This paper investigates on the feasibility of automatically detecting the legal area of court rulings. Hereby, we establish the hypothesis that the allocation to a field of law is often ambiguous and errors occur in that process as a result. A dataset constituting over 9.000 labelled court rulings was used in order to train different machine learning (ML) classifiers. Additionally, we applied rule-based approaches utilizing domain knowledge of legal experts. Our models outperformed the rule-based approaches significantly. Hence, we could show that the performance of ML models are less prone to errors than the manual assignment of legal experts.
Conference (0)
There are no subpages or files.