Chapter 1.4.2
Bulk Types: Built-In or Add-On?

Florian Matthes and Joachim W. Schmidt

Technical University Hamburg-Harburg
Harburger Schlofistrafie 20
D-21071 Hamburg, Germany

Summary This text is a summary of [8].

Bulk structures play a central réle in data-intensive application programming.
The issues of bulk type definition and implementation as well as their integration
into database programming languages are, therefore, key topics in current DBPL
research.

In this paper we raise a more general language design and implementation issue
by asking whether there should be at all built-in bulk types in DBPLs. Instead, one
could argue tat bulk types should be realized exclusively as user-definable add-s to
unbiased core languages with appropriate primitives and abstraction facilities.

In searching for an answer we first distinguish two substantially different levels
on which bulk types are supported. Elementary Bulk essentially copes with persis-
tent storage of mass data, their identification and update. Advanced Bulk provides
additional support required for data-intensive applications such as optimized asso-
ciative queries and integrity support under concurrency and failure.

Our long-term experience with bulk types in the DBPL language and system
clearly shows the limitation of the built-in approach: built-in Advanced Bulk, as
elaborate as it may be, frequently does not cover the whole range of demands
of a fully-fledged application and often does not provide a decent pay-off for its
implementation effort. On the other hand, restriction to built-in Elementary Bulk
gives too little user-support for most data-intensive applications.

Irrespective of the particular kind of bulk data structures present in a given
database programming environment (e.g. lists, sets, relations in traditional DBPLs;
class extents in object-oriented databases; base predicates in deductive databases
or extensionally defined functions in functional databases), one can distinguish two
fundamentally different approaches to bulk type support within a language frame-
work:

Built-In Bulk Types are provided as first-class parameterized type constructors
in several programming languages [13, 6, 12, 11], their syntax, type rules, se-
mantics and implementation being hard-wired into the language processor and
the run-time system support.

Add-On Bulk Types are defined and implemented utilizing standard built-in
language mechanisms (typing, naming, binding, scoping or recursion) of a suf-
ficiently generic general-purpose base language like ML [10], Modula-3 [3],
Napier-88 [4] or Eiffel [9].

In this paper we analyze the motivations and basic assumptions behind both (ex-
treme) approaches and explore their individual advantages and shortcomings. This
investigation is based on the one hand on our substantial experience with the de-
sign and implementation of database programming languages incorporating power-
ful built-in bulk type support [13, 5, 7]. On the other hand it reports on the design
rationale for Tycoon', a language and system environment with add- bulk types.

! Tycoon: Typed Communicatng Objects in Open Environments.



Florian Matthes, Joachim W. Schmidt

The issue of built-in vs. add- bulk types has a longer tradition in the Persistent
Programming Language community, in the DBPL camp, however, the main goal
always consisted in building in advanced bulk types. By reporting on our own past
experiences and future expectations we attempt to contribute to a more open and
objective discussion on this important DBPL research issue.

We report on experience with built-in bulk types by referring essentially to
DBPL, a set- and predicate-based procedural database programming language [14].
We illustrate issues in language design, system construction and application pro-
gramming involving built-in bulk types.

The numerous requirements for bulk types (see, e.g., [1, 2]) can be classified
into elementary and advanced requirements which we will sumarize below. This
discussion is valid for both, built-in as well as add- bulk types, and, therefore, also
establishes a framework for an investigation of environments that enable their users
to add-on bulk types meeting these elementary and advanced requirements.

As a first cut, the distinction between an elementary and an advanced require-
ment can be based on the kind of technology that is required to provide a particular
bulk type support. Elementary requirements usually can be met by local modifi-
cations to language processors (compilers, abstract machines, run-time support li-
braries) essentially based on programming language technology. On the other hand,
more advanced requirements, for example effective query optimization or stratifi-
cation analysis of fixed-point queries, involve global analysis and modifications as
provided by advanced database technology.

The built-in approach can be characterized by the following assumptions:

— All language implementation details are hidden from the application programmer
(How is a bulk type implemented? How is a query represented, transformed and
evaluated? How is serializability achieved?)

— The efficient implementation of the database language depends crucially on de-
tailed language design time knowledge about permissible language constructs:
Which (bulk) types exist? What is the syntax of the query (sub-)language? What
are the algebraic properties of the built-in language primitives like equality pred-
icates, comparison operations, aggregate functions?

— Significant optimizations are based on a careful case-analysis within the available
language space. Examples are optimizations for special cases like flat relations,
unordered collections, read-only transactions or one variable selection queries.

Some of these assumptions are in conflict with the programming language principles
of orthogonality and free extensibility. Accordingly, much work in the database
community aims at extending database technology to support, e.g.

— new aggregate functions in queries,

— new operations within queries (e.g. test for intersection of geometric objects),
— new bulk structures (e.g. ordered sequences),

— new operations in the target list of query expressions,

— new storage structures,

— new join algorithms, etc.

Despite progress made with extensible database systems [15], none of today’s
database programming language implementations provides adequate support for
the above extensions.

The paper outlines the initial design of the Tycoon bulk type environment that
aims at defining uniformly and implementing systematically declarative iteration
abstractions applicable to a wide variety of bulk structures. Specifically, we explain
how the concepts of data independence and query optimization can be generalized



Bulk Types: Built-In or Add-On?

to liberally extensible systems. We also identify specific language mechanisms re-
quired for the efficient and robust construction of such open and extensible database
application systems.

