logic, Prolog-like languages, or include some extra operator
with fixpoint semantics into relational query facilities.

Instead, we applied to DBPL a good language design tradition which recommends that
language users be allowed to name and classify (by types, parameters etc.) all constructs
considered relevant. There is no doubt that associative query expressions for abstract
access to bulk data are the most important single language facility for any data-intensive
application.

DBPL’s parameterized and possibly recursive constructors prove to be a powerful deduc-
tive query language that is shown to exceed stratified Datalog. Since, furthermore, DBPL
constructors have the advantage of being deeply integrated into a fully-fledged database
programming language and system, we have the possibility of studying very carefully the
implications of query facility extension on both applications and implementations.

Practical experience with the use of DBPL in lab classes demonstrates that students quite
willingly accept the clear and improved interaction of a database model in the 000form
of “typed relational sets” and “declarative set expressions” with other concepts needed
and found in procedural languages, like strong typing, fine-grained scoping and dynamic
parameterization. However, while set-oriented expressions are readily used for the more
standard data retrieval and manipulation tasks, experience also seems to indicate that
there is a tendency to fall back to procedural solutions for more complex tasks, e.g. by
embedding set expressions into iterators or recursive procedures.

The reason behind such user behavior may originate from the fact that simple query
expressions can still be understood by refering to an operational semantics in terms of
set construction by loops, conditionals and assignments. However, this view becomes
less appropriate for complex queries such as recursive ones that require a more abstract
understanding in terms of model-theory and fixpoint semantics.

For designers and teachers it is definitely quite a challenge to reconcile this kind of “ab-
straction mismatch” inside their languages, a problem hard to overcome without leaving
the framework of traditional computer languages (and definitely ruling out the “PL1 +
SQL + ”*” ?-approach). We are convinced that only advanced language technology with
higher-order and polymorphic functions, taxonomic typing systems and reflection will
form the appropriate basis for next-generation database programming languages [Car89]

[MS90] [SFS90].



References

[AUT9]

[Baa88]

[BNRS7]

[BI9O]

[Car89]

[CGTSY)]

[CGT90]

[Cod70]

[Dah87]

[Friig0]

[GKBST]

[IBM90]

[JLS85]

A. Aho and J. Ullmann. Universality of data retrieval languages. ACM Symp.
on Principles of Programmang Languages, 1979.

S. Baase. Computer Algorithms - Introduction to Design and Analysis.
Addison-Wesley Publishing Company, 2nd edition, 1988.

C. Beeri, S. Nagvi and R. Ramakrishnan. Sets and negation in a logic database
language (LDL). In: Proceedings ACM Symposium Principles of Database
Systems, 1987.

A.J. Bonner and T. Imielinski. The Reuse and Modification of Rulebases
by Predicate Substitution. In: F. Bancilhon, C. Thanos, and D. Tsichritzis
(Eds.): Advances in Database Technology - EDBT’90 (Proceedings), Springer-
Verlag, 1990.

L. Cardelli. Typeful Programming. Digital Systems Research Center Re-
ports 45, DEC SRC Palo Alto, May 1989.

S. Ceri, G. Gottlob and L. Tanca. What you always wanted to know about
Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1), 1989.

S. Ceri, G. Gottlob and L. Tanca. Logic Programmaing and Databases. Springer-
Verlag, 1990.

E.F. Codd. A Relational Model of Data for Large Shared Databanks. Com-
munications of the ACM, 13(6):377-387, June 1970.

E. Dahlhaus. Skolem Normal Forms Concerning the Least Fixpoint. In E.
Bérger (Ed.): Computation Theory and Logic volume 270 of Lecture Notes in
Computer Science. Springer-Verlag, 1987.

Th. Fruhwirth. Types in logic programming. PhD-Thesis, Technical University
of Vienna, 1990.

U. Guntzer, W. Kiessling and R. Bayer. On the Evaluation of Recursion in
(Deductive) Database Systems by Efficient Differential Fixpoint Iteration. In:
Proceedings 3rd International Conference on Dala Engineering, pp. 120 — 129,
Los Angeles, February 1987.

In: A. Blaser, editor, Database Systems of the 90s, volume 466 of Lecture Notes
. Computer Science;, August 1990.

M. Jarke, V. Linnemann and J.W. Schmidt. Data Constructors: On the In-
tegration of Rules and Relations. In: 77th Intern. Conference on Very Large
Data Bases, Stockholm, August 1985.

[LNP et al. 88] E. Lambrichts, P. Nees, J. Paradaens, P. Peelman and L. Tanca. MilAnt:

An extension of Datalog with complex objects, functions, and negation, 1988.



[KP8S]

[MRS89]

[MS89]

[MS90]

[Nag89]

[Prz88]

[SEMSS]

[SFS90]

[Tarb5]

[YS87]

Ph. G. Kolaitis and C.H. Papadimitriou. Why not negation by Fixpoint? In:
Proceedings ACM SIGMOD-SIGACT Symposium on Principles of Database
Systems, 1988.

F. Matthes, A. Rudloff, and J.W. Schmidt. Data- and Rule-Based Database
Programming in DBPL. Esprit Project 892 WP/IMP 3.b, Fachbereich Infor-
matik, Johann Wolfgang Goethe-Universitat, Frankfurt, West Germany, March
1989.

F. Matthes and J.W. Schmidt. The Type System of DBPL. In: Proc. of the
2nd Workshop on Database Programming Languages, Salishan Lodge, Oregon,
pPp- 255-260, June 1989.

F. Matthes and J. W. Schmidt. Database Application Systems: Types, Kinds
and Other Open Invitations. In these proceedings, 1990.

S.A. Nagvi. Stratification as a Design Principle in Logical Query Languages.
In: Proc. of the 2nd Workshop on Database Programming Languages, Salishan
Lodge, Oregon, June 1989.

T. C. Przymusinski. On the Declarative Semantics of Deductive Databases and
Logic Programs. In: Jack Minker (Ed.), Foundations of Deductive Databases,
pp- 193 — 216. Morgan Kaufmann Publishers, 1988.

J.W. Schmidt, H. Eckhardt and F. Matthes. DBPL Report. DBPL-Memo 111-
88, Fachbereich Informatik, Johann Wolfgang Goethe-Universitat, Frankfurt,
West Germany, 1988.

L. Stemple, D. Fegaras, T. Sheard and A. Socorro. Exceeding the Limits of
Polymorphism in Database Programming Languages. In: Advances in Database
Technology, EDBT 90, volume 416 of Lecture Notes in Computer Science, pp.
269-285. Springer-Verlag, 1990.

A. Tarski. A Lattice Theoretical Fixpoint Theorem and its Applications. Pa-
cific J. Mathematics, 5(2):285-309, June 1955.

E. Yardeni and E. Shapiro. A Type System for Logic Programming. In: E.
Shapiro (Ed.),Concurrent Prolog: Collected Papers, Vol. 2, MIT-Press, 1987.