In our experience the main arguments against the traditional built-in approach
to bulk types can be summarized as follows:

Reusability: It is difficult (often impossible) to safely re-use existing system com-
ponents of the built-in system environment (buffer manager, polymorphic index
structures, wait-for-graph management, clustering algorithms etc.).

Scalability: It is typically not possible to eliminate unnecessary functionality from
the built-in system environment (concurrency control or recovery actions, com-
ponents for recursive query evaluation).

Adaptability: Even if one has access to the implementations of the built-in bulk
structures, modifications of these components (e.g. replacing B-Tree index
structures by hashed structures or replacing a garbage collection algorithm)
have to be performed in a “lower level” programming language with obvious
negative consequences on the overall system correctness and long-term system
evolution.

The apparent resistance of current DBPL system implementations against DBPL
language extensions gives rise to the following important research question. Can
one isolate “generic” language constructs that aid in the systematic construction
of flexible DBPL processors and meet more than just a limited set of structures
and algorithms foreseen at language design time? The second part of this paper
addresses the relationship between DBPL language and system extensibility.

Recent advances towards expressive type systems and highly effective compi-
lation schemes may allow the elementary requirements for bulk data storage (in-
cluding persistence management) to be satisfied without resorting to the built-in
approach. Given state-of-the-art language technology, a high investment in built-
in bulk types (as exemplified by DBPL) can only be justified by the support it
provides for advanced requirements like generalized associative queries or integrity
constraint management in multi-user environments. We finally reported on our cur-
rent work that aims to satisfy even these advanced requirements by user-definable
add-ons to generic core languages focussing on linguistic and architectural aspects,
since important component technology seems to be already available in extensible
database systems.

Clearly there remain many open research issues for further theoretical and ex-
perimental work. What is a suitable formal framework for data models support-
ing generalized bulk types? Is it necessary to equip DBPLs with specific syntactic
support for a concise notation of bulk data manipulations (e.g. list comprehen-
sions)? Is there a taxonomy for general optimization strategies (algebraic vs. op-
erational, static vs. dynamic, deterministic vs. probabilistic)? Where should the
meta-information required for optimizations come from (static program analysis,
program annotations via pragmas, access to program specifications, compile-time
or run-time reflection)? Can standardized iteration abstractions be exploited for
program verification tasks?

Acknowledgement This work was supported by the European Commission under

ESPRIT BRA contract # 3070 (FIDE).



Florian Matthes, Joachim W. Schmidt

References

10.

11.

12.

13.

14.

15.

. M. Atkinson, F. Bancilhon, D. De Witt, K. Dittrich, D. Maier, and S. Zdonik.

The object-oriented database system manifesto. In Deductive and Object-
oriented Databases. Elsevier Science Publishers, Amsterdam, Netherlands, 1990.
M. Atkinson, P. Richard, and P. Trinder. Bulk types for large scale program-
ming. In Proceedings of the Kiev East/West Workshop on Next Generation
Database Technology, volume 504 of Lecture Notes in Computer Science, April
1991.

. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.

Modula-3 report. Technical Report ORC-1, Olivetti Research Center, 2882 Sand
Hill Road, Menlo Park, California, 1988.

A. Dearle, R. Connor, F. Brown, and R. Morrison. Napier88 — a database
programming language? In Proceedings of the Second International Workshop
on Database Programming Languages, Portland, Oregon, June 1989.

. J. Koch, M. Mall, P. Putfarken, M. Reimer, J.W. Schmidt, and C.A. Zehnder.

Modula/R report, lilith version. Technical report, Department Informatik, ETH
Zirich, Switzerland, February 1983.

C. Lécluse, P. Richard, and F. Velez. Oz, an object-oriented data model. In
Proceedings of the ACM-SIGMOD International Conference on Management of
Data, Chicago, Illinois, pages 424-433, 1988.

. F. Matthes and J.W. Schmidt. The type system of DBPL. In Proceedings

of the Second International Workshop on Database Programming Languages,
Portland, Oregon, pages 255-260, June 1989.

F. Matthes and J.W. Schmidt. Bulk types: Built-in or add-on? In Database
Programming Languages: Bulk Types and Persistent Data. Morgan Kaufmann
Publishers, September 1991.

. B. Meyer. Object-oriented Software Construction. International Series in Com-

puter Science. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1990.

S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases.
Computer Science Press, 1989.

A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in
Machiavelli — a polymorphic language with static type inference. In Proceed-
ings of the ACM-SIGMOD International Conference on Management of Data,
Portland, Oregon, pages 46-57, 1989.

J.W. Schmidt. Some high level language constructs for data of type relation.
In Proceedings of the ACM-SIGMOD International Conference on Management
of Data, Toronto, Canada, August 1977.

J.W. Schmidt, H. Eckhardt, and F. Matthes. DBPL Report. DBPL-Memo 112-
88, Fachbereich Informatik, Johann Wolfgang Goethe-Universitat, Frankfurt,
Germany, 1988.

M. Stonebraker. Special issue on database prototype systems. IFEE Transac-
tions on Knowledge and Data Engineering, 2(1), March 1990.



